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ABSTRACT
Thanks to the fast development of sensors, it is now possible to ac-
quire sequences of hyperspectral images. Those hyperspectral video
sequences are particularly suited for the detection and tracking of
chemical gas plumes. However, the processing of this new type of
video sequences with the additional spectral diversity, is challenging
and requires the design of advanced image processing algorithms. In
this paper, we present a novel method for the segmentation and track-
ing of a chemical gas plume diffusing in the atmosphere, recorded in
a hyperspectral video sequence. In the proposed framework, the posi-
tion of the plume is first estimated, using the temporal redundancy of
two consecutive frames. Second, a Binary Partition Tree is built and
pruned according to the previous estimate, in order to retrieve the real
location and extent of the plume in the frame. The proposed method
is validated on a real hyperspectral video sequence and compared
with a state-of-the-art method.

Index Terms— segmentation, tracking, Binary Partition Tree,
chemical gas plume, hyperspectral video sequence

1. INTRODUCTION

The detection and tracking of chemical gas plumes in the atmosphere
is of great interest for several domains [1, 2]. In the defense and
security area for example, such analysis could be employed in order
to detect the use of chemical gas weapons. In the environmental
protection field, the detection and tracking of gas plumes could be also
of use to identify and repair gas leaks in order to minimize their impact
on the environment and the potential harm they could cause on human
populations. However, this task still remains an open research topic
as most gases do not appear in the visible spectrum and hence remain
invisible to human inspection or traditional color imaging systems. As
a matter of fact, their spectral signature significantly responds only in
a restrained portion of the infrared (IR) domain [3, 4], hence the need
for a fine sampling of the electromagnetic spectrum. Additionally,
the temporal dimensionality inherent to video sequences requires
appropriate processings. Hyperspectral video sensors combine the
ability to precisely describe spectral properties of the captured scene
and to record its evolution over time, but at the cost of an important
amount of data to process [5–8].

In this paper, we propose a new method to process a hyperspectral
video sequence for the detection and tracking of a chemical gas plume
diffusing in the atmosphere. This method relies both on spectral prop-
erties of the hyperspectral scene and on the temporal redundancy of
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the video sequence. A rough estimate of the position of the plume
in the frame is first computed. The actual position and extent of the
plume is then retrieved using a Binary Partition Tree. The remainder
of the paper is organized as follows: section 2 introduces the Binary
Partition Tree (BPT) algorithm that constitutes the core of the pro-
posed method. Section 3 further details the proposed tracking and
segmentation algorithm. Section 4 displays some results obtained
on a real sequence and features some comparisons. Conclusions are
given in section 5.

2. BINARY PARTITION TREE (BPT)

The BPT is a hierarchical region-based representation of an image
stored in a tree structure [9,10]. Starting from an initial partition of the
image, regions are iteratively merged until only one region remains,
corresponding to the whole image support. The merging sequence is
stored in a tree structure T . In this representation, regions from the
initial partition form the leaf nodes, the whole image represents the
root, and each node inbetween corresponds to a region resulting from
the merging of its two children. There are two notions of primary
importance when building a BPT. The region modelMR describes
how regions are represented mathematically and how to model the
merging of two regions. The merging criterion O (Ri,Rj) is a
measure assessing the similarity between two neighboring regionsRi

andRj by measuring the distance between their region models. The
merging criterion thus determines the sequence in which the regions
are merged.
The pruning step follows the construction of the BPT. It aims at
cutting off some branches in the BPT so the leaves of the pruned tree
correspond to regions achieving the best segmentation with respect to
the desired task. Unlike the construction of the BPT, which is generic
up to the definition of the region model and merging criterion, the
pruning step is application dependent, and different pruning strategies
applied on the same BPT generally leads to different segmentation
results [11].

