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Many problems in image and video processing may be formulated in the

language of constrained optimization. Algorithms for solving general constrained

optimization problems may not guarantee solutions or be computationally

efficient, particularly if the problem is nonlinear or non-convex. Oftentimes these

constrained optimization problems may be relaxed into the form of a convex

problem. This allows for the use of convex solvers such as the Augmented

Lagrangian method and the Split Bregman iteration. In this thesis, we will study

the advantages of incorporating convexity into constrained optimization problems.

These problems will be motivated from the standpoint of hyperspectral image

processing, particularly the detection and identification of airborne chemicals in

gas cloud releases.
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CHAPTER 1

INTRODUCTION

Many of the recent developments in the field of optimization have led to

fast, efficient algorithms for solving certain types of constrained optimization

problems. These problems arise naturally in image processing; examples include

deblurring and denoising. Efficient convex solvers have become of particular

interest due to the development of advanced imaging technologies. Modern spectral

imaging produces large, and complex data sets that hold a substantial amount of

information about the scene. Extracting this information requires complicated

mathematical models, oftentimes in the form of constrained optimization

problems, such as the minimization of a functional subject to some constraints.

This work will focus on two of these models with applications to

hyperspectral image and video processing. One model involves the addition of `1

regularizer and a type of augmented Lagrangian to solve overdetermined systems

very quickly. This type of problem is related to hyperspectral unmixing, where

abundances of chemical signatures are determined in a given image. The other

model involves finding a low-rank and sparse decomposition of a given matrix.

This method stems from the convexification of a non-convex problem that would

otherwise be very difficult to solve. The convexified problem is solved easily by a

alternating Lagrange multiplier method. These low-rank and sparse

decompositions are used in video processing as a means of background subtraction.

The incorporation of regularizers and convexity into these constrained problems
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provides means of obtaining solutions under a variety of conditions that may not

be obtainable otherwise.

In chapter 2 ideas from constrained optimization will be discussed, starting

from the basic form of constrained problems and ending with numerical convex

solvers. Chapter 3 will provide background information on hyperspectral imaging

and how certain image processing problems are formulated on these data sets. This

section will include specific information about the data set used throughout this

work. Chapter 4 will introduce the problem of hyperspectral unmixing and discuss

a numerical method of obtaining sparse solutions to a constrained optimization

problem. Low-rank and sparse matrix decompositions will be explored in chapter

5, along with their relation to principle components analysis. Their connection to

matrix recovery problems will be shown through the numerical methods used to

solve these types of decompositions. Results of background subtraction using

low-rank and sparse decompositions will be shown. The final section will discuss

recent developments, current trends, and future work in these fields.

The field of hyperspectral imaging has been around for several decades,

however hyperspectral video sequences are a relatively new type of dataset. In

addition to this, the hyperspectral video datasets containing chemical plume

releases used in this work were only recently declassified and not well understood.

As a consequence, the low-rank and sparse decomposition results presented in

chapter 5 are novel. These results contribute to a better understanding of the

detection of chemical plumes as well as the collection and analysis of hyperspectral

video data.
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CHAPTER 2

OPTIMIZATION AND BASIS PURSUIT PROBLEMS

This chapter outlines many of the important concepts from constrained

optimization problems that appear in subsequent chapters. It starts with the

general form of a constrained optimization problem. The Lagrangian form is

presented, along with ideas of convexity and bounds on optimal solutions. Basis

pursuit problems are then introduced. These problems have important connections

to rank minimization problems that are analyzed in chapter 5. Two different

solution methods for constrained optimization problems are derived in section 2.3,

the Augmented Lagrangian method and the Alternating Direction Method of

Multipliers, respectively. These algorithms will be used to solve two different

constrained optimization problems from hyperspectral image processing in

chapters 4 and 5.

Constrained Optimization

The general formulation of a constrained mathematical optimization

problem is of the following form:

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(2.1)

where, x ∈ Rn is the optimization variable, f0 is called the objective function, and

the fi’s and hj’s are constraint functions. This form includes the possibility of

inequality and equality constraints. Notice that each equality constraint hj(x) = 0
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may be replaced by two inequality constraints, hj(x) ≤ 0, and −hj(x) ≤ 0, which

imposes additional structure on each hj(x). If all the objective and constraint

functions satisfy

fi(αx+ βy) = αfi(x) + βfi(y)

hj(αx+ βy) = αhj(x) + βhj(y)

(2.2)

for all x, y ∈ Rn and α, β ∈ R, then problem (2.1) is referred to as a linear

program. If the constraint and objective functions fi have a slightly more general

structure defined by,

fi(αx+ βy) ≤ αfi(x) + βfi(y) (2.3)

for all x, y ∈ Rn , for any α, β ∈ R+ such that α + β = 1, and the equality

constraint functions are affine, then the problem is called convex. Convexity of the

equality constraint functions hj(x) is a byproduct of the requirement to be affine

(linear plus a constant). That is, the only way for hj(x) to satisfy hj(x) = 0 and

also be convex is to be affine. A function is called strictly convex if equality in the

above formula is never achieved. Convexity incorporates a number of useful

properties into problem (2.1). Most importantly it guarantees the existence of a

global minimum if a local minimum exists. If each fi is strictly convex then the

uniqueness of the minimizer of each function fi (if a minimum exists) is also

guaranteed. Also, note that all norms on Rn are convex by the triangle inequality.

