## SMOOTHING <br> Maximizing probability

By: Eliot Ayers, Justin Maneri, Saleh Muzien

## The Transition Model



Three possible inference tasks
Filtering - Calculating the most likely state we are in
Prediction - Estimating the probability of a state at a future time
Smoothing - Estimating the probability of a past state

## Whack-a-Mole

We want to guess which pie slice a mole will appear in


## Filtering - At Time = 1

Furthermore, we only see the mole with a 75\% accuracy

Mole
Starts
in 1


Measured that the mole was NOT in slice 2 at time one

$$
\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \leqslant\left[\begin{array}{ccc}
{\left[\begin{array}{ccc}
0 & 2 / 3 & 1 / 3
\end{array}\right]} \\
1 / 3 & 0 & 2 / 3
\end{array}\right] \leqslant\left[\begin{array}{llll}
3 / 4 & 1 / 4 & 3 / 4
\end{array}\right]
$$

$$
=\left[\begin{array}{llll}
0 & .40 & .60
\end{array}\right]
$$

Filtering - At Time = 2

Mole
Starts
in 1

$$
\begin{gathered}
\mathrm{t}_{1}=5 \mathrm{sec} \\
\mathrm{t}_{2}=10 \mathrm{sec}
\end{gathered} \mathrm{t}_{3}=15 \mathrm{sec} \mathrm{l}
$$

$60 \%$ in 3
$40 \%$ in 2

52\% in 3 $34 \%$ in 1

$$
=\left[\begin{array}{lll}
.3478 & .1304 & .5217
\end{array}\right]
$$

Filtering - At Time $=3$

Mole
Starts
in 1
$\mathrm{t}_{1}=5 \mathrm{sec}$
$52 \%$ in 3
$34 \%$ in 1
$\mathrm{t}_{2}=10$
sec
$46 \%$ in 2
$45 \%$ in 1
$\mathrm{t}_{3}=15$
sec
$\left[\begin{array}{lll}.3478 & .1304 & .5217\end{array}\right] \mathbb{N}\left[\begin{array}{ccc}0 & 2 / 3 & 1 / 3\end{array}\right]\left[\begin{array}{llll}1 / 3 & 0 & 2 / 3\end{array}\right] \times\left[\begin{array}{lll}3 / 4 & 3 / 4 & 1 / 4\end{array}\right]$
$=\left[\begin{array}{lll}. & 4525 & .4693 \\ .0782\end{array}\right]$

## Smoothing - Estimating State 3

Furthermore, we only see the mole with a 75\% accuracy


$$
\mathrm{t}_{1}=5 \mathrm{sec}
$$

$$
t_{2}=10
$$

sec
$\mathrm{t}_{3}=15$
sec

$$
=\left[\begin{array}{lll}
.3333 & .2380 & .4286
\end{array}\right]
$$

## Smoothing - Estimating State 2

Furthermore, we only see the mole with a 75\% accuracy

$\mathrm{t}_{2}=10$
sec
$\mathrm{t}_{3}=15$
sec

Combining Filtering(forward) and Smoothing(backward) estimates, we can get estimate of where the mole is.

Filtering Row Vector
Smoothing Row Vector
Transition Matrix

$$
=\left[\begin{array}{lll}
.3128 & .0838 & .6033
\end{array}\right]
$$

Filtering \& Smoothing: 60\%
Filtering: $52 \%$

## Applications of Filtering and Smoothing

Any model that can be encoded in a matrix over a time sequence


Signals Processing - Speech Recognition

Demographic Change
Predicting Spread of Infectious disease


Transition Matrix

$$
M=\left[\begin{array}{cccc}
0 & 2 / 3 & 1 / 3 & ] \\
1 / 3 & 0 & 2 / 3
\end{array}\right]
$$

## Measurements @ 75\% accuracy

$$
\begin{aligned}
& \text { at t1, m2 = NO } \\
& \text { => }\left[\begin{array}{llll}
3 / 4 & 1 / 4 & 3 / 4
\end{array}\right] \\
& \text { at t2, m3 = YES } \\
& \text { => [ } 1 / 4 \quad 1 / 4 \quad 3 / 4] \\
& \text { at t3, m3 = NO } \\
& \text { => }\left[\begin{array}{llll}
3 / 4 & 3 / 4 & 1 / 4
\end{array}\right]
\end{aligned}
$$



No Measurement Guess
s0 = [ 1000$]$
$p 1(s 1)=s 0 \times M=>\left[\begin{array}{lll}0 & 2 / 3 & 1 / 3\end{array}\right]$
p2(s2) $=\mathrm{p} 1 \times \mathrm{M}$ => [ . 44 . 11 . 44 ]
p3(s3) $=p 2 \times \mathrm{M}$ => [ $1 / 3$ 4/9 2/9 ]

Filtering to State Three (normalized)

$$
\begin{aligned}
& \text { s0 }=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
& \mathrm{p} 1(\mathrm{~s} 1 \mid \mathrm{m} 1)=\mathrm{s} 0 \times \mathrm{M} \text { * } \mathrm{m} 1 \\
& \text { => [ } 0 \text { 2/5 3/5 ] } \\
& \text { p2(s2|m2) = p1 x M * m2 } \\
& \text { => [ . } 3478 \text {. } 1304 \text {. } 5217 \text { ] } \\
& \text { p3(s3|m3) = p2 x M * m3 } \\
& \text { => [ 81/179 84/179 14/179] }
\end{aligned}
$$

## Smoothing to State Two (normalized)

$$
\begin{aligned}
& \text { p4 }=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \\
& \text { p3 }=\text { p4 * m3 } \\
& =>\left[\begin{array}{llll}
3 / 4 & 3 / 4 & 1 / 4
\end{array}\right] \\
& \mathrm{p} 2=\mathrm{p} 3 \times \mathrm{M}^{\mathrm{T}} * \text { Filtering } \mathrm{p} 2 \\
& \Rightarrow\left[\begin{array}{llll} 
\\
{[2881} & 1905 & .5714]
\end{array}\right.
\end{aligned}
$$

