Student learning objectives
- Relate changes in the formula for a function to changes in the function’s graph.
- Use function notation correctly.

Example
Find a formula for each parabola.

Vertex of \(g(x) \):

Another point on the graph of \(g(x) \):

Vertex of \(f(x) \):

Another point on the graph of \(f(x) \):

What can we do to the graph of \(g \) to make it into the graph of \(f \) ?

Fill in blank:
The graph of \(f \) is the same as the graph of \(g \), except shifted \(\square \) by \(\square \) units, and \(\square \) by \(\square \) units.

Write a formula for \(f(x) \) in terms of \(g(x) \): ____________________________

Example
Write a formula for the function \(f(x) \) whose graph is the same as the graph of \(g(x) \), except shifted down by 6 units and to the left by 5 units.

Should the letter \(g \) appear in your formula? Yes / No

Write a formula for the function \(f(x) \) whose graph is the same as the graph of \(g(x) = \frac{4}{x^2} \), except shifted down by 6 units and to the left by 5 units.

Should the letter \(g \) appear in your formula? Yes / No
Match the following:
The graph of f is the same as the graph of g, except shifted…

1. up by 5 units
2. down by 5 units
3. left by 5 units
4. right by 5 units
5. right by 5 units and up by 5
6. left by 5 units and down by 5

A. $f(x) = g(x + 5)$
B. $f(x) = g(x + 5) - 5$
C. $f(x) = g(x - 5) + 5$
D. $f(x) = g(x) + 5$
E. $f(x) = g(x) - 5$
F. $f(x) = g(x - 5)$

Example (Reflection across the y-axis)

What can we do to the graph of g to make it into the graph of f?

Fill in blank: The graph of f is the same as the graph of g, except

______________________ across the

______________________.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>x</th>
<th>$g(x)$</th>
<th>$f(x)$ in terms of $g(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>$f(-5) = g(_______)$</td>
</tr>
<tr>
<td>-4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>$f(-4) = g(_______)$</td>
</tr>
<tr>
<td>-3</td>
<td>4.5</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>5.5</td>
<td>2</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
<td>3</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Write a formula for $f(x)$ in terms of $g(x)$:

$$f(100) = g(_______)$$
Example

Write a formula for the function \(f(x) \) whose graph is the same as the graph of \(g(x) = \frac{4}{x^2} \), except reflected across the \(y \)-axis.

Example (Reflection across the \(x \)-axis)

On the graph below, sketch the graph of the function \(f(x) \) whose graph is the reflection of the graph of \(g(x) \) across the \(x \)-axis.

Should the letter \(g \) appear in your formula? **Yes** / **No**

<table>
<thead>
<tr>
<th>(x)</th>
<th>(g(x))</th>
<th>(x)</th>
<th>(f(x))</th>
<th>(\ldots) in terms of (g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>0</td>
<td>-5</td>
<td></td>
<td>(f(-5) = -g(-5))</td>
</tr>
<tr>
<td>-3</td>
<td>3</td>
<td>-3</td>
<td></td>
<td>(f(-4) = g(___))</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
<td>0</td>
<td></td>
<td>() ()</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td>() ()</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>() ()</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td></td>
<td>(f(100) = g(___))</td>
</tr>
</tbody>
</table>
Example
Write a formula for the function $f(x)$ whose graph is the same as the graph of $g(x) = \frac{4}{x^2}$, except reflected across the x-axis.

Check Your Understanding
Give a verbal description on how you can get the graph of h from the graph of g.

1. $h(x) = -g(x+3)$

2. $h(x) = 2+g(x-4)$

3. $h(x) = g(-x-2)+3$

Example (Vertical shrink and stretch)
Complete the missing entries.

| x | $g(x) = |x|$ | x | $f(x) = 2|x|$ | x | $h(x) = \frac{1}{2}|x|$ |
|-----|-------------|-----|---------------|-----|-------------------|
| -4 | -4 | -4 | -8 | -4 | -2 |
| -3 | -3 | -3 | -6 | -3 | -1.5 |
| -2 | 2 | -2 | 4 | -2 | 1 |
| -1 | 1 | -1 | 2 | -1 | 0.5 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 2 | 1 | 0.5 |
| 2 | 2 | 2 | 4 | 2 | 1 |
| 3 | 3 | 3 | 6 | 3 | 1.5 |
| 4 | 4 | 4 | 8 | 4 | 2 |
Write a formula for $f(x)$ and $h(x)$ in terms of $g(x)$.

Graph all three functions on the coordinate axis.

Note that multiplying $g(x)$ by 2 makes the graph (circle one) stretch / shrink vertically by a factor of ____________.

Example (Horizontal shrink and stretch)

Graph the function $f(x)$ whose graph is the same as the graph of $g(x)$ except shrunk horizontally by a factor of 1/2.

Fill in the blanks using your graph.

$f(-1)$ is the same as g (____).
$f(2)$ is the same as g (____).

In notation:

$f(-2) = g(____)
$f(-1) = g(____)
$f(0) = g(____)
$f(1) = g(____)
$f(2) = g(____)

Conclusion: The function $f(x) = g(_______)$ has the same graph as $g(x)$ except shrunk horizontally by a factor of 1/2.

Example

Write the formula for a function $h(x)$ whose graph you can get from the graph of $g(x)$ by stretching horizontally by a factor of 2.
Example

Write a formula for the function \(f(x) \) whose graph is the same as the graph of \(g(x) = \frac{4}{x^2} \), except shrunk horizontally by a factor of 1/3.

Write a formula for the function \(f(x) \) whose graph is the same as the graph of \(g(x) = \frac{4}{x^2} \), except shrunk horizontally by a factor of 1/3. Simplify.

Check it out: For this function, shrinking the graph of \(g(x) \) horizontally by a factor of 1/3 gives the same picture as shrinking the graph vertically by a factor of ________.

Summary

Complete the table.

<table>
<thead>
<tr>
<th>To get the graph of (f(x)) from (g(x)), you ...</th>
<th>Formula for (f(x))</th>
<th>In words, to get a formula for (f), you ... (In your answer, refer to the input or output of (g).)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift the graph of (g(x)) up by 2</td>
<td>(f(x) = g(x) + 2)</td>
<td>add 2 to the output of (g)</td>
</tr>
<tr>
<td>Shift the graph of (g(x)) down by 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift the graph of (g(x)) left by 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift the graph of (g(x)) right by 5</td>
<td>(f(x) = g(x - 5))</td>
<td>subtract 5 from the input of (g)</td>
</tr>
<tr>
<td>Reflect the graph of (g(x)) across the x-axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflect the graph of (g(x)) across the y-axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stretch the graph of (g(x)) vertically by a factor of 6</td>
<td>(f(x) = (1/7)g(x)) or (f(x) = g(x)/7)</td>
<td>multiply the output of (g) by 1/7 or divide the output of (g) by 7</td>
</tr>
<tr>
<td>Shrink the graph of (g(x)) vertically by a factor of 1/7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stretch the graph of (g(x)) horizontally by a factor of 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrink the graph of (g(x)) horizontally by a factor of 1/9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Even Functions

Definition: A function f is called an **even** function if

Odd Functions

Definition: A function f is called an **odd** function if