Writing the primal Lagrangian of (2.1), we get

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x) (2.4)

such that λi, νi ∈ R, λi ≥ 0 for all i. The variables λi and νj are referred to as the
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Lagrange multipliers associated with the inequality and equality constraint fi(x),

and hj(x), respectively. The vectors λ and ν are called dual variables. The

Lagrange dual function is defined as

g(λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x)
)

= inf
x∈D
L(x, λ, ν)

(2.5)

For certain values of x, λ, and ν the value of g can go to −∞. Parameters

λ ≥ 0, ν, for which g > −∞ are called dual feasible. The important thing to notice

here is since the dual Lagrangian function is a pointwise infimum, it is always a

concave function of λ and ν, even if the primal is not convex [2]. This dual

function holds important information about the lower bound of the optimal

solution of (2.1). Suppose x̃ is in the feasable set, that is x̃ satisfies the constraints

of (2.1). So fi(x̃) ≤ 0 and hj(x̃) = 0 and λi ≥ 0 which implies

L(x̃, λ, ν) = f0(x̃) +
m∑
i=1

λifi(x̃) +
n∑
j=1

νjhj(x̃)

≤ f0(x̃)

(2.6)

then,

g(λ, ν) = inf
x∈D
L(x, λ, ν)

≤ L(x̃, λ, ν)

≤ f0(x̃)

(2.7)

Since equation (2.7) holds for any x in the feasible set, it must hold for the optimal

point as well. This gives the lower bound on the optimal value p?,

g(λ, ν) ≤ p? (2.8)
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This optimal lower bound is given by the solution to the dual problem,

maximize
λ,ν

g(λ, ν)

subject to λi ≥ 0, i = 1, . . . ,m

(2.9)

which is convex. Let d? be the optimal value of the dual problem. Weak duality is

the case when d? ≤ p?, and strong duality is when equality holds. Strong duality

will hold when the primal problem is convex and the constraints are affine. Since

dual problems are often easier to solve if the original problem is convex, this gives

a fast solution method. Namely, solve the dual problem for λ?, and ν? and convert

to the primal domain to obtain the solution x?[2].

Basis Pursuit

Another important type of optimization problem that will be related to

topics in later chapters is known as the basis pursuit problem,

minimize
u

‖u‖1

subject to Au = f

(2.10)

where f is the original signal and A is an m× n matrix, and ‖ · ‖1 is the `1 norm.

This problem seeks u with minimal norm, that best recreates the given signal f ,

with respect to the basis A. Since the `1 norm is the sparsity inducing norm on Rn

solutions to (2.10) are guaranteed to be the sparsest (containing the most zeros)

relative to the provided basis[12]. These types of problems are common in the field

of compressed sending where a basis is sought to achieve some amount of sparsity

when representing the signal f . The constrained basis pursuit problem is often

relaxed to an unconstrained problem of the form [2],
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TABLE 1. Related Ideas from Vector (left) and Matrix (right) Minimization
Parsimony concept Cardinality Rank
Hilbert space norm Euclidean Frobenius

Sparsity inducing norm `1 nuclear
Dual norm `∞ operator

Convex optimization Linear programming Semidefinite programming

minimize
u

µ‖u‖1 +
1

2
‖Au− f‖2

2
(2.11)

In this form, this as an unconstrained least squares problem with an `1 regularizer.

The underdetermined case (m < n) is common in sparse coding and compressed

sensing. Chapter 4 will consider the overdetermined case (m > n) which occurs in

hyperspectral image unmixing.

These ideas may be further extended to matrices, where minimization is

performed over Rm×n. This comes from relating the ideas of cardinality and rank.

Table 1 extends ideas of minimizing vectors to minimizing matrices. It is from

reference [12], which also contains a detailed discussion relating these concepts.

The parallel between the introduction of sparsity for vectors and matrices comes

up in chapter 5 when the low-rank and sparse matrix decomposition problem is

analyzed.

Solution Methods

Augmented Lagrangian methods transform a constrained optimization

problem into a series of unconstrained problems. This is done by writing the

unconstrained objective function as the Lagrangian of the constrained problem

and adding an additional term. The additional term is designed to act similar to a

7



Lagrange multiplier [2]. Specifically, a problem of the form,

minimize
x

f(x)

subject to gi(x) = 0, i = 1, . . . , n

(2.12)

is transformed into a series of unconstrained problems. The Lagrangian of the

above problem would be

L(x, λ) = f(x) +
n∑
i=1

λigi(x)

= f(x) + λTg(x)

(2.13)

Notice that if x? solves (2.12) then L(x?, λ) = f(x?) + λTg(x?) = f(x?) = const.

Now, the augmented Lagrangian is given by adding a penalty term to Lagrangian,

LA(x, λ, µn) = f(x) +
µn
2

n∑
i=1

g2
i (x) +

n∑
i=1

λigi(x)

= f(x) +
µn
2
‖g(x)‖2

2 + λTg(x)

(2.14)

this additional term shows preference to solutions that make ‖g(x)‖2
2 small. The

strategy for minimization of this function is to fix λ and µn and minimize

LA(x, λ, µn) with respect to x. Then, update λ based on the new x and re-solve

the problem with a larger value µn. That is, {µn} is a sequence of increasing

values. Larger values of µn increase the emphasis on the additional penalty term.

