Group \#: \qquad Members: \qquad Rating: \qquad

1. (Definitions) Fill in the blanks.
(a) (2 points) Let V denote a vector space and H a subset of $V . H$ is a subspace of V if
\qquad .
2. (2 points each) Let V denote a vector space and H a subset of V. Determine if H is a subspace of V in the following items. Be sure to justify your answer.
(a) $V=\mathbb{R}^{2} . H=$ the union of the first and third quadrants in the $x y$-plane, i.e.,

$$
H=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x y \geq 0\right\} .
$$

(b) $V=\mathbb{P}_{n}$ (the set of all polynomials of degree at most n). $H=$ the set of polynomials of degree at most n such that $p(0)=0$, i.e.,

$$
H=\left\{p(t)=a_{0}+a_{1} t+\ldots+a_{n} t^{n}: p(0)=0 \quad \text { and } \quad a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}\right\} .
$$

(c) $V=\mathbb{P}_{2}$ (the set of all polynomials of degree at most 2). $H=\left\{p(t)=a+t^{2}: a \in \mathbb{R}\right\}$.
(d) $V=\mathbb{R}^{3} . H=\left\{\left[\begin{array}{c}1 \\ 3 a-5 b \\ 3 b+2 a\end{array}\right]: a, b \in \mathbb{R}\right\}$.
(e) $V=\mathbb{R}^{4} . H=\left\{\left[\begin{array}{c}4 a+3 b \\ 0 \\ a+3 b+c \\ 3 b-2 c\end{array}\right]: a, b, c \in \mathbb{R}\right\}$.

