An Academic Journey of “Tangent”

JEN-MEI CHANG

Department of Mathematics and Statistics
California State University, Long Beach
jchang9@csulb.edu

Cypress College Math Club
April 14, 2010
Outline

1. High School
 - Geometry Class
 - Algebra Class

2. College
 - Calculus I
 - Calculus II
 - Calculus III

3. Graduate School
 - Pure Math
 - Applied Math

4. Real Life

5. Conclusions
What is a **Tangent** line geometrically?
What is the equation of a **Tangent** line and why?

\[y - 1 = \frac{1}{2} (x - 1) \quad \text{or} \quad y = \frac{1}{2} x + \frac{1}{2} \]
Algebraically

What is the equation of a **Tangent** line and why?

\[y - 1 = \frac{1}{2} (x - 1) \quad \text{or} \quad y = \frac{1}{2} x + \frac{1}{2} \]
Average R.O.C. between P and Q is given by

$$\frac{f(1 + h) - f(1)}{(1 + h) - 1}.$$

But what does

$$\frac{f(1 + h) - f(1)}{(1 + h) - 1}$$

also represent? Slope of the secant lines.
Average R.O.C. and Secant

Average R.O.C between P and Q is given by

$$\frac{f(1 + h) - f(1)}{(1 + h) - 1}.$$

But what does $\frac{f(1 + h) - f(1)}{(1 + h) - 1}$ also represent? Slope of the secant lines.
Average R.O.C. and Secant

1. **Average** R.O.C between P and Q is given by
 \[
 \frac{f(1+h) - f(1)}{(1+h) - 1}.
 \]

2. But what does \(\frac{f(1+h) - f(1)}{(1+h) - 1} \) also represent? **Slope of the secant lines**
Average R.O.C. and Secant

1. Average R.O.C between P and Q is given by
 \[\frac{f(1 + h) - f(1)}{(1 + h) - 1} \].

2. But what does \(\frac{f(1 + h) - f(1)}{(1 + h) - 1} \) also represent? Slope of the secant lines.
Instantaneous R.O.C. and Tangent

1. **Instantaneous** R.O.C at P is given by $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$.

2. So what does $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ also represent? Slope of the tangent line.
Instantaneous R.O.C. and Tangent

1. **Instantaneous** R.O.C at P is given by \[
\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}.
\]

2. So what does \[
\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}
\] also represent? Slope of the tangent line.
Instantaneous R.O.C. and Tangent

1. **Instantaneous** R.O.C. at P is given by $\lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$.

2. So what does $\lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$ also represent? Slope of the **tangent** line.
First Degree Approximation to Curves

Question: What is $\sqrt{2}$?

Geometry of Tangent Approximation:

- Exact value $= \sqrt{2}$.
- Tangent approximation gives 1.5. But is it accurate?
First Degree Approximation to Curves

Question: What is $\sqrt{2}$?

Geometry of Tangent Approximation:

- Exact value = $\sqrt{2}$.
- Tangent approximation gives 1.5. But is it accurate?
First Degree Approximation to Curves

Question: What is $\sqrt{2}$?

Geometry of Tangent Approximation:

- Exact value $= \sqrt{2}$.
- Tangent approximation gives 1.5. But is it accurate?
Taylor Approximation

English mathematician Brook Taylor came up with a way to approximate functions $f(x)$ at a point $x = a$ using polynomials:

$$f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f''(a)}{2!} (x - a)^2 + \frac{f'''(a)}{3!} (x - a)^3 + \cdots$$

The truncation

$$f(x) \approx f(a) + f'(a)(x - a)$$

is called the Tangent approximation.
Taylor Approximation

English mathematician Brook Taylor came up with a way to approximate functions $f(x)$ at a point $x = a$ using polynomials:

$$f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

The truncation

$$f(x) \approx f(a) + f'(a)(x-a)$$

is called the **Tangent** approximation.
Taylor Approximation for $\sqrt{2}$

So for $f(x) = \sqrt{x}$ with $a = 1$, we can approximate $\sqrt{2}$ using the series

$$\sqrt{x} \approx 1 + \frac{1}{2} (x - 1) - \frac{1}{8} (x - 1)^2 + \frac{1}{16} (x - 1)^3$$
$$- \frac{5}{128} (x - 1)^4 + \frac{7}{256} (x - 1)^5 - + \cdots$$

