Group \#: \qquad Name: \qquad

1. (5 points) When does a rational function have a slant asymptote?
2. (5 points) Is it okay for parts of a rational function to cross through a slant asymptote? Why or why not?
3. (25 points each) Find the slant asymptotes and the vertical asymptotes. Examine the function behavior around the function zeros and the x-intercept of the vertical asymptotes. Then, use the information in the behavior chart to sketch a graph of the given rational function. If necessary, plot additional points to ensure the accuracy of the graph. If available, verify your graph with a computer or a calculator.
(a) $r(x)=\frac{x^{2}}{x-2}$
(b) $r(x)=\frac{x^{2}-2 x-8}{x}$
(c) $r(x)=\frac{x^{3}+x^{2}}{x^{2}-4}$
4. (15 points) Graph a function $f(x)$ with the following properties.

- $f(x)$ has a slant asymptote $y=\frac{1}{2} x-\frac{1}{4}$.
- The only vertical asymptotes of $f(x)$ are $x=-1$ and $x=\frac{1}{2}$.
- The only x-intercept of $f(x)$ is $(-\sqrt[3]{4}, 0)$.
- $f(x)$ has the following behavior near the vertical asymptotes:

$$
\begin{array}{llll}
f(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow-1^{-} & \text {and } & f(x) \rightarrow-\infty \text { as } x \rightarrow-1^{+} \\
f(x) \rightarrow-\infty & \text { as } x \rightarrow \frac{1}{2}^{-} & \text {and } & f(x) \rightarrow \infty \quad \text { as } x \rightarrow \frac{1}{2}^{+}
\end{array}
$$

