

INTRODUCTION

EIGENVALUES & EIGENVECTORS

An eigenvector of an nxn matrix A is an non-zero vector x: $Ax = \lambda x$ for some scalar λ . (called the associated eigenvalue of A). \rightarrow Give Anxn, λ = solution of equation

$$|A - \lambda I| = 0$$

DIAGONALIZATION

A nxn is called **diagonalizable** if there exists an invertible matrix *P* of the same size satisfying P⁻¹AP = D for some diagonal matrix D.

Compute power of A: $A = PDP^{-1}$

A^2	=	$(PDP^{-1})(PDP^{-1})$	=	$PD(P^{-1}P)DP^{-1}$	=	$PD(I)DP^{-1}$	=	$PD^{2}P^{-1}$
		$(PD^2P^{-1})(PDP^{-1})$						
:	÷	1 1 1	:	1 1 1	÷		:	

<u>Theorem</u> A *nxn* matrix & $\lambda_1, ..., \lambda_k$ be the distinct (real) eingenvalues of A. We have: **1**. A is diagonalizable if and only if dim (E_{λ_1}) +...+ dim ($E_{\lambda k}$)=*n*.

2. If A is diagonalizable with P⁻¹AP=D, then the columns of *P* are basis vectors for the eigenspaces of A and the diagonal entries of D are the corresponding eigenvalues.

FIBONACCI NUMBER

The Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .) occurs throughout the worlds of nature, art, music, and mathematics!

Each term in the series is produced by adding together the two previous terms, so that 1 + 1=2, 1 + 2=3, 2 + 3=5, and so on.

$fn=f_{n-1}+f_{n-2}$

(from thirteenth-century Europe)

DN& FIBONACCI NUMBERS Anh N. Ho – Major in Applied Mathematic

The Fibonacci numbers get bigger and bigger. The expression that gives fn for any n can be found if one knows a little bit about matrix diagonalization.

Fibonacci 1170-1250 Leonardo Pisano, known by his nick name Fibonacci, was born in Pisa, Italy, but was educated in North Africa (Algeria) where his father, Guilielmo, held a diplomatic post. Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 55, 89, 144, 233, 377, ...

This sequence occurs in many places in math, general science, in nature and even in art.

Examples of FIBONACCIART

