Group.Quiz.11

Group #: M	lembers:	Rating:
------------	----------	---------

- 1. (3 points) Prove the following.
 - (a) If A is invertible, then A^{-1} is also invertible and $(A^{-1})^{-1} = A$.
 - (b) If A and B are $n \times n$ invertible matrices, then so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
 - (c) If A is invertible, then so is A^T and $(A^T)^{-1} = (A^{-1})^T$.
- 2. (2 points) Let $A = \begin{bmatrix} -1 & -7 & -3 \\ 2 & 15 & 6 \\ 1 & 3 & 2 \end{bmatrix}$. Find the second column of A^{-1} without computing the other columns.
- 3. (3 points) A message has been encoded using the matrix

$$C = \begin{bmatrix} 2 & 1 & 3 & 1 \\ 5 & -1 & -1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 3 & 2 & 1 \end{bmatrix}.$$

The encoded message is

Х	Η	\mathbf{L}	Т	А	В	U	Т	\mathbf{F}	Μ	Υ	Q
G	D	R	Е	\mathbf{S}			V	G	Е	Ζ	Х

Your assignment (should you choose to accept it) is to decode it.

- 4. (2 points) Recall that to **formally** justify a **true** *if-then* statement, you need to cite appropriate results (typically in the form of theorems) and show that the antecedent (what follows the "if") in the True/Flase statement is satisfied. This may be hard to do in some situations. On the other hand, to justify a **false** *if-then* statement, you just need to come up with **one** counterexample (i.e., example that shows the statement is not true). Note, you **can not** justify a true statement by simply showing that a few examples work (Getting heads on ten consecutive coin tosses does not mean that you won't get tails on the 11th toss.). Now, pove or disprove the following statements.
 - (a) If A is invertible, then so is $A^3 + I$.
 - (b) Let A be symmetric and invertible. Then A^{-1} is also symmetric.