The updates for x and λ are given by the iterations,

xk+1 = argmin
x

f(x) +
µn
2
‖g(x)‖2

2 + λTg(x)

λk+1 = λk − µngi(xk+1)

(2.15)
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Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers is for convex optimization

problems with an objective function that has a special type of separable structure

associated with it. Consider the problem,

minimize
u

J(u)

subject to Ku = f

(2.16)

where J(u) may be written as J(u) = H(u) +
∑n

i=1Gi(Aiu+ bi) = H(u) + F (z),

where H and Gi are convex and zi = Aiu+ bi. The separable structure is what

allows J to be split into two convex functionals [10]. This means that problem

(2.16) may be re-written as,

minimize
z,u:Au+Bz=c

F (z) +H(u) (2.17)

where,

F (z) =
n∑
i=1

Gi(zi), B =

−I
0

 , A =



A1

...

AN

K


, and c =



−b1

...

−bN

f


The Augmented Lagrangian of problem (2.17) is

LA(u, z, λ) = F (z) +H(u) + 〈λ, c− Au−Bz〉+
α

2
‖c− Au−Bz‖2

2 (2.18)

Then the objective function is then minimized by first fixing z and minimizing
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LA(u, z, λi) over u, then fixing this new u and minimizing LA(u, z, λi) over z, and

then updating λi. These iterations are given by [10],

zk+1 = argmin
z
LA(z, uk, λk)

uk+1 = argmin
u
LA(zk+1, u, λk)

λk+1 = λk + α(c− Auk+1 −Bzk+1)

(2.19)

Connections to Bregman Iteration

Bregman iterations are a class of algorithms related to Alternating

Direction Method of Multipliers and similar Lagrangian based methods involving

sums of convex functionals subject to equality constraints [10]. Variations on the

Bregman iteration have led to fast solvers for convex programs. These algorithms

require some additional assumptions about the objective function. Specifically, the

function must have some separable structure that allows the problem to be split

into a series of subproblems. These algorithms involve generalized notions of the

derivative, known as subdifferentials, or subgradients. It has been shown that

classical Bregman iteration is analogous to augmented Lagrangian methods when

the constraints are linear [15]. Essentially, these connections show that the

augmented Lagrangian, up to an additive constant, is equivalent to the objective

function used in the Bregman iteration. A more recent variant of Bregman

iteration, the split Bregman algorithm, was shown to be closely related to ADMM

[10] [16]. In this work, the constraints on the considered minimization problems

will all be linear. The solutions methods will be presented from the standpoint of

augmented Lagrangian methods since these methods are equivalent to Bregman

iteration and avoid many complicated notions of generalized derivatives. However,

10



the reader should note that many of the references used herein refer to these

algorithms as Bregman methods.
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CHAPTER 3

HYPERSPECTRAL IMAGING

Hyperspectral imaging extends traditional imaging techniques, and allows

for a more complete depiction of the electromagnetic spectrum. This chapter is

intended to provide a background to those unfamiliar with hyperspectral images

and outline the plume detection problem that will be investigated further in later

chapters. A major part of the plume detection problem has to do with the way

material signatures mix in the scene. Understanding the mixture models discussed

in section 3.3 will provide better insight into the methods discussed in chapter 4.

Detailed information on the particular dataset used in this work may be found in

section 3.2.

Background

RGB images consist of three layers, where each layer corresponds to an

intensity value of the red, green, and blue components of each image. These three

layers each represent a particular wavelength of the electromagnetic spectrum.

Hyperspectral images extend this idea into hundreds of dimensions, capturing

information about many different frequencies of light. This allows for the

identification of particular materials in each image based on what frequencies are

absorbed and which are reflected.

Hyperspectral imaging aims to view a large portion of the radiated

electromagnetic radiation of an object with high spectral resolution. This requires

a very fine discretization of the electromagnetic spectrum. This is often limited to

a narrow spectral band in order to reproduce a more continuous spectrum. By

12



FIGURE 1. Example of a hyperspectral image. The image contains many layers
that capture different wavelengths of reflected light. Each pixel contains
information about the materials present in the scene.

imaging the light that is absorbed and reflected it is possible to identify particular

materials present in the image. Figure 1 shows how pixels in a hyperspectral image

contain spectral information that may be used to distinguish between vegetation,

water, soil, and atmosphere.

Hyperspectral video sequences serve as an excellent example of a problem

from modern imaging science that is closely tied to the analysis of large data sets.

Each hyperspectral video frame is an individual data cube, which means these

video sequences require a large amount of memory. The size of these videos may

prohibit loading the entire video into memory without sufficient preprocessing or

dimension reduction. Hyperspectral imaging was originally developed to be used

13



for geology and mining applications. The imaging of core samples would detect the

presence of particular mineral deposits and could aid in finding oil [1]. Today,

hyperspectral imaging is used in many different areas from surveillance and

defense to ecology and agriculture. One major area of interest in hyperspectral

video is the detection, identification, and tracking of gas plumes. This problem has

major applications in defense, security, and environmental safety [13].

Dugway Proving Ground Dataset

The hyperspectral data set analyzed for this project was provided by the

Applied Physics Laboratory at Johns Hopkins University as part of a Defense

Threat Reduction Agency (DTRA) research grant. It consists of a series of video

sequences recording the release of chemical plumes into the atmosphere. Figure 2

shows the three long wave infrared spectrometers (named Romeo, Victory and

Tango) placed at different locations to track the release of known chemicals. The

sensors capture one frame every five seconds consisting of 2 spatial dimensions and

one spectral dimension. The spatial dimension of each of these data cubes is 128 ×

320 pixels, while spectral dimension measures 129 different wavelengths in the long

wave infrared (LWIR) portion of the electromagnetic spectrum. Each layer in the

spectral dimension depicts a particular frequency starting at 7,830 nm and ending

with 11,700 nm.

