Introduction
The Fibonacci Sequence is the infinite sequence of numbers $\mathbf{0}, \mathbf{1}, \mathbf{1}, 2,3,5,8,13,21, \ldots$ for which the next term is found by adding the previous two terms. The sequence of Fibonacci numbers is defined by the recurrence relation

$$
\begin{aligned}
& \mathbf{F}_{\mathrm{n}}=\mathbf{F}_{\mathrm{n}-1}+\mathbf{F}_{\mathrm{n}-2} \\
& \text { where } \\
& \mathbf{F}_{1}=\mathbf{F}_{2}=\mathbf{1}
\end{aligned}
$$

The Fibonacci numbers occur in settings, such as biological structures of nature, music, computer science, population models and financial markets.

Fig. 1 and Fig. 2 are illustrations of the occurrence of Fibonacci numbers in nature.
Definition: An eigenvector of an nxn matrix A is a nonzero vector x such that $A x=\lambda x$ for some scalar λ. In this case, the scalar λ is called an eigenvalue of A corresponding to the eigenvector x . The eigenvalues are the solutions to the characteristic equation $\operatorname{det}(A-\lambda I)=0$.
Matrix Diagonalization is the process of taking a square matrix and transforming it into a diagonal matrix such that they share the same properties. - An nxn matrix A is diagonalizable if A is similar to a diagonal matrix, that is, $A=P D P^{-1}$ for some invertible matrix P and some diagonal matrix D Theorem: A is an $n \times n$ matrix with n distinct eigenvalues. 1) A is diagonalizable if and only if it has n linearly independent eigenvectors. 2) $A=P D P^{-1}$, with diagonal matrix D, if and only if the columns of P are n linearly independent eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Method
A 2-dimensional system of linear difference equations that describe the Fibonacci Sequence: $\left[\begin{array}{l}f_{2} \\ f_{1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}f_{1} \\ f_{0}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right] \Rightarrow\left[\begin{array}{l}f_{n+1} \\ f_{n}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]=A^{n} x$ Consider the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
Find eigenvalues: $0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{ll}1-\lambda & 1 \\ 1 & -\lambda\end{array}\right|=\lambda^{2}-\lambda-1 \Rightarrow \lambda=\frac{1 \pm \sqrt{5}}{2}$
Find eigenvectors:

Now we can construct our matrices $A=P D P^{-1}$

So our first
eigenvalue-eigenvector pair is

$$
\lambda_{0}=\frac{1+\sqrt{5}}{2}, x_{0}=\left[\frac{1+\sqrt{5}}{2}\right]
$$

$$
2^{\text {nd }} \text { eigenvector pair is }
$$

$$
\lambda_{1}=\frac{1-\sqrt{5}}{2}, x_{1}=\left[\begin{array}{c}
\frac{1-\sqrt{5}}{2} \\
1
\end{array}\right]
$$

Now we can construct our matrices $A=P D P P^{-1}$

$$
D=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right] P=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\
1 & 1
\end{array}\right] P^{-1}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & -\frac{1-\sqrt{5}}{2} \\
-1 & \frac{1+\sqrt{5}}{2}
\end{array}\right] \operatorname{det}(P)=\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}=\sqrt{5}
$$

Now we plug it all in to find a formula for the nth power of A. $A^{n}=P D^{n} P^{-1}$

and so we can see that left entry in this matrix
$f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)$

$$
f_{101}=5731478440381708410
$$

Results

The resulting equation is a closed-form solution for the nth term of the Fibonacci Sequence. This is an expression that allows us to calculate \mathbf{f} for any \mathbf{n} in the Fibonacci sequence.

Summary/Conclusion

Simple linear models can help us better understand systems like the Fibonacci sequence. By applying matrix diagonalization to the recursive relation we were able to build a model for the
long-term direction of the Fibonacci numbers. Further analysis shows us that the ratio of the two subsequent terms in the sequence actually approaches a constant the famous golden ratio defined as

Fig. 3 Logarithmic spiral whose growth factor b is related to, the golden ratio φ

Acknowledgments

1.Lay, David C. ,2003, Linear Algebra and its Applications.
2.Notes from Dr. Jen Chang-Math247
3.Fibonacci number, 2010. In Wikipedia, The Free Encyclopedia. Retrieved May 6, 2010, from http://en.wikipedia.org/wiki/Fibonacci number 4. Joseph Khoury, Application to a Probleme of Fibonacci
http://aix1.uottawa.ca/~jkhoury/fibonacci.htm

