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Introduction

It wasn’t so long ago when mathematics students would diligently transcribe the words of
wisdom of their professors without a hint of doubt. The popular phrase “just do it” has
become an easy way out when things are not so easy to explain.

In many the Asian countries, mathematics students are not encouraged to ask questions. In
fact, questions are considered impolite and a waste of time as they interrupt the class flow
and decrease the amount of materials to be covered. Growing up in this culture, I was
never curious enough to find out what powerful things mathematics could do in the real
world. I never had an intrinsic motivation to learn mathematics, which I believe
contributed to my mediocre performance on math tests. Little did I know that a single
mathematics course later in life would alter my point of view so drastically and shape my
teaching philosophy in such a profound way.

To me, the teaching and learning mathematics go hand-in-hand and always happen
simultaneously. A teacher is not a walking library, which passively delivers information
upon request; instead, a teacher plays the vital role of encouraging innovative thinking as
well as stimulating curiosity. This can be done, for example, through the use of open
discussions and hands-on projects.

What I like to do often times in the classrooms is to use various real-world problems to
motivate the learning of certain concepts to get students excited about what these ideas
could do before diving into the formality. And having a research area that is somewhat
industrial-oriented, I have the privilege of bringing in a lot of interesting applications for
this purpose.

For example: (Items 2 and 3 are not necessarily for high school.)

1) The idea of image sharpening can be used to motivate the learning of matrix
multiplications.

2) The ideas behind Google’s PageRank can be used to provide a practical use of
eigenvalues and eigenvectors.

3) The ideas of image compression can be used to motivate the learning of matrix
factoring such as singular value decomposition.



4) And the idea of handwritten digit classification can be used to motivate the study
of tangent approximation.
In particular, I will use the rest of this article to provide a short illustration how one may
use a real-world problem to motivate the learning of “tangent” approximation. [ will do so
by uncovering its uses at different grade levels as a way to increase students’ interest in
learning the concept.

The take-home message for students as well as teachers is to challenge oneself in finding
something that intrigues one in mathematics and see how far one can go with that idea.
Hopefully, by doing so, students learn to discover more wonderful ideas in mathematics on
their own.

An Illustrative Example

Some students first see the formal concept of tangent (or tangent line) in a high school
geometry class where the tangent line (or simply the tangent) to a curve is the straight line
that intersects the curve at one and only one point, (See Figure 1.)

Figure 1. An illustration of tangent line to a curve at the point of tangency.

Other students first see the formal concept of tangent in a more algebraic setting where
they are routinely being asked to find the equation of tangent lines without really seeing
the purpose of doing so. As this point, it is important to convey the notion of tangent
approximation through various non-polynomial functions, such asy = +/x as shown in
Figure 2(a).

By obtaining the equation of the tangent line at x = 1, which is a first degree polynomial
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equationy = f(x) = 5% t -, one can use it to approximate values such as /2 that are

otherwise impractical to calculate by hand. With this, /7 ~ 1(7_)+l —1.5 is shown in Figure
2 2

2(b). Although the approximation is somewhat crude, considering that the actual value of
V2 is about 1.414, it more or less provides a good starting point for further investigation.
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In order to decrease the error of such polynomial estimation, one may
consider using higher-order polynomials such as quadratic or cubic
polynomials, therefore arriving at the notion of Taylor approximation.

At the point of approximation, x = a, we have...
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Notice that the truncation f(x) = f(a) + f'(a)(x-a) resembles the equation of the tangent

line discussed previously. Hence, for f(x) = +/x with a = 1, we can approximate v/x using
the series
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One may choose to take as many or as few terms as needed depending on the desired
accuracy. In fact, most of Texas Instruments (TI) calculators such as TI-89 Titanium and
TI-Nspire use this series to calculate non-polynomial function values such as this one.

The idea of tangent approximations can be generalized in higher dimensions. A function in
three variables whose graph, z = f(x, y), is a surface in 3-dimensional space. The notion of
tangent is no longer a line in this setting. Instead, there are infinitely many lines that are
tangent to a point (x,y) = (a, b) on the surface, as depicted in Figure 3(a).
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Figure 3. (a) An illustration of a tangent plane to a function at a
given point. (b) Tangent plane can be used as a linear approximation to a
function/surface for points near the point of tangency.

Together, these lines form a tangent plane Ax + By + Cz = D to the surface at(a, b). The
tangent plane gives a measure of linear approximation to the function and can be used to
calculate function values for points relatively near (a, b) as shown in Figure 3(b).

As expected, the absolute error of approximation at (a,b),|f(a,b)— %M) , increases

as we move away from the point of tangency. As long as we stay relatively local, the tangent
plane captures the variation afforded by the function and provides a convenient way to
predict behaviors of the neighboring points.