Mixing Models

The three-layer model is a simple method to describe the different

components that comprise the spectral radiance measurement for each pixel in the

long wave infrared hyperspectral image. Figure 3 illustrates the different objects,

or layers, that contribute to the spectral radiance measurement of the long wave

infrared spectrometer. For the chemical plumes released in this data set, the three

layers are the background, the chemical plume and the atmosphere. Each pixel has

14



FIGURE 2. Placement of the three long wave infrared spectrometers.

its own radiance L(ν), and transmittance τ(ν). The transmittance is the ratio of

light leaving a surface relative to the amount of light entering the medium. Both

the background and plume spectral radiances must pass through other mediums

before reaching the long wave infrared spectrometer. Therefore, the spectral

radiance measurement of the sensor can be represented as

L(ν) = τatm(ν)Lp(ν) + τp(ν)τatm(ν)Lb(ν) + Latm(ν) (3.1)

The subscripts atm, p and b in Equation (3.1) refer to the atmosphere, plume, and

background, respectively. This model can be further simplied for the given data

15



set. Since the ground based long wave infrared spectrometers are placed within

two kilometers of the chemical plume release site, the spectral radiance of the

atmosphere is very small in comparison to the other spectral radiance terms, and

therefore can be dropped from this equation. In addition, it is assumed that the

atmospheric transmittance does not significantly affect the spectral radiance

because of the short path length, allowing most of the signal to pass through.

These assumptions reduce equation (3.1) into the two layer model equation

L(ν) = τp(ν)Lb(ν) + Lp(ν) (3.2)

According to this model the spectral radiance of the scene measured by the LWIR

sensors is a sum of the light emitted by the chemical plume and background

mediums at 129 wavelengths in the electromagnetic spectrum.

FIGURE 3. Three-layer model depicting the spectral radiance.

Problem Outline

The ultimate goal of this line of research is to accurately detect, identify,

and track the releases of chemical gas plumes. In this work, more focus will be

placed on detection and identification methods. The detection aspect is concerned

16



with finding moving objects within each video sequence. Identification matches the

spectral signatures from pixels in each frame to the signatures of known materials.

Once the chemical cloud is detected and identified, the video tracking algorithms

could be incorporated to track and possibly predict where the chemicals disburse.

In this work we will focus on the detection and identification problems presented

in the context of constrained optimization. The method of identification will use a

sparsity inducing form of hyper spectral unmixing in order to determine the

presence of a target signature. Low-rank and sparse matrix decompositions will be

investigated as part of the detection problem.
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CHAPTER 4

CONVEX OPTIMIZATION AND HYPERSPECTRAL UNMIXING

The purpose of unmixing is to calculate the abundance signatures in each

pixel of an image. Let’s assume that some information is known about the

signatures present in the scene and are stored as columns of an m× n matrix A.

This matrix A is commonly referred to as the dictionary. Then a pixel, f , maybe

represented as f = Ax+ ε, where ε is an error term, that measures how accurately

the linear combination of signatures from A recreates f . In other words, the

solution to the linear program

minimize
x

‖Ax− f‖2
2

subject to xi ≥ 0, i = 1, . . . , n.

(4.1)

is the vector of abundances that minimizes the error of how accurately Ax depicts

f . This type of linear program comes up in many areas of mathematics and is

called the non-negative linear least squares problem. In practice, this dictionary

matrix A is often overdetermined (m ≥ n) and therefore exact solutions may not

exist.

A very distant object or the presence of very diffuse gas will have a much

weaker signal than close, dense objects. Therefore small concentrations may be

ignored, or set to zero. This line of reasoning is motivated by wanting to

incorporate sparsity into the solution. Sparse signal representations have been the

topic of much current research. In order to capture sparsity in the solution of

(4.1), a term called a regularizer will be added to the objective function:
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minimize
x

‖Ax− f‖2
2 + η‖x‖1, where η > 0

subject to xi ≥ 0, i = 1, . . . , n.

(4.2)

The regularizer that was added is the `1-norm, ‖x‖1 =
∑n

i=1 |xi|. This term

rewards sparse solutions, and penalizes solutions that have many non-zero

entries [5]. The parameter η determines how much emphasis on sparsity is desired.

The problem stated in (4.2) may be rewritten in the equivalent form,

minimize
x

‖Ax− f‖2
2 + η

n∑
i=1

xi

subject to x = P (y)

(4.3)

where P (y) is the projection onto Rn
+ and is defined element wise on the vector y.

That is, P (y) = max(0, yi) = max(0, xi − bi). This operator is sometimes referred

to as the shrink operator in some literature [15]. The bi’s are introduced to

convert the inequality to equity constraints. The augmented Lagrangian of (4.3) is

given by,

LA(x, y, b) = argmin
x,y

λ‖Ax− f‖2
2 + λη

n∑
i=1

xi + ‖x− P (y)− b‖2
2 (4.4)

As shown in chapter 2, problem (4.3) may be solved be the classical augmented

Lagrangian method [5]. Replacing (4.3) with a sequence of unconstrained

problems,

(xk+1, yk+1) = argmin
x,y

λ‖Ax− f‖2
2 + λη

n∑
i=1

xi + ‖x− P (y)− bk‖2
2

bk+1 = bk + P (yk+1)− xk+1

(4.5)
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Notice that the first line in (4.5) may be split into two subproblems by holding one

variable fixed and solving for the other and vice versa,

yk+1 = argmin
y

λ‖Axk − f‖2
2 + λη

n∑
i=1

xki + ‖xk − P (y)− bk‖2
2

xk+1 = argmin
x

λ‖Ax− f‖2
2 + λη

n∑
i=1

xi + ‖x− P (yk+1)− bk‖2
2

bk+1 = bk + P (yk+1)− xk+1

(4.6)

