Group.Quiz.14

Group #: _____ Members: _____ Rating: _____

- 1. (Definitions) Fill in the blanks.
 - (a) (1 point) The null space of an $m \times n$ matrix A is _____.
 - (b) (1 point) The column space of an $m \times n$ matrix A is _____.

2. (3 points) Let
$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}, u = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}.$$

- (a) Is $u \in N(A)$? Why or why not? Could u be in Col(A)? Why or why not?
- (b) Is $v \in Col(A)$? Why or why not? Could v be in N(A)? Why or why not?
- (c) Find a nonzero vector in N(A) and verify your answer.
- 3. (2 points) Let A be an $m \times n$ matrix. Using the language of null space and column space to complete the following sentences and justify your answers.
 - (a) (Existence) The matrix equation Ax = b has a solution for every $b \in \mathbb{R}^m$ if and only if
 - (b) (Uniqueness) The matrix equation Ax = b has a unique solution for every $b \in \mathbb{R}^m$ if and only if _____.
- 4. (3 points) Prove that the column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m . (Hint: #29 in §4.2 exercises.)