IWTRDDL\&TIDM

Without math we would have no computer games. If you strip a computer down to its most basic form what is it? The answer is a calculator. Computers compute
numbers, so it shouldn't be surprising that without math we would have no numbers, so it shouldn't be surprisisin that without math we would have no
computer graphics. Objects and images in computers games are merely points
draw tooether with lines that operate in space. The use of linear algebra is what allows interactions to occur in a computer. Once linear algebra has been
translated into a format that the computer recognizes it can bring visuals to life.

2D Vector Graphics
"Vector graphics refers to representing images by mathematical descriptions of geometric objects, rather than by a collection of pixels on the screen (raster

Vector Graphics vs. Raster Graphics
Vector and raster graphics are the two main forms of two-dimensional computer imagery. Raster graphics, or "bitmaps," are generally represented as rectangular grid of pixels with each pixel being a varying level of color. This
systematic collection of pixels, when rendered, forms a 2 D image such as in systematic collectio
digital photographs.
Vector graphics, however, use mathematical descriptions or expressions to represent images. Unlike raster images, vector graphics render images through
the use of points, lines, and other geometrical primitives. At the core of any vector image are "control points," whict have defined positions on the XY
coordinate plane. These points connect lines or curves and "fill" information that coordinate plane. These
make up a vector image
The mathematical nature of vector graphics allow vector images to be resolution independent unike raster-based images in which resolution is dependent on the
amount of pixels that the image contains. Vector-based image files are also much smaller in size than raster images, which need more storage space as resolution increases. As the resolution increases in a raster image, so does the
number of pixels that need to be saved. Vector graphics, however, can be number of pixels that need to be
scaled without any loss in resolution.
Vector Graphics and Linear Algebra Case Study - Retro Gaming
Computer graphics have come a long way since the early days of computers, especially in the gaming industry. Today's video games often make use of ultra-
realisicic and highly complex 3 computer graphics to immerse the player in a realistic and highly complex 3D computer graphics to immerse the player in a
game's world and setting. Game developers of the late 1970 and early 80 s , game sword and seting. Game developers of the acest to the powerful computing devices that we have towever, and had to come up with dififerent ways to push computer graphics
today

브Tㅐㅁㅗㅗㄴ

In a game utilizing vector rraphics, an object can be constructed using a set of
points, or vertices. The coordinates of these points are stored in a "data" matrix
such es in the figure below points, or veritices. The cooo
such as in the figure below.

This basic triangular shape can now, for example, represent a game's spaceship. Tis sasic triangular stape can now, for example, representa a ame's spaceship.
However, a game with a stationary spaceship and nothing else isn't much fun.
So, naturally there needs to be a way move the spaceship around the soren or So, naturally there needs to be a way move the spaceship around the screen or
monitor. Fortunately, this can be accomplished with a creative use of a basic monitor. Fortunately, this can be accomplished
concept in linear algebra, matrix multiplication.

Matrix multiplication allows us to perform transformations (rotation and scaling)
and translations (position) on our obiects.

Definition: If the product $A B$ is defined, then the entry in row i and column j of $A B$ is the
sum of the products of corresponding entries from row iof A and column j of B. If ($A B$) denotes the (i, j)-entry in $A B$, and if A is an $m \times n$ matix, then

```
(AB) = a a blij
```

However, before we can perform any transformations and translations, our
objects must use homogeneous coordinates since it is not possibie to do a 2 D objecis must use homogeneous coordinates since
translation on a 2 D point using matrix multiplication.

LTNEPR ALGEERA AND EETRE GAHING

$$
\left[\begin{array}{lll}
1 & 0 & r \\
0 & 1 & s \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & 1 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
r & 2+r & 1+r \\
s & s & 3+s \\
1 & 1 & 1
\end{array}\right]
$$

For example, to
as shown below:
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 2 & 1 \\ 0 & 0 & 3 \\ 1 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 2 & 1 \\ 2 & 2 & 5 \\ 1 & 1 & 1\end{array}\right]$

EY:
WALTER ALUARADT DANIEL CATIPDN
JPHES HPLL
KRIS SCHALLER

\qquad

total $=$ totalit + nums

RESIㄴ TS
Now that the spaceship has the ability to move in 2D space, the ship needs to be able to rotate in the direction that it is traveling, which can be done by performing a transformation via matrix multiplication.
This transformation is done by multiplying a "rotation"
the product being the new position of the spaceship.

So, to rotate the spaceship 90 degrees to the left, we

腊

same

for (int $k=0 ; k<2 ; k+4)$

\qquad

With translations and transformations the spaceship can now move and rotate around the screen. Unfortunately, our ship doesn't rotate in the way that most
people expect, which is around the center of the ship instead of around the origin.
To solve this problem, we can use "composite transformations" which combine two or more basic transformations.
So, our composite transiormation to rotate around the center of the ship, (1, 1.5),
should be: $A^{-1} B A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1.5 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & -1 & 2.5 \\ 1 & 0 & 0.5 \\ 0 & 0 & 1\end{array}\right]$

A represents the translation by $(-1,-1.5)$.
B represents the rotation counterclo
A^{B} represents the rotation counterclockwise by 90 degrees.
A^{-1} represents the translation by (1, 1.5).
,
This composite transformation first makes the center of the ship the origin, then
does the specified rotation, and finally moves the center back where it is

Mulifiplying the result with the ship matrix, M
Multiplying the result with the ship matrix, M.
will then result in the desired rotation around
the ship's center.

CONGLUSIDN

Vector graphics is a linear algebraic way of storing and manipulating computer images. 2D vector graphics were especially suited to moving, rotating, and scaling images and objects within retro games. Through the use of some fundamentar concepis or mear algeorror its game the colopers were areat vector graphics creased games such as the 1979 classic, Asteroids, are simple matrix
bultiplications, transformations, and translations. While those games of the past multiplications, transformations, and translations. While those games of the past
look quite primitive by today's standards, the techniques being used laid the
foundation for future advances in computer graphics, especially in 3 D computer graphics.

ACKNONLEDGEMENTS

 a.org wikiNector_orraphics