Now, solve each subproblem for its minimizer. Starting with y, differentiating the

first equation with respect to y and setting it equal to zero:

0 =
d

dy

(
λ‖Axk − f‖2

2 + λη
n∑
i=1

xi + ‖xk − P (y)− bk‖2
2

)

=
d

dy
(−(xk)TP (y) + (bk)TP (y)− P (y)T (xk − P (y)− bk))

=
d

dy
− 2(xk − bk)TP (y) +

d

dy
‖P (y)‖2

2

= −2P (xk − bk) + 2P (y)

=⇒ P (xk − bk) = P (y) = y

=⇒ yk+1 = P (xk − bk)

(4.7)

That is, the minimum y is found by projecting xk − bk into Rn
+. Now, for the x

variable. Differentiating the second equation with respect to x and setting equal to
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zero:

0 =
d

dx

(
λ‖Ax− f‖2 + λη

n∑
i=1

xi + ‖x− P (yk+1)− bk‖2

)

=
d

dx

(
λ(Ax− f)T (Ax− f) + λη

n∑
i=1

xi + xT (x− 2P (yk+1)− 2bk)

)

= 2λATAx− 2λATf + λη1 + 2x− 2P (yk+1)− 2bk

=⇒ (λATA+ I)x = P (yk+1) + bk − λη1 + λATf

=⇒ xk+1 = (λATA+ I)−1(P (yk+1) + bk − λη1 + λATf)

(4.8)

The most expensive part of this calculation is finding (λATA+ I)−1, but

never needs to be calculated explicitly. Now that the exact solutions for each

subproblem are known, the iterations become [5]

yk+1 = P (xk − bk)

xk+1 = (λATA+ I)−1(P (yk+1) + bk − λη1 + λATf)

bk+1 = bk + P (yk+1)− xk+1

(4.9)

Results

In order to perform target detection using `1-unmixing the dictionary

matrix was generated using PCA from frames known to not contain any chemical

plume in order to provide a general estimate of background signatures. Then, a

known target signature was added to the dictionary. The results of unmixing an

entire frame, using the estimated background signatures may be seen in figure 4.

The top left frame of figure 4 correctly identifies the signature of the chemical

release. Notice in the top right image of figure 4 the algorithm identifies the

foreground, the middle right image identifies the distant mountains, and the

bottom images identify atmospheric signatures from the sky. Figure 5 shows the
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FIGURE 4. The results of `1-unmixing on a single frame of the video sequence.
The top left image identifies the target chemical signature. The remaining five
images show other components of the scene, such as foreground (top right, middle
left), mountains (middle right), and sky (bottom).

results of using `1-unmixing to detect a chemical release across multiple frames of

a hyper spectral video sequence. The unmixing process averaged around 20

seconds per frame using a 3 GHz Intel i7.

Remarks

Sparse representations, such as those given by equation (4.2), come up in a

variety of other situations when the incorporation of sparsity is desired. For

example, in non-negative matrix factorization (NNMF). Given a data matrix X,

such that Xi,j ≥ 0, NNMF seeks A, S ≥ 0 such that X ≈ AS. If the approximation
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FIGURE 5. The results of `1-unmixing detecting the target signature in frames 19,
23, 28, 31, 36, and 60 of the video sequence.

involves minimizing the 2-norm, this problem is in some sense solving a

non-negative linear least squares problem for every column of X. Thinking of the

factor A as the dictionary matrix from section 4, NNMF provides a means of

unmixing entire hyperspectral images rather than unmixing pixel-wise, where

columns of S represent chemical abundance’s. For reasons stated previously, it is

natural to want to impose a sparsity constraint on the factor S. So instead of

solving non-negative least squares problems for each column of X, one would be

solving problem (4.2) at each column.
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CHAPTER 5

ROBUST PRINCIPAL COMPONENTS ANALYSIS

The previous chapter showed how sparsity may be incorporated into

solutions of a constrained problem by the addition of particular regularizer to the

objective function. The focus of this chapter will be extending the ideas from the

vector case to solve constrained optimization problems with matrix variables. The

minimization of particular matrix norms, such as the nuclear norm has been the

focus of much recent research. The nuclear norm is defined to be the sum of the

singular values of a matrix, and is involved in a number of low-rank recovery and

decomposition problems. Minimization of the nuclear norm was shown to be able

to recover low-rank matrices from only a small number of its entries. Nuclear norm

minimization is also used to solve low-rank and sparse decompositions where a

matrix X is decomposed into X = L+ S, where L is low-rank, and S is sparse.

This particular matrix decomposition is closely related to Principle Components

Analysis, and in many ways relaxes several assumptions from classical PCA.

Formulated as a basis pursuit problem, the low-rank and sparse

decomposition is able to recover the data represented in the principle component

basis of a matrix that is corrupted with arbitrarily large amounts of noise and/or

missing entries. The principle components would not be recoverable using the

standard method of SVD, as the noise would obscure the true basis.

Low-rank and sparse decompositions have applications to background

estimation and motion detection in video processing. An augmented Lagrangian
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multiplier approach to low-rank and sparse decompositions will be derived, then

applied to false-color RGB videos made from the DTRA chemical plume dataset.

