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Introduction:
Principal Component Analysis (PCA) continues to be one of the most

valuable tools used in the science; it’s derived from linear algebra and it can
take a noisy, seemingly random data set and reveal hidden structure that may
not be easily apparent. Proteins and other biological molecules possess
interesting dynamics, but they occur on the millisecond or less timescale.

However, molecular modeling allows us to utilize computers to characterize
these motions. Myogolobin (Mb) is a protein involved with the circulatory
system, delivering oxygen (like Hemoglobin). E. Papaleo, et al., ran many
simulations on holo-Mb (one variant of Mb) and used PCA as their primary
analytical tool in hopes of extending the research to other variants of Mb.

Summary:
Molecular modeling is a rapidly maturing field that allows us to view

the previously unobservable dynamics of important biomolecules. Because
of the immense amount of data produced by a given simulation, it becomes
extremely important to break it all down in order to see the wider picture.
PCA allows us to take the various movement vectors of these biomolecules,
and allows you to decompose the motions so we can see the
important/principal dynamics that govern the system.

Coupled with other forms of analysis and experiment, we can better
understand the nature of biomolecules such as holo-Mb at a much greater
depth. Here, Papaleo, et al., made some important discoveries and
correlations:

1. The major conformational shifts occur between helices F and H along
with the region between helices C and D
2. Experimental results have shown reversible oxygen/carbon monoxide
binding occurs through conformational shifts around helice F
This shows that these methods can be used to further study other interesting
biologically relevant molecules.

Results:
Scientists have to assume that the most interesting dynamics occur along

the motions with the largest amplitude (i.e. most principal). E. Papaleo, et al.,
found that:
1. 15 PCs are required to cover more then 70% of the variance
2. The majority of the variance can be described with 3 PCs

These PCs let us see the protein folding trajectories and coupled with FEL
analysis, we can see a 3-D probability distribution (fig. 3): the higher the peak,
the more likely that holo-Mb will be found in that particular conformation.
However, we note that a given sample is not 3-D but rather multidimensional;
fig. 3  does not show the full conformational space of holo-Mb.

From the FEL, after ensemble averaging, the two most probable
conformations, are thus extracted and shown (A and B, fig. 4).  Further analysis
revealed that most of the changes between the two conformations centered on
helices F and H and the region between helices C and D. This is important as
helice F has experimentally been found to be responsible for reversible
oxygen/carbon monoxide binding.
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Methods:
After collecting as much data on a system as possible, we take all the of

vectors and collect them into a set, X. Now PCA asks the question, is there
some basis that is a linear combination of the original basis that can more
efficiently express the data we have?

Let X be an mxn matrix, and define a matrix P which transforms X into
another mxn matrix Y (change of basis):

1.     PX=Y
where the rows of P, [p1,…,pm], represents a set of new basis vectors for
expressing X. In order to get the best P (i.e. best way to re-express X), we
need know what features Y should display.

First, we want to minimize the noise while maximizing signal to get a
high signal-to-noise ratio (fig. 2), to produce a best fit line:

2.     SNR=σ2
signal/σ2

noise

(n-1 is the normalization factor). High (small) values represent high (low)
redundancy within the data set. For our original data set X, we can represent
the covariance matrix as CX as:

4.     CX=[1/(n-1)]XXT

We then optimize Cx into some matrix, CY. Again, our goal is to minimize
redundancy (covariance) and maximize signal (variance), to do so, we
diagonalize CY assuming P is an orthonormal matrix.

Application of Linear Algebra to Biological
Molecules: PCA Analysis of holo-Myoglobin

Cx has the following properties:

1. The diagonal terms are the variance of a particular type, where large (small)
values correspond to interesting dynamics (noise)

2. The off-diagonal terms are the covariance between measurement types with
large (small) values corresponding to high (low) redundancy

For higher dimensions, we need the covariance
matrix to determine the degree of linearity between
two variables. Let’s define:

a = [a1 a2 … an]

b = [b1 b2 … bn]

where ai and bi are row vectors. We wish to measure
the degree of the linearity between these two data
sets such that the covariance between a and b is:

3.     σ2
ab = [1/(n-1)]abT

Figure 2: Example Data for 2-D case. 1st
PC maximizes variance, 2nd PC captures
variance perpendicular to the 1st PC.

Figure 3: PC’s graphed against FEL (A,B) and PC’s graphed against probability (C,D). Asterisks (*) indicate localization of
average structure of various ensembles (A and B) derived from the cluster analysis. Notice that the areas with lowest free
energy (blue) correspond to areas of highest probability as predicted by thermodynamics. Free energy is calculated in kJ/mol.

Now, to find the PCs, we need to define a matrix P for Y=PX such that
6.     CY = [1/(n-1)]YYT

The trick is to substitute PX into Y and YT, do some manipulation and the
resulting algebra produces

7.     CY=[1/(n-1)]PAPT

where A is XXT, a symmetric matrix. For a symmetric matrix, we know that
A=EDET, E being eigenvectors of A and D being a diagonal matrix. The major
trick to PCA is that we select a matrix P such that the rows, pi, are eigenvectors
of XXT. We then select P=ET and because the inverse of an orthogonal matrix
is its transpose, we know that P-1=PT. We can then substitute for A into CY:

8.     CY = [1/(n-1)]PAPT  =>=>  [1/(n-1)]P(PTAP)PT  =>=>
[1/(n-1)]PP-1APP-1  =>=>  [1/(n-1)]A

We have now diagonalized CY, thus the rows of P (or eigenvectors of XXT) will
become our principal components.

For this particular study, each alpha carbon on each amino acid acted as a
point which fluctuated in 3-D space using concatenated and single trajectories.
With this, E. Papaleo, et al., were able to extract the PCs from the holo-Mb
which are utilized further.

Conclusions
Elevent independent

simulations were ran on holo-Mb in
order to sample the local
conformational space. Using PCA to
reduce the actual trajectories into
lower dimensions and FEL, they
were able to see two major
conformations. These major
conformations show shifts around
helices F and H.

Experimental results show holo-
Mb is highly constrained, we see two
main conformations. These
promising results have lead Papaleo,
et al., to the possibility of extending
this particular analysis to other
variants of Mb. These other variants
of Mb have much greater
conformational flexibility, meaning
greater variance. It becomes quite
clear that applied linear algebra, such
as PCA, supplements invaluable to
scientific investigations.

Figure 4: Average structure for each cluster ensemble: A
(A) and B (B). The helices are colored as so: Helix A
(gray), B (black), C (green), D (pink), E (blue), F
(orange), G (red), and H (yellow).

Figure 1: Simulations allow
us to see dynamics
normally unobservable, but
what are the interesting
dynamics? That’s what
PCA wishes to answer
using linear algebra. With
PCA, we can determine
what motions are crucial
such as in the folding of a
protein.


