Group \#: \qquad Members: \qquad Rating: \qquad

1. (Definitions) Fill in the blanks.
(a) (1 point) The null space of an $m \times n$ matrix A is \qquad .
(b) (1 point) The column space of an $m \times n$ matrix A is \qquad .
2. (3 points) Let $A=\left[\begin{array}{cccc}2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6\end{array}\right], u=\left[\begin{array}{c}3 \\ -2 \\ -1 \\ 0\end{array}\right], v=\left[\begin{array}{c}3 \\ -1 \\ 3\end{array}\right]$.
(a) Is $u \in \mathrm{~N}(A)$? Why or why not? Could u be in $\operatorname{Col}(A)$? Why or why not?
(b) Is $v \in \operatorname{Col}(A)$? Why or why not? Could v be in $\mathrm{N}(A)$? Why or why not?
(c) Find a nonzero vector in $\mathrm{N}(A)$ and verify your answer.
3. (2 points) Let A be an $m \times n$ matrix. Using the language of null space and column space to complete the following sentences and justify your answers.
(a) (Existence) The matrix equation $A x=b$ has a solution for every $b \in \mathbb{R}^{m}$ if and only if
\qquad -
(b) (Uniqueness) The matrix equation $A x=b$ has a unique solution for every $b \in \mathbb{R}^{m}$ if and only if \qquad .
4. (3 points) Prove that the column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^{m}. (Hint: \#29 in $\S 4.2$ exercises.)
