Group \#: \qquad Members: \qquad Rating: \qquad

1. (2 points) Denote the i th row of the matrix B by r_{i}. Use the definition of row-column matrix multiplication to compute $A B$ where

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
-1 & 0 & 2 & 4 \\
3 & 1 & 6 & 0
\end{array}\right]
$$

Write your result in terms of r_{i} 's only.
2. (1 point) Suppose the third column of the matrix B is the sum of the first two columns. Show (by way of a direct computation) that the third column of $A B$ is the sum of its first two columns for any matrix A.
3. (5 points) Prove (i.e., provide a sound argument) or disprove (i.e., provide a counterexample) the following statements for matrices A, B, C, and O (zero matrix) of appropriate sizes. Here, we assume all matrix multiplications are compatible, please do not argue that a statement is false based on sizes.
(a) $(A B C)^{T}=C^{T} A^{T} B^{T}$.
(b) If A is an $n \times n$ matrix, then $\left(A^{2}\right)^{T}=\left(A^{T}\right)^{2}$.
(c) $A B=B A$ (commutativity).
(d) If $A B=A C$, then $B=C$ (cancelation property).
(e) If $A B=O$, then $A=O$ or $B=O$.
4. (2 points) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ and $D=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$. Notice that D is a diagonal matrix (i.e., nonzero entries on the diagonal and zero elsewhere). Write $A D$ and $D A$ in terms of rows/columns of the matrix A. Other than $B=O, B=I$, and $B=A$, when might the statement $A B=B A$ be true?

