1. The graph of \(f(x) \) is shown here.

(a) Find the domain of \(f(x) \) in interval notation.

(b) Find the zeros and their corresponding multiplicities.

(c) What is/are the equation(s) of the vertical asymptote(s) of \(f(x) \)?

(d) What is the behavior near the vertical asymptotes? Fill in the blanks.

\[
\begin{align*}
 f(x) &\to \underline{} & \text{as } x &\to \underline{} & \text{and } f(x) &\to \underline{} & \text{as } x &\to \underline{} \\
 f(x) &\to \underline{} & \text{as } x &\to \underline{} & \text{and } f(x) &\to \underline{} & \text{as } x &\to \underline{}
\end{align*}
\]

(e) What is/are the equation(s) of the horizontal asymptote(s) of \(f(x) \)?

(f) What is the end behavior? Fill in the blanks.

\[
\begin{align*}
 f(x) &\to \underline{} & \text{as } x &\to \underline{} & \text{and } f(x) &\to \underline{} & \text{as } x &\to \underline{} \\
\end{align*}
\]

(g) On what interval(s) is \(f(x) \geq 0 \)? Answer in interval notation.

(h) On what interval(s) is \(f(x) < 0 \)? Answer in interval notation.
2. Find a degree 4 polynomial, \(g(x) \) whose graph is shown here. Use correct function notation.

3. Consider the polynomial \(P(x) = x^3 - 4x^2 - 9x + 36 \).

 (a) Factor the polynomial. What are the \(x \)-intercepts (zeros) of \(P(x) \)? What are their corresponding multiplicities?

 (b) To answer this question, complete the table:
 - Column 1: Enter the \(x \)-values of all zeros and test points, in order from least to greatest.
 - Column 2: Enter the value of \(P(x) \) at the value in Column 1.
 - Column 3: Enter “above,” “below” or “on” to indicate if the graph of \(P(x) \) is above, below or on the \(x \)-axis.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(P(x))</th>
<th>Is the graph of (P(x)) above, below, or on the (x)-axis?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 (c) Use your table to solve the inequality \(P(x) < 0 \). Write your answer in interval notation, and graph your answer on the number line.

 (d) Sketch a graph of \(P(x) \). Make sure the \(x \)- and \(y \)-intercepts and end behavior are correct.
4. Consider the rational function \(r(x) = \frac{3x + 6}{x^2 + 2x - 8} \).

(a) Find the equation(s) of the horizontal asymptote(s), if any. Explain how you know.

(b) Determine the end behavior. Fill in the blanks.

\[
r(x) \to \text{ } \text{ as } x \to \text{ } \text{ and } r(x) \to \text{ } \text{ as } x \to \text{ }
\]

(c) Find the coordinates of the \(x \)-intercepts, if any.

(d) Find the equation(s) of the vertical asymptote(s), if any.

(e) Fill out the table below.

i. Column 1: Enter the \(x \)-values of all zeros, vertical asymptotes and test points, in order from least to greatest.

ii. Column 2: Enter “+”, “−”, “0” or “undefined,” to indicate the sign of \(r(x) \) at the value in Column 1.

iii. Column 3: Enter “zero,” “asymptote” or “test point.”

Explain below how you obtain the entry in Column 2 for each of your test points.

<table>
<thead>
<tr>
<th>(x)-value</th>
<th>+, −, 0, or undefined?</th>
<th>zero, asymptote, or test point?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(f) Determine the behavior near the vertical asymptotes.

\[
r(x) \to \text{ } \text{ as } x \to \text{ } \text{ and } r(x) \to \text{ } \text{ as } x \to \text{ }
\]

\[
r(x) \to \text{ } \text{ as } x \to \text{ } \text{ and } r(x) \to \text{ } \text{ as } x \to \text{ }
\]

(g) Sketch a graph of \(r(x) \). Make sure the \(x \)- and \(y \)-intercepts and end behavior are correct.

5. Consider the function \(f(x) = -2x^7 - 4 \).

(a) \(f(x) \) is a (circle one) polynomial / rational function.

(b) Does \(f(x) \) have any asymptotes?

(c) What is the domain of \(f(x) \)?

(d) Fill in the blanks to describe the end behavior of \(f(x) \).

\[
f(x) \to \text{ } \text{ as } x \to \text{ } \text{ and } f(x) \to \text{ } \text{ as } x \to \text{ }
\]

(e) Sketch a graph of \(f(x) \). Make sure the end behavior is correct.
6. (a) A function \(f(x) \) satisfies all the following.
\[
\begin{align*}
f(x) &\to \infty \text{ as } x \to 3^- \\
f(x) &\to -\infty \text{ as } x \to 3^+ \\
f(x) &\to 4 \text{ as } x \to \infty \\
f(x) &\to 4 \text{ as } x \to -\infty
\end{align*}
\]
What information do the first two conditions provide?

What information do the last two conditions provide?

(b) On a separate set of coordinates, sketch the graph of a function \(g(x) \) that satisfies all the following.
\[
\begin{align*}
f(x) &\to \infty \text{ as } x \to \infty \\
f(x) &\to -\infty \text{ as } x \to -\infty
\end{align*}
\]
and \(f(x) \) has the following zeros (x-intercepts) with corresponding multiplicities:
\[
\begin{align*}
(-1,0) &\to m = 2, \\
(1,0) &\to m = 1, \\
(4,0) &\to m = 3, \\
(9,0) &\to m = 1
\end{align*}
\]

7. (a) There are infinitely many polynomials of degree 4 that have a zero of multiplicity 2 at \(x = 3 \), and zeros of multiplicity 1 at \(x = 0 \) and \(x = 10 \). Name three of them. Leave your functions in factored form.

(b) Only one polynomial fitting the description in part (a) has a graph that passes through the point \((2,120)\). Find that polynomial.

8. (a) For what values of \(x \) is \(x^2 \geq 49 \)? Use correct notations.

(b) For what values of \(x \) is \(x^4 < 16 \)? Use correct notations.