3. PROPOSED METHOD

3.1. Data set and pre-processing

The data set used in this study was acquired and provided by the
John Hopkins Applied Physics Laboratory. The spectral radiance
of the scene was recorded by a long wave IR spectrometer, about
2 kilometers away from the gas release, producing a hyperspectral
video sequence at a frame rate of 0.2 Hz. Each frame of the sequence
is therefore a hyperspectral image of size 128 × 320 pixels and
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Fig. 1: General framework of the proposed method.

comprising 129 spectral bands corresponding to wavelengths evenly
distributed between 7830 nm and 11700 nm. Let {It}Nt=1 denote the
hyperspectral video sequence, N being the total number of frames.
In this study, N = 23. An initial pre-processing is applied to the
whole sequence. It comprises a Principal Component Analysis (PCA)
done on each frame, where the three first Principal Components (PCs)
are retained, followed by a Midway equalization [12] to ease the
visualization of the data, as detailed in [5]. The output of the pre-
processing step is the false color representation sequence labeled
{IRGB

t }Nt=1. Figures 3a and 3b display two consecutive frames of
the false color representation sequence.
The proposed method is organized in two steps:

- The estimation of the position of the plume in the current frame
by taking advantage of the temporal redundancy inherent to
the video sequence.

- The validation and refinement of the previous estimate using
the BPT.

Figure 1 illustrates the proposed workflow. Please note that the pre-
processing is only used to provide a rough estimate of the position
of the plume. The actual segmentation is performed using the initial
full hyperspectral frame. For each input frame It, the output of the
proposed algorithm is the binary mask Pt featuring the position of
the plume in the current frame.

3.2. Estimation step

The goal of the estimation step is to produce a reliable estimate of the
position of the plume and use this estimate as a priori information
when pruning the BPT. Note that only the false color representation
video sequence is considered at this stage of the algorithm. The
whole estimation process is featured by the workflow in figure 2, and
is based on the temporal redundancy between consecutive frames.
More specifically, it is assumed that only the plume is moving be-
tween two consecutive frames, and the background does not change.
Consequently, the image difference between two consecutive frames
is expected to contain low values in areas that do not feature any
change between the two frames, and higher values when significant
change occurs. The first step of the estimation stage is to identify
those areas. This operation is illustrated in figure 2. More precisely:

1. Input frames are initially very noisy as it can be seen in fig-
ures 3a and 3b. Therefore, a preliminary denoising is applied
on both images. This is achieved using the Block Matching
3D algorithm (BM3D) [13].
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Fig. 2: Workflow of the estimation step.

2. The image difference is then computed, denoised again to
remove residual noise, and converted in grayscale to produce
the image labeled Idiff (see figure 3c). The underlying idea is
to consider Idiff as a topographical image where peaks (bright
regions) correspond to areas that are significantly changing
between the two consecutive frames. Those areas correspond
to regions that are either invaded or left by the plume.

3. Peaks are extracted by thresholding the topographical image
with an automatically set threshold value defined by a two-
class K-means algorithm, producing the binary image C dis-
played in figure 3d.

The last step of the estimation stage is to produce the estimate position
of the plume. It can be done combining the position of the plume
detected in the previous frame Pt−1 and the current change map
since the new position corresponds to the previous one plus the region
that have been invaded, minus those that have been left. This can be
mathematically formulated

P̂t = Pt−1

⊕
C (1)

where
⊕

denotes the binary XOR operation, thus producing the
estimate P̂t.

3.3. Detection step

The second step of the proposed method is the actual detection of
the plume Pt in the current frame, using the previously computed
estimate P̂t as some a priori knowledge. The detection is handled
through the construction and pruning of a BPT, as shown by the
workflow featured on figure 4.
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Fig. 3: Illustration of the estimation process: (a,b) two consecutive
noisy frames along with (c) their image difference Idiff and (d) the
resulting binary map.
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Fig. 4: Workflow of the detection step.

3.3.1. Construction of the BPT

As mentionned in section 2, the construction of the BPT asks for
three input parameters:

- The definition of the initial leaves: starting from the pixel
level generates 128× 320 = 40960 leaves. This considerably
impacts the computational load and leads to a high number of
non-signficant nodes in the BPT. On the contrary, starting with
leaves corresponding to the regions of a preliminary rough
segmentation significantly reduces the number of final nodes in
the tree and hence the computational load, while not impacting
the final segmentation results. The only required condition
is to start from an over-segmentation, as initial regions will
not be allowed to split in the further steps. This is easily
achieved by using a watershed segmentation. The extension
of the watershed to hyperspectral images presented in [14] has
been selected.