Rank Minimization and the Nuclear Norm

A number of real world applications may be formulated as rank

minimization problems. These problems aim to recover a matrix given some

number of samples, with the assumption that the underlying matrix has inherently

low rank. Formally, the problem is stated as,

minimize
L

rank(L)

subject to PΩ(L) = PΩ(X)

(5.1)

where PΩ is the projection onto the sample space Ω [8], and X is the matrix of

known samples. That is, PΩ(X) = Xi,j for (i, j) ∈ Ω. The problem stated in this

way is NP-hard and no efficient algorithms exist for solving this problem for

matrices with rank larger than 10 [7]. The main challenge with this problem is the

rank function, defined to be the number of positive singular values. This objective

function is non-convex and any algorithm solving (5.1) would need to distinguish

between local vs global minima. However, by replacing the rank function with a

convex approximation, such as a norm, the problem becomes much easier to solve.

The nuclear norm is in fact the “best” convex approximation to the rank

function [12]. It is defined as ‖X‖? =
∑r

i=1 σi(X), where r = rank(X). This is

essentially the `1 norm of the singular values of X. Minimization of this functional

seeks a low rank approximation of the data. The basic form of a nuclear norm
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minimization problem is,

minimize
L

‖L‖?

subject to PΩ(L) = PΩ(X)

(5.2)

where,

‖X‖? =
r∑
i=1

σi(X) (nuclear norm)

In other words, problem (5.2) seeks a matrix L that has low rank and agrees

exactly with X on Ω. The recovery of a low rank matrix from only a subset of its

entries solves a problem know as the Netflix prize. The company was interested in

how to provide better suggestions to its customers, based only on knowing a few

movies that a customer rented. The resulting data matrix consists of rows

corresponding to customers and columns corresponding to movies. Since each

customer has only rented a small number of movies, this matrix is very sparse.

Recovering missing entries in this matrix would give a better understanding of a

particular type of customers viewing habits, and allow for better suggestions to be

made to any particular subset of Netflix customers [7].

The solution to the nuclear norm minimization problem (5.2) is related to

the singular value thresholding operator, defined as

Dτ (X) = USτ (Σ)V T = Udiag(max(σi − τ, 0))V T

where Sτ = max(0, xi − τ) is the projection or shrink operator that solved (4.2).

Since the nuclear norm is non-differentiable the minimizer is derived using a

projective subgradient method. A discussion on projective subgradient methods

may be found in [14], with methods specifically related to the nuclear norm found
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in [8], and [6]. A detailed derivation of this solution using subgradient methods is

beyond the scope of what is being discussed here. Instead, the method will be

interpreted as Lagrange multiplier method in order to avoid many technicalities in

deriving the iterations. The singular value thresholding operator solves a problem

that is very close to (5.1),

minimize
L

τ‖L‖? +
1

2
‖L‖2

F

subject to PΩ(L) = PΩ(X)

(5.3)

where ‖X‖2
F = trace(XTX) is the Frobenius norm. Writing the Lagrangian for

this problem gives,

L(L,Λ) = τ‖L‖? +
1

2
‖L‖2

F + 〈Λ, PΩ(X − L)〉 (5.4)

Notice that (5.3) is a convex problem with linear constraints, so strong duality

holds. In order to solve this problem, a particular method of Lagrange multipliers

is known as Uzawa’s algorithm, which involves varying step sizes. This method is

derived by applying a subgradient method to the dual problem. The dual function

of (5.3) is given by g(Λ) = inf
L
L(L,Λ). This leads to the iteration,

L(Lk,Λk−1) = min
L
L(L,Λk−1)

Λk+1 = Λk + δkPΩ(X − Lk)
(5.5)

where {δk}k≥1 is a sequence of step sizes. The iteration for Λ is derived as a

gradient decent update [11]. It is also known [11] that the operator
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Dτ (X) = argmin
L

1
2
‖X − L‖2

F + τ‖L‖? and therefore,

argmin
L

τ‖L‖? +
1

2
‖L‖2

F + 〈Λ,PΩ(X − L)〉 =

argmin
L

1

2
‖PΩ(Λ)− L‖2

F + τ‖L‖? = Dτ (PΩ(Λ))

(5.6)

That is, Dτ (PΩ(Λ)) is the minimizer of the dual function g(Λ) = inf
L
L(L,Λ). Also,

since PΩ(Λk) = Λk for all k ≥ 0, the iterations for L and Λ become

Lk+1 = Dτ (Λk)

Λk+1 = Λk + δkPΩ(X − Lk)
(5.7)

The singular value thresholding operator provides a means of solving nuclear norm

minimization problems over some set of convex constrains. This method is quite

efficient, since the dominant cost of each iteration is an SVD.

Principal Component Pursuit

The focus of this section will be a functional consisting of the nuclear norm

and the `1 norm defined on matrices. The method of minimizing this functional

uses the singular value thresholding operator discussed in the previous section, and

a thresholding operator similar to the projection onto R+ operator from section 4.

This functional is related to low rank representations of corrupted data and its

representation in the principle component basis.