Now, for $x = 2$

$$\sqrt{2} \approx 1 + \frac{1}{2} - \frac{1}{8} + \frac{1}{16} - \frac{5}{128} + \frac{7}{256} - \frac{21}{1024} + \frac{33}{2048} - \frac{429}{32768} + - \cdots$$

According to Texas Instruments: “most of our graphing calculators use the common Taylor Series to calculate some functions. This is especially true for calculators with CAS, such as the TI-89 Titanium and TI-Nspire CAS.”
Taylor Approximation for $\sqrt{2}$

So for $f(x) = \sqrt{x}$ with $a = 1$, we can approximate $\sqrt{2}$ using the series

$$\sqrt{x} \approx 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1)^2 + \frac{1}{16}(x - 1)^3 - \frac{5}{128}(x - 1)^4 + \frac{7}{256}(x - 1)^5 - + \cdots$$

Now, for $x = 2$

$$\sqrt{2} \approx 1 + \frac{1}{2} - \frac{1}{8} + \frac{1}{16} - \frac{5}{128} + \frac{7}{256} - \frac{21}{1024} + \frac{33}{2048} - \frac{429}{32768} + - \cdots$$

According to Texas Instruments: “most of our graphing calculators use the common Taylor Series to calculate some functions. This is especially true for calculators with CAS, such as the TI-89 Titanium and TI-Nspire CAS.”
Taylor Approximation for $\sqrt{2}$

So for $f(x) = \sqrt{x}$ with $a = 1$, we can approximate $\sqrt{2}$ using the series

$$\sqrt{x} \approx 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1)^2 + \frac{1}{16}(x - 1)^3$$

$$- \frac{5}{128}(x - 1)^4 + \frac{7}{256}(x - 1)^5 - + \cdots$$

Now, for $x = 2$

$$\sqrt{2} \approx 1 + \frac{1}{2} - \frac{1}{8} + \frac{1}{16} - \frac{5}{128} + \frac{7}{256} - \frac{21}{1024} + \frac{33}{2048} - \frac{429}{32768} + - \cdots$$

According to Texas Instruments: “*most of our graphing calculators use the common Taylor Series to calculate some functions. This is especially true for calculators with CAS, such as the TI-89 Titanium and TI-Nspire CAS.*”
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

$\sqrt{2.000000}$
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[
\sqrt{2.000000} = 1.000000
\]
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[
\begin{array}{c}
\sqrt{2.000000} \\
- 1 \\
\hline
1 \\
\end{array}
\]
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

![Diagram showing the calculation of $\sqrt{2}$ by hand.](image)
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[\sqrt{2.000000} \]

\[\begin{array}{c|c}
1 & \square \\
2 & \square \\
\hline
1 & 00 \\
\hline
\end{array} \]

\[\times \]

\[< 100 \]
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[
\begin{array}{c}
\sqrt{2.000000} \\
1 \\
1.4 \\
2.4 \\
\times 4 \\
\hline
96 \\
400 \\
\hline
96 \\
\text{silently}
\end{array}
\]
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[
\begin{array}{c}
\sqrt{2.000000} \\
1 \\
1.41 \\
2.4 \\
28.1 \\
28.1 \\
1 \\
\end{array}
\]
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[
\begin{array}{c}
\sqrt{2.000000} \\
- 1 \\
\downarrow \\
1 00 \\
- 96 \\
\downarrow \\
400 \\
- 281 \\
\downarrow \\
119 00
\end{array}
\quad \begin{array}{c}
1.41 \\
\downarrow \\
2 4 \\
\downarrow \\
281 \\
\downarrow \\
282
\end{array}
\]
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[\sqrt{2.000000} = 1.414 \]

\[
\begin{array}{c|c|c}
 \\
 1 & 1 & 1.414 \\
 1 & 00 & 2.4 \\
 96 & 4 & 281 \\
 400 & + & 2824 \\
 281 & & 2828 \\
 11900 & & \\
 11296 & & \\
\end{array}
\]
Calculate $\sqrt{2}$ By Hand

If you wonder how people calculated square roots in the stone ages (time before scientific calculators, slide rules, and square root tables):

\[
\begin{array}{c|c}
\sqrt{2.000000} & 1.414\ldots \\
-1 & 2.4 \\
100 & 4 \\
96 & 281 \\
400 & 281 \\
281 & 2824 \\
11900 & 2828 \\
11296 & \\
\end{array}
\]
Tangent Plane