- The region model, which describes how regions are mathemat-
ically represented. For this work, the mean spectrum region
model has been implemented:

MR = r̄ =
[
r̄(1), . . . , r̄(q)

]
(2)

with
r̄(i) =

1

|R|
∑
p∈R

p(i), (3)

where q stands for the number of spectral band in the frame,
|R| is the number of pixels in regionR, and p(i) is the value
in the i-th band at pixel location p.

- The merging criterion between two neighboring regions was
defined as the Spectral Angle between their region models:

O (Ri,Rj) = arccos

(
〈r̄i, r̄j〉
‖r̄i‖2‖r̄j‖2

)
. (4)

3.3.2. Pruning of the BPT

As the plume is a thin layer overlaying the background, the spectral
response of pixels belonging to the plume only differs slightly from
pixels “behind” the plume (be it ground or sky). However, the BPT
is able to capture the plume as one single region while it has not too
much diffused yet, or two different regions (one being the bottom
half of the plume which overlays with the ground, and the other
one being the top half superimposed on the sky). The goal of the
pruning step is to identify in the tree structure which node or set
of nodes corresponds to the plume. Therefore, the implemented
pruning strategy is based on the estimated position P̂t and seeks
the best node or set of nodes matching this estimate. The matching
criterion is defined as follows: a set of nodes {N1, . . . ,Nm} and its
corresponding regions {R1, . . . ,Rm} is said to match the estimate
P̂t if the area covered by all the regions overlaps with at least γ%

of P̂t, and if each region independently has at least half of its pixels
belonging to P̂t. Mathematically, {R1, . . . ,Rm} matches P̂t if:

|(
m⋃
i=1

Ri) ∩ P̂t| ≥ γ × |P̂t| (5)

|Ri ∩ P̂t| ≥ |Ri\P̂t| ∀i = 1, . . . ,m (6)
The parameter γ represents the confidence in the estimate and was
empirically set to 70%. This value achieves a trade-off between trust
and mistrust in the estimate. To reconstruct the plume with as few
regions as possible (ideally only one), the retained pruning is the
one leading to the tree with the smallest number of nodes. If several
regions were found, they are fused together in a last step to obtain the
final binary mask Pt.

4. RESULTS

Figures 5a to 5d display segmentation results obtained by the pre-
sented method for the second, sixth, tenth and fourteenth frames after
the plume appearance,respectively. Figures 5e to 5h exhibit segmenta-
tion results on the same frames obtained by the state-of-art method [5],
based on the Merriman-Bence-Osher (MBO) semi-supervised cluster-
ing scheme [15]. It is worth mentioning that the MBO utilizes only
the first five principal components while our method uses the whole
hyperspectral data. It can be seen how both methods accurately detect
and segment the plume from the background, and track it along the
frames. However, the MBO method produces some small false detec-
tion areas at the interface between the ground and the sky. This issue
does not arise in our proposed method. Moreover, a small cloud of
dust, triggered by the explosive release of the plume, can be seen near
the bottom left part of the plume in the two middle frames of figure 5.
Our proposed method is able to correctly differentiate it from the
gas plume while it is included within the plume region for the MBO
results. Note that [5] utilizes the output of a background substraction
step to initialize the MBO scheme while the estimation process of
our method only starts when the plume appears in the video sequence.
In both cases, the exact appearance time of the plume in the video
sequence must be known in order to trigger the detection process.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: Top row: segmentation results obtained by the presented method for four frames of the video sequence. Bottom row: segmentation
results obtained by [5] for the same frames. Results are displayed on the false color representation video sequence.

5. CONCLUSION

In this article, we presented a novel algorithm for the detection and
tracking of chemical gas plume in a hyperspectral video sequence.
The proposed method is organized in two stages being the estimation
of the position of the plume in the current frame and the detection
of the real plume, which relies on the previous estimate. While
the first step is based on the temporal redundancy inherent to video
sequences, the second one involves the construction and pruning of
a Binary Partition Tree. The proposed algorithm gives satisfactory
visual results for the presented video sequence. Future work includes
the design of a method to quantitatively assess the quality of the
obtained segmentation and tracking despite the lack of ground-truth
data. The use of anomaly detection technics to blindly detect the
release instant of the plume will also be inverstigated in order to make
the proposed method fully unsupervised.
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