There are a number of assumptions that are present when attempting to

reduce the dimension of a dataset. Dimension reduction assumes that the data has

some intrinsic low dimensionality associated with it, such as existing on a low

dimensional subspace or manifold perturbed by noise. Therefore the data matrix

may be decomposed as X = L+N , where L is the low rank representation of the
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data, and N is a small perturbation matrix. Principal Components Analysis may

be formulated as the constrained matrix optimization problem

minimize
L

‖X − L‖2

subject to rank(L) ≤ k

(5.8)

for data matrix X. Notice that the objective function being minimized is the `2

matrix norm, which is the largest singular value of the matrix. The classical

method of solving problem (5.8) is by singular value decomposition (SVD). This

problem may be solved very efficiently under the assumption that the noise is

small and i.i.d. Gaussian. However, if the data is corrupted, lossy, or noisy, this

method may fail to accurately find this low-rank matrix L.

The Principal Component Pursuit (PCP) problem relaxes a number of

assumptions from classical PCA. Namely, it allows entries in X to be arbitrarily

large, and have unknown, sparse, support. Now, the data matrix may be

decomposed as X = L+ S, where S is a general sparse matrix. PCP aims to

exactly recover the low-rank and sparse components of this noisy data matrix X

by solving

minimize
L,S

‖L‖? + λ‖S‖1

subject to X = L+ S

(5.9)

where,

‖S‖1 =
∑
i,j

|Si,j| (`1 norm)

Notice that the ‖ · ‖1 norm in this case is different from the matrix 1-norm.

It is defined as the `1 norm of the matrix seen as a long vector. Writing the

29



augmented Lagranigian [8] of (5.9),

LA(L, S, Y ) = ‖L‖? + λ‖S‖1 + 〈Y,X − L− S〉+
µ

2
‖X − L− S‖2

F (5.10)

This objective function of equation (5.9) has a separable structure associated with

it, and therefore makes the Alternating Direction Method of Multipliers (see

section 2.4) an efficient means of solution. Proceeding accordingly, minimizing the

Lagrangian may be broken into two easily solvable subproblems in a similar

manner as was done to equation (4.5). One subproblem holds S fixed and

minimizes LA(L, S, Y ) with respect to L, then holds the new L fixed and

minimizes LA(L, S, Y ) with respect to S. The solution to the subproblem

involving minimization of the nuclear norm is given by Dτ . Since the other

subproblem is essentially the `1 vector norm, the same projection operator that

solved (4.2) will solve the subproblem involving the ‖S‖1 term.

Lk+1 = argmin
L

LA(Lk, Sk, Yk) = Dτ (X − Sk + µ−1Yk)

Sk+1 = argmin
S

LA(Lk+1, Sk, Yk) = Sλµ−1(X − Lk+1 + µ−1Yk)

Yk+1 = Yk + µ(X − Lk+1 − Sk+1)

(5.11)

In this case the projection operator was rewritten as Sλµ−1 = max(0, xi − λµ−1).

In the application to video analysis, columns of the data matrix represent frames,

the low rank matrix represents the background, and the perturbation matrix

represents any motion between frames.

Results

The Low-Rank Sparse algorithm outlined in (5.11) was applied to a false

color RGB video, created by projecting each frame onto the first three principle
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components. The movie generated for these results was done in RGB to

demonstrate different aspects of the decomposition. Movies with more layers were

processed and the results are similar to what is presented here. In early frames,

the low rank approximation is able to capture the background very well. After the

plume is released, the sparse component captures the movement of the plume

through each channel of the video sequence. Applying this method to the original

(non-reduced) video sequence results in the background matrix approximating

stationary signals and the sparse component showing moving signals and noise.

Each frame contained 128× 320 pixels, with 3 layers. By concatenating the frames

into long vectors in R128·320·3, a movie of 40 frames was made into the

128 · 320 · 3× 40 matrix M . The low rank approximation L had rank 12.

Motion was captured on each RGB layer in the sparse component S. The

red component of the resulting decomposition may be seen in figures 6 and 7. The

first half of the video sequence is shown in figure 6. The frames of the low rank

decomposition are virtually identical, and noise may be seen in the sparse

component. The second half of the video sequence, seen in figure 7, shows the

release of the plume. Its motion is captured throughout the sparse component,

however some anomalies appear in the low rank component towards the end of the

sequence in areas where the plume has traveled. The green and blue components

of the resulting decomposition may be seen in figures 8, 9, 10, and 11, respectively.

The final resulting RGB movies may be seen in figures 12, and 13.
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FIGURE 6. Frames 1-20 of the red component of the decomposed video sequence.
The left hand side is the low rank approximation, and the right hand side is the
sparse component.
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FIGURE 7. Frames 21-40 of the red component of the decomposed video
sequence. Notice the motion of the plume captured in the sparse component of the
right hand side.
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FIGURE 8. The first half of the green component of the resulting decomposed
video sequence.
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FIGURE 9. Frames 21-40 of the green component of the decomposed video
sequence.
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FIGURE 10. Frames 21-40 of the blue component of the decomposed video
sequence.
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FIGURE 11. Frames 21-40 of the green component of the decomposed video
sequence.
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FIGURE 12. Frames 1-20 of the red, green, and blue decompositions combined.
Lighting fluctuations and noise may be seen in the sparse component.
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FIGURE 13. Frames 21-40 of the red, green, and blue decompositions combined.
Notice the diffuse, but noticeable presence of the plume in the low rank component.
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CHAPTER 6

CONCLUSION

Advances in fast, efficient algorithms for solving constrained optimization

problems have made contributions to many diverse fields. This work has examined

methods for solving certain types of constrained problems from hyperspectral

image and video analysis. Both of the solution methods considered here

incorporated convexity into the original problem in some way. By doing so the

problem became easier to solve and certain desirable properties were included in

the solution. This technique of convexification has been used to derive efficient

solutions to many problems that were previously thought to difficult.

