Group \#: \qquad Name: \qquad

1. (52 points) Answer the following questions for the quadratic function (a) $f(x)=2 x^{2}-20 x+57$ and (b) $f(x)=-x^{2}+x+2$.
(a) (9 points) Convert $f(x)$ into its standard form (by completing the square). What is its vertex?
(b) (4 points) Find the x-intercepts of f, if any.
(c) (4 points) Find the y-intercepts of f, if any.
(d) (5 points) Sketch the graph of f.
(e) (4 points) Complete the sentence: The function f has a (circle one) maximum/minimum at \qquad . This graph opens (circle one) upward/downward.
2. (12 points) The graph of the quadratic function $g(x)$ is shown here. Find a formula for $g(x)$.

3. (12 points) Find all real solutions of the equation

$$
1+\frac{2 x}{(x+3)(x+4)}=\frac{2}{x+3}+\frac{4}{x+4} .
$$

4. (12 points) Find a function whose graph is a parabola with vertex $(1,-2)$ and passes through the point $(4,16)$.
5. (12 points) A soft-drink vendor at a popular beach analyzes his sales records and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by

$$
P(x)=-0.001 x^{2}+3 x-1800 .
$$

What is his maximum profit per day and how many cans must he sell for maximum profit? Write your answer in complete sentences.

