Group \#: \qquad Members: \qquad Rating: \qquad

1. (3 points) Determine whether

$$
A=\left[\begin{array}{ccc}
0 & 3 & -5 \\
1 & 0 & 2 \\
-4 & -9 & 7
\end{array}\right]
$$

is invertible. Provide 6 distinct reasons to justify your answer.
2. (3 points) Let U be a square matrix such that $U^{T} U=I$. A matrix that satisfies this property is called an orthogonal matrix. Show that $\operatorname{det} U= \pm 1$. Try to come up with such a matrix U that is not the identity matrix.
3. (2 points) Find the determinant of the following matrix by row reduction to echelon form. Show all work.

$$
A=\left[\begin{array}{ccccc}
1 & 3 & -1 & 0 & -2 \\
0 & 2 & -4 & -1 & -6 \\
-2 & -6 & 2 & 3 & 9 \\
3 & 7 & -3 & 8 & -7 \\
3 & 5 & 5 & 2 & 7
\end{array}\right]
$$

4. True/False. Remember to justify your answers to the following statements.
(a) $(1$ point $) \operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
(b) (1 point) If $\operatorname{det} A=0$, then the columns of A are linearly independent.
