1. (52 points) Answer the following questions for the quadratic function (a) \(f(x) = 2x^2 - 20x + 57 \) and (b) \(f(x) = -x^2 + x + 2 \).

 i (9 points) Convert \(f(x) \) into its standard form (by completing the square). What is its vertex?

 ii (4 points) Find the \(x \)-intercepts of \(f \), if any.

 iii (4 points) Find the \(y \)-intercepts of \(f \), if any.

 iv (5 points) Sketch the graph of \(f \).

 v (4 points) Complete the sentence: The function \(f \) has a (circle one) maximum/minimum at \(\underline{\text{}} \). This graph opens (circle one) upward/downward.

2. (12 points) The graph of the quadratic function \(g(x) \) is shown here. Find a formula for \(g(x) \).

3. (12 points) Find all real solutions of the equation

 \[
 1 + \frac{2x}{(x + 3)(x + 4)} = \frac{2}{x + 3} + \frac{4}{x + 4}.
 \]

4. (12 points) Find a function whose graph is a parabola with vertex \((1, -2)\) and passes through the point \((4, 16)\).

5. (12 points) A soft-drink vendor at a popular beach analyzes his sales records and finds that if he sells \(x \) cans of soda pop in one day, his profit (in dollars) is given by

 \[P(x) = -0.001x^2 + 3x - 1800. \]

 What is his maximum profit per day and how many cans must he sell for maximum profit? Write your answer in complete sentences.