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Introduction
In physics, we often attempt to model a physical
system mathematically. Generally we wish to be able
to predict the state of the system at some time in the

Write in Matrix Form Solve

We take the initial velocities to be zero, leaving only
future, given the present state of the system. For a
single object, we can accomplish this by writing a
differential equation that describes the motion of the
object and then solving this equation. However,
when the system contains multiple interacting
components, we must write a differential equation for
each component and then solve all equations
simultaneously Fortunately by utilizing the techniques

In our current basis, the two components of the
position vector represent the individual positions of
the masses. This basis is a natural choice from a
physical point of view, but is not mathematically the
most convenient. We will instead use the

We take the initial velocities to be zero, leaving only
initial positions. With these conditions, the solutions to
the above equations are:

But remember, these solutions are in a basis where xI
d d t t th iti f th i di id lsimultaneously. Fortunately, by utilizing the techniques

of linear algebra, we can instead rewrite our
equations such that they may be solved individually,
one at a time.

Methods
We will demonstrate this method by considering a
one-dimensional system with two interacting objects:

Diagonalize

eigenvectors of the above matrix as our basis,
allowing us to diagonalize the matrix and thus
separate the differential equations.

and xII do not represent the positions of the individual
masses. Instead, xI and xII are in the ‘direction’ of the
eigenvectors vI and vII. To get solutions which
correspond to the actual positions of the masses, we
project the vector containing these solutions back
onto our original basis.

Resultsone dimensional system with two interacting objects:

m m
x1 x2

k k k Solving the eigenvalue problem for our matrix, we get
the following eigenvalues and normalized
eigenvectors:

Upon projection, we finally obtain the solutions to our
original equations of motion:

Results

Figure 1: Two identical masses attached to each
other and to the boundaries by identical springs.

Equations of Motion
By using Newton’s second law together with Hooke’s

x1 x2

In this basis our matrix equation becomes: Summary
By representing a set of coupled differential
equations in matrix form and by projecting them ontoBy using Newton s second law together with Hooke s

law, we get the following equations of motion for the
positions of the two masses:

where the double-dot notation indicates second-
order differentiation with respect to time. The difficulty

giving us the following equations of motion:

Note that the variables are no longer ‘mixed:’ each

equations in matrix form and by projecting them onto
their eigenbasis, we were able to separate the
equations and solve them individually.

Conclusions
As we have seen, the methods of linear algebra are
readily adaptable to physical applications, largelyp y

with these equations is that they are coupled: both
variables appear in both equations. Thus the
equations must be solved simultaneously.

equation contains only one variable, allowing us to
use standard methods for solving linear differential
equations.

due to the versatility of the concept of a ‘vector,’
which needn’t necessarily represent a position in real
space. Such methods are widely used in mechanics.
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