MATRIX DIAGONALIZATION \& FIBONACCI NUMBERS
Anh N. Ho - Major in Applied Mathematic

INTRODUCTION

EIGENVALUES \& EIGENVECTORS
An eigenvector of an nxn matrix A is an non-zero vector x : $A x=\lambda x$ for some scalar λ. (called the associated eigenvalue of A). \rightarrow Give Anxn, $\lambda=$ solution of equation

$$
|A-\lambda I|=0
$$

DIAGONALIZATION
A $n \times n$ is called diagonalizable if there exists an invertible matrix P of the same size satisfying $P^{-1} A P=D$ for some diagonal matrix D.
Compute power of A
$A=P D D^{-T}$
$A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1}\right) D D^{-1}=P D(I) D P^{-1}=P D^{2} P^{-1}$
$A^{3}=\left(P D^{2} P^{-1}\right)\left(P D P^{-1}\right)=P D^{2}\left(P^{-1}\right) D D P^{-1}=P D^{2}\left(\left(D D P^{-1}=P D^{3} P^{-1}\right.\right.$

Theorem A $n x n$ matrix \& $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct (real) eingenvalues of A. We have: 1. A is diagonalizable if and only if $\operatorname{dim}\left(E_{\lambda_{1}}\right)$ $+\ldots+\operatorname{dim}\left(E_{\lambda k}\right)=n$.
2. If A is diagonalizable with $P^{-1} A P=D$, then the columns of P are basis vectors for the eigenspaces of A and the diagonal entries of D are the corresponding eigenvalues

FIBONACCI NUMBER

The Fibonacci sequence ($1,1,2,3,5,8,13$, $21,34,55,89,144 \ldots$) occurs throughout the worlds of nature, art, music, and mathematics!

Each term in the series is produced by adding together the two previous terms, so that $1+1=2,1+2=3,2+3=5$, and so on.

$$
f n=f_{n-1}+f_{n-2}
$$

(from thirteenth-century Europe)

$$
\begin{aligned}
& \text { STUDY OF A MATRIXA: } A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& \left.|A-\lambda||=0 \rightarrow| \begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array} \right\rvert\,=0 \Rightarrow \lambda^{2}-\lambda-1=0 . \rightarrow \lambda_{1}=\frac{1+\sqrt{5}}{2}, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2}
\end{aligned}
$$

$$
\lambda_{1}=(1+\sqrt{5}) / 2: \quad \text { General solution: } X_{1} \quad \text { Similarly } X_{2} \text { : }
$$

$$
\left[\begin{array}{cc}
\frac{(1-\sqrt{5})}{2} & 1 \\
1 & -\frac{(1+\sqrt{5})}{2}
\end{array} \vdots\right.
$$

$$
\left.\begin{array}{cc}
\vdots & 0 \\
\vdots & 0
\end{array}\right] \rightarrow X_{1}=\left[\frac{(1+\sqrt{5})}{2}\right]_{\Gamma}
$$

From theorem:

1. $\operatorname{dim}\left(E_{\lambda_{1}}\right)+\operatorname{dim}\left(E_{\lambda_{2}}\right)=2$
2. $\rightarrow A$ is diagonalizable

$$
\left.\begin{array}{ll}
\vdots & 0 \\
\vdots & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -\frac{(1+\sqrt{5})}{2} \\
0 & 0
\end{array}\right.
$$

$$
\rightarrow A=\left[\frac{(1+\sqrt{5})}{2}\right.
$$

$$
\left.\frac{(1-\sqrt{5})}{2}\right]\left[\begin{array}{c}
\frac{(1+\sqrt{5})}{2} \\
0
\end{array}\right.
$$

Applied to Fibonacci sequence: $\quad f n=f_{n-1}+f_{n-2}$

$$
P=\left[\begin{array}{c}
\frac{(1+\sqrt{5})}{2} \\
1
\end{array}\right.
$$

$$
\left.\frac{(1-\sqrt{5})}{2} 1\right] \rightarrow \quad P^{-1}=
$$

$$
\begin{aligned}
& \text { Applied to Fibonacci sequence: } \\
& \text { Let: } V_{n}=\left[\begin{array}{c}
f_{n+1} \\
f_{n}
\end{array}\right] \rightarrow V_{n+1}=\left[\begin{array}{c}
f_{n+2} \\
f_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
f_{n+1} \\
f_{n}
\end{array}\right]=A V_{n} ; A=\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

$$
\rightarrow V_{n}=A V_{n-1}, n \geq 0 \text { We have: } V_{n}=A V_{n-1}=A^{2} V_{n-2}=A^{3} V_{n-3}=\cdots=A^{n} V_{0} .
$$

$$
\left.\begin{array}{l}
\text { But } A^{n}=P D^{n} P^{-1} \text { (as studied above) } \\
\rightarrow V_{n}=P D^{n} P^{-1} V_{0}=\left[\begin{array}{ll}
\frac{(1+\sqrt{5})}{2} & \frac{(1-\sqrt{5})}{2} \\
1 & 1
\end{array}\right]\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}\right. \\
0 \\
0
\end{array}\right]\left(\begin{array}{cc}
0 \\
\left.\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{-(1-\sqrt{5})}{2 \sqrt{5}} \\
\frac{-1}{2 \sqrt{5}} & \frac{(1+\sqrt{5})}{2 \sqrt{5}}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { e.g.for } n=100 \text { : }
$$

$$
f_{100}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{101}-\left(\frac{1-\sqrt{5}}{2}\right)^{101}\right]
$$

SUMMARY

The Fibonacci numbers get bigger and bigger. The $=573147844013817084101$

[^0] expression that gives fn for any n can be found if one

[^0]: Spiral shells also exhibit pattern

