Group.Quiz.16

Group #:	Members:		Rating:
----------	----------	--	---------

- 1. (Definitions) Fill in the blank.
 - (a) (1 point) The coordinates of x relative to the basis $\mathcal{B} = \{b_1, b_2, \dots, b_p\}$ for the vector space V are _____.
- 2. (2 points) Write 329 in Roman Numerals given that some of its basis elements are

Ι	1
V	5
Х	10
L	50
С	100
D	500
М	1000

3. (4 points) Let
$$b_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -3 \\ 4 \\ 0 \end{bmatrix}$, $b_3 = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}$, and $x = \begin{bmatrix} 8 \\ 2 \\ 3 \end{bmatrix}$.

- (a) Show that $\mathcal{B} = \{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 .
- (b) Find the change-of-coordinate matrix from \mathcal{B} to the standard basis and use it to write the equation that relates $x \in \mathbb{R}^3$ to $[x]_{\mathcal{B}} \in \mathbb{R}^3$.
- (c) Use the equation you obtained in part (b) to find $[x]_{\mathcal{B}}$, for the x given above.
- 4. (3 points) The first four Hermite polynomials are 1, 2t, $-2 + 4t^2$, and $-12t + 8t^3$. These polynomials arise naturally in the study of certain important differential equations in mathematical physics.
 - (a) Use the coordinate mapping to show that the first four Hermite polynomials forms a basis of \mathbb{P}_3 .
 - (b) Find $[9t^2 + 7t 1]_{\mathcal{B}}$, where \mathcal{B} contains the first four Hermite polynomials. What does this answer represent?
 - (c) Describe what you would have done for part (a) if you weren't allowed to use the coordinate mapping.
- 5. (Extra credit 3 points) Show that for any $\mathcal{B} = \{b_1, \ldots, b_n\}$, a basis for V, the coordinate mapping $\phi : V \to \mathbb{R}^n$ that takes $x \in V$ to $[x]_{\mathcal{B}} \in \mathbb{R}^n$ is an **isomorphism**, i.e., ϕ is one-to-one, onto, and linear.