The results presented here show that it is possible to detect and isolate

chemical releases from hyperspectral video sequences. However, a better

understanding of the diffusion processes associated with the chemicals in the

atmosphere is needed for a practical real-time detection and tracking system for

toxic chemical releases. In order to provide the accuracy and reliability required

for such a system in the real world, many more physical and computational

experiments would be needed.

The applications shown here are from hyperspectral video analysis, but

these methods have applications in many different fields. Low-rank sparse matrix

decompositions have applications in document classification and many different

medical imaging problems. An amazing aspect of image processing as a field, is

the ability of an algorithm, or improvement to an existing algorithm to affect a

variety of different fields. Even though the problem of detecting chemical releases
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seems quite difficult now, advances in computing ability and algorithms may

provide solutions sooner than we think.
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APPENDICES
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APPENDIX A
MATLAB CODES
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1 % L1 Unmixing
2 %
3 % This code solves the minimization probem:
4 %
5 % minimize mu * | | u | | 1 + 0.5 * | | Au − f | |ˆ2
6 % subject to u ≥ 0
7 %
8 % where | | . | | denotes the l2 norm
9 % | | . | | 1 denotes the l1 norm

10 %
11 % Inputs: Pixels − N x M matrix where columns are pixels,
12 % each column will become the 'f' in the
13 % above fuctional
14 % Dictionary − N x K matrix where columns are signals
15 % mu − Weights the sparse term
16 % lambda − Weights the fitting term
17 % epz − Stopping criterion
18 %
19 % Outputs: Pics − K x M matrix
20 %
21 %
22 % Torin Gerhart
23 % 9/12/2012
24 function [ Pics ] = L1Unmixing(Pixels, Dictionary, mu, lambda, epz)
25

26 if nargin < 5
27 epz = 1e−6;
28 end
29

30 [ R C ] = size(Pixels);
31 [ R N ] = size(Dictionary);
32

33 Pics = zeros(N, C);
34

35 invrs = (lambda * (Dictionary' * Dictionary)) + eye(N);
36

37 ln = lambda * mu * ones(N, 1);
38

39 for i=1:C
40

41 vk = zeros(N, 1);
42 bk = zeros(N, 1);
43

44 f = Pixels(:,i);
45

46 error = epz + 1;
47

48 while ( error > epz )
49

50 vo = vk;
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51

52 dk = max(vk − bk, 0);
53 vk = invrs \ (max(dk,0) + bk + (lambda * ...

(Dictionary' * f)) − ln);
54 bk = bk + max(dk,0) − vk;
55

56 vk = max(vk, 0);
57

58 error = (vo − vk)' * (vo − vk);
59 end
60

61 Pics(:,i) = vk;
62

63 end
64

65 end

1 % Low Rank + Sparse Decomposition (Robust PCA)
2 %
3 % This code solves the Principal Component
4 % Pursuit problem by means of alternating directions.
5 % This solves the minimization problem:
6 %
7 % minimize | | L | | * + lambda | | S | | 1
8 % subject to M = L + S
9 %

10 % where | | . | | * denotes the nuclear norm (sum of singular ...
values), and

11 % | | . | | 1 denotes the l 1 norm (of the matrix as a long ...
vector)

12 %
13 % Inputs: M − data matrix with columns as data points
14 % err − error (optional, default is 10ˆ−7)
15 %
16 % Outputs: L − low rank matrix
17 % S − sparse matrix
18 %
19 % Torin Gerhart
20 % 9/12/2012
21 function [ L S ] = LowRankSparse(M, err)
22

23 [ n1 n2 ] = size(M);
24

25 % Initialize variables
26 S = zeros(n1, n2);
27 L = zeros(n1, n2);
28 Y = zeros(n1, n2);
29

30 % Calculate the parameters
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31 mu = n1 * n2 / ( 4 * sum(abs(M(:))));
32 lambda = 1 / sqrt(max(n1, n2));
33 error = 1;
34

35 if nargin == 2
36 stop = err * norm(M, 'fro');
37 else
38 stop = 1e−7 * norm(M, 'fro');
39 end
40

41 while error > stop
42

43 L = SVT(M − S + (1/mu)*Y, 1/mu);
44

45 X = M − L + (1/mu)*Y;
46 S = sign(X) .* max(abs(X) − (lambda / mu), 0);
47

48 Y = Y + mu * (M − L − S);
49

50 error = norm(M − L − S, 'fro');
51 end
52 end
53

54 % Singular Value Thresholding
55 function d nu = SVT ( temp nu, threshold )
56

57 if isreal(temp nu)
58

59 [ u ss v ] = svd(temp nu, 0);
60

61 id = (ss > 0);
62 ss(id) = sign(ss(id)) .* max( abs(ss(id)) − threshold, 0);
63

64 d nu = u * ss * v';
65

66 else
67

68 % REAL
69 [ u ss v ] = svd(real(temp nu), 0);
70

71 id = (ss > 0);
72 ss(id) = sign(ss(id)) .* max( abs(ss(id)) − threshold, 0);
73 tempr = u * ss * v';
74

75 % IMAGINGARY
76 [ u ss v ] = svd(imag(temp nu), 0);
77

78 id = (ss >0);
79 ss(id) = sign(ss(id)) .* max( abs(ss(id)) − threshold, 0);
80 tempi = u * ss * v';
81
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82 d nu = complex(tempr, tempi);
83 end
84

85 end
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