Although our intuition fails us beyond three dimensions, the idea of linear approximation
can be similarly extended to as many dimensions as we wish. In the high-dimensional
analog, a surface is called a manifold if it looks like a plane locally along with a way to move
from one patch to the next. A manifold is differentiable if we can do calculus on it. The
“tangent” is formally called tangent space in higher dimensions.

The most common differentiable manifolds we often encounter are the spheres, $%: x? +
y? =r? - any small portion on the sphere looks like a plane and the latitudes and
longitudes provide a recipe to relate points and give position.

Now, let us consider using the method of linear approximation to a real-world problem.
o Have you ever thought about how an ATM recognizes the dollar amount

on a handwritten check?
o What about how the postal office sorts mails according to zip codes?



These two problems are considered under the umbrella of handwritten digit
recognition/classification. You must wonder how these problems would have anything to
do with manifold and tangent space. Before we proceed, a little background in the
mathematics of digital images is in order.

A digital image of size M XN can be represented using a matrix of size M XN where each cell
of the matrix contains a value between 2° and 2* that gives different shades of gray and k is
the number of bits a computer affords. For example, an 8-bit (k = 8) machine has 256 (0 -
255) shades of gray where a value of 0 means the pixel is completely dark while a value of
255 means the pixel is completely white.

Figure 4 shows how a simple black-and-white image is represented by a corresponding
matrix of the respective size.
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Figure 4. An illustration how an 8-bit image is represented by a matrix.
In this example, black pixels are represented numerically by 0 while
the white pixels are represented by 1.

Furthermore, we can concatenate an image matrix by columns so it can be viewed as a
vector in MN-dimensional space. Precisely, the second column of the image matrix is
moved underneath the first, the third column is then moved below the previous two, etc., as
shown in Figure 5. This way, a 6x7 image corresponds to a vector in R*?, a 42-dimensional
space.
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Figure 5. A matrix of size MXN can be viewed as a vector in

MN-dimensional space after column concatenation. In particular,
M = 7 and N = 6 in this figure.

Thus, each monochrome digital handwritten image, in Figure 6, is a member of R4, where d
represents the resolution of the images. Notice that d = 322 = 1024 in Figure 6.
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Figure 6. Example digits. Each digital image is of 32Xx32, therefore
corresponding to a vector in R10%4,

The problem of handwritten digit classification is the art of classifying an unseen digit
using knowledge gained from a collection of labeled one, i.e., ones that we know the
identity of. For simplicity, say we want to identify the unknown digit in Figure 7(a) given
the known digits in Figure 7(b).
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Figure 7. (a) A probe digit. ~ (b) Gallery digits.

The goal is to somehow learn the characteristics exhibited in the gallery patterns that are
class-specific and can be used easily for assigning membership of the probe.

Geometrically, if we imagine all the 4's (from the training) live on some underlying
manifold and all the 9's (from the training) live on another high-dimensional manifold, as
depicted in Figure 8(a), then the straight-line distances between the probe and two random
points in the gallery are shown as the dashed lines in Figure 8(a).
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Figure 8. The two curves passing through the digits are the digit
manifolds from the training digits. (a) The Euclidean (straight-line)
distance between the probe and the gallery digits are depicted as the
dashed line. (b) The tangent distances between the selected gallery
digits and the probe.



This straight-line distance is typically known as the Euclidean distance. Based on this
distance measure, the probe would be labeled as the digit 4 since its distance to the
selected digit 4 is less than the distance to the selected digit 9.

On the other hand, we can create a tangent space at each of the selected gallery patterns
and calculate the tangent distance between the probe and these gallery points. As
illustrated in Figure 8(b), the tangent distance between the probe and the selected digit 4 is
the shortest path between the probe and all the points on the tangent space. Measuring
distances this way, the probe would be classified as digit 9, which turns out to be the
correct label. For a more detailed discussion, readers are referred to [1].

It is not hard to see that comparing a point to a space of points would work better than
comparing it to just a single point since a space of points exhibit much more variation than
a single point. This is why the tangent distance works better than the Euclidean distance
for this problem.

Concluding Remarks

An important point to make here is that the given example is not to impress you with all the
fancy things tangent space/distance can do; rather, the idea of taking a simple concept like
the “tangent approximation” and seeing how far it can go is what we are really after.

In general, students tend to learn mathematics better when there is a concrete application
to relate abstract concepts to. It is easier to engage students in the problem-solving
processing when they are motivated by real-world problems that are particularly personal
to them.

You might think that the ability to come up with real-world applications is somewhat
limited to people who have backgrounds in industrial training. In fact, if we would just
pause and try to think outside of the box for a while before we sit down and plan the day's
lesson, there are numerous other ways to motivate the learning of mathematics that work
for our individualized teaching styles. I challenge you to find something that works for you.
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