The idea of Tangent approximations can be generalized in higher dimensions. For example, a 2-dimensional Tangent plane is a linear approximation to a 3-dimensional surface.

i.e., points on the surface can be approximated by points on the plane.
The idea of **Tangent** approximations can be generalized in higher dimensions. For example, a 2-dimensional **Tangent plane** is a linear approximation to a 3-dimensional surface. i.e., points on the surface can be approximated by points on the plane.
The idea of **Tangent** approximations can be generalized in higher dimensions. For example, a 2-dimensional **Tangent plane** is a linear approximation to a 3-dimensional surface.

i.e., points on the surface can be approximated by points on the plane.
The idea of **Tangent** approximations can be generalized in higher dimensions. For example, a 2-dimensional **Tangent plane** is a linear approximation to a 3-dimensional surface. i.e., points on the surface can be approximated by points on the plane.
Similarly, we can use a **Tangent space** to approximate a high-dimensional surface (e.g., a manifold).

How do we apply this idea to a realistic problem?
Similarly, we can use a **Tangent space** to approximate a high-dimensional surface (e.g., a manifold).

How do we apply this idea to a realistic problem?
Handwritten Digit Classification

Santa thought to himself, “only if these mails can go to the right place according to their zip code”.
Handwritten Digit Classification

Problem. (Human) handwritten digits are sometimes very hard to recognize, even by human operators.

Importance. Accurate identification of the digits ensures a reliable delivery system.

Beneficiaries. Postal services (mail sorting), seaports (cargo registration), etc.

Even Santa Clause can benefit from an efficient digit classification algorithm.
Problem Definition

How do we tell a bunch of 4’s from a bunch of 9’s?
Problem Definition

Or, how do we tell whether a new digit is a 4 or a 9?
Digit Manifolds

Imagine a high-D surface (red curve) where all 4’s live on and a high-D surface (blue curve) where all 9’s live on.
Create a **Tangent Space** of the 4’s at F and create a **Tangent Space** of the 9’s at N.

![Tangent Space Diagram](image-url)
Euclidean Distance
Tangent Distance
Classification

So, is it a 4 or a 9?
Classification Result

$\sum = 9$
Face Recognition
Face Recognition

Image \rightarrow Matrix \rightarrow Vector
Face Recognition
So, what did we learn from this?

1. Mathematics is cool and mathematicians rock.
2. Mathematics is the foundation in answering most scientific questions and we can not live without it.

The bottom line is that I hope I have helped answering the age-old question,

"Why I have to learn the math I learn in high school"

NOW, GO PICK A MATHEMATICAL CONCEPT AND SEE WHERE IT LEADS YOU ...
So, what did we learn from this?

1. **Mathematics is cool and mathematicians rock.**

2. Mathematics is the foundation in answering most scientific questions and we can not live without it.

The bottom line is that I hope I have helped answering the age-old question,

"Why I have to learn the math I learn in high school"

NOW, GO PICK A MATHEMATICAL CONCEPT AND SEE WHERE IT LEADS YOU ...
So, what did we learn from this?

1. Mathematics is cool and mathematicians rock.
2. Mathematics is the foundation in answering most scientific questions and we can not live without it.

The bottom line is that I hope I have helped answering the age-old question,

"Why I have to learn the math I learn in high school”

NOW, GO PICK A MATHEMATICAL CONCEPT AND SEE WHERE IT LEADS YOU ...
So, what did we learn from this?

1. Mathematics is cool and mathematicians rock.
2. Mathematics is the foundation in answering most scientific questions and we can not live without it.

The bottom line is that I hope I have helped answering the age-old question,

"Why I have to learn the math I learn in high school"

NOW, GO PICK A MATHEMATICAL CONCEPT AND SEE WHERE IT LEADS YOU ...
So, what did we learn from this?

1. Mathematics is cool and mathematicians rock.

2. Mathematics is the foundation in answering most scientific questions and we can not live without it.

The bottom line is that I hope I have helped answering the age-old question,

“Why I have to learn the math I learn in high school”

NOW, GO PICK A MATHEMATICAL CONCEPT AND SEE WHERE IT LEADS YOU ...