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2. A preliminary form of this argument was announced in a conference organized by the
University of Crete in 2002 [11].

3. The line-segment AF called symmedian because the angle FAB is equal to angle MAC,;
see Figure 4. For more details on this term, see [2, Chap. 7]. For a proof of the equality of
these angles, see [8, pp. 369-370].

4. In Figure 4, we observe that the points Z1, Z and Z2 are the reflections of F in the sides
Al IK and AK of the AIK triangle, respectively. The three feet N, S and O lie on the line
NO which is called the Simson line of the point F (see also [2, Chap. 5]).
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article, we propose the use of thought-provoking questions in lesson designs
to allow two-way communications between instructors and students as well
as the use of simple applications to motivate learning and keep students
engaged. An illustrative lesson for learning matrix multiplication and a
lesson for understanding the practical meaning of orthogonal projection
that are motivated by applications in image processing are presented
along with a ready-to-use MATLAB code for completeness.

Keywords: linear algebra; inquiry-based learning; image processing;

applications; college-level; feature extraction; matrix multiplications;
orthogonal projection

1. Introduction

Linear algebra was not treated as a standard mathematical subject until the 1930s [1].
When Van Der Waerden [2] and Birkhoff and MacLane [3] published their texts on
modern algebra which included chapters on linear algebra, educators started to teach
linear algebra with an axiomatic approach. It is not until the 1950s and 1960s that
linear algebra became a separate and standard course in the college mathematics
curriculum in the United States.

Although educators have successfully used the standard linear algebra course as a
transition to abstract mathematics and introduction to proof, much of this mentality
was under scrutiny as computers became widely available. Those complicated or
tedious tasks in linear algebra, such as solving a linear system of 100 equations with
100 unknowns, can now be easily accomplished by computers. It is, indeed, this
transition to the increasing reliance of technology that drove the linear algebra
reform in the 1990s.

Over time, we have witnessed a gradual shift from the axiomatic treatment of
linear algebra topics into a matrix-oriented approach [4]. This is again, heavily
influenced by the development of array-like representation of computer memories as
well as students’ need for concreteness. Manipulations of matrices not only allow
students to transcend from procedural learning to building effective concept images
[5] of difficult concepts but also provide venues for validating abstraction.

As linear algebra curricula in the country are being designed to adapt to a
technology- and application-driven culture, there has been a growing concern in the
past three decades about the quality of this movement (see, e.g. [6-8]). Calculus
reform in the 1980s brought the attention to educational reforms in linear algebra,
among numerous others (e.g. differential equations and geometry). The peak of the
debates occurred in the 1990s when the Linear Algebra Curriculum Study Group
(LACSG) released a set of recommendations for the first course in linear algebra.
The recommendations were formed based on research-based knowledge on how
mathematics is learned and should be taught, and what pedagogical and epistemo-
logical considerations are involved in the learning and teaching of linear algebra [9].
The recommendations were also influenced by the individual teaching experiments of
members of the LACSG and inputs from a variety of client disciplines.

While each linear algebra instructor still experiments and invents novel teaching
strategies on a daily basis, there are some fundamental issues that hinder the
potential success of the reform. For example, one of the difficulties educators
encounter in moving forward with the linear algebra reform is magnified by students’
lack of preparation of linear algebra concepts in early stages. In particular, high
school curricula in the United States generally place higher emphasis on calculus-
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related topics as a possible consequence of the advanced placement (AP) examina-
tion in calculus [10]. Furthermore, the lack of time allotted for linear algebra,
students’ background and readiness in regard to content (objects, language and ideas
that are unique to linear algebra) and student’s readiness in concept of proof all
contribute to potential student failure in their first linear algebra course in college
[1,7,10]. That being said, for the time we do get to teach concepts of linear algebra,
we need to make it count and worthwhile for the students as early as high school.

2. Rationale to inquiry-based learning

We believe that the fundamental issue to be studied is not merely how to present
materials better; rather, it is ultimately how students learn and perceive concepts in
linear algebra. We are not proposing another innovative way of teaching linear
algebra; rather, we propose to provide a systematic framework for instructors to
become better listeners, to ask thought-provoking questions, to design lessons that
facilitate conceptual understanding of key concepts in linear algebra, to help students
make mental constructions of mathematical objects and to create a lasting effect in
student learning of mathematics in general.

Traditionally, teaching is viewed as showing students clearly what we want them
to know and not necessarily knowing why students do not perform well on the things
we want them to learn. Such a view ignores the cognitive development that can be
necessary even for so simple an idea as arranging tiles into rectangular arrays [6].
Repeatedly showing students what we want them to know will not automatically
help students to translate the knowledge into their own. And simply doing a great
job of telling and showing difficult concepts, such as linear independence, may not
significantly improve student learning of such topics, either.

So, what should we do? A general consensus among mathematics education
researchers at the Park City Mathematics Institute in 1998 (PCMI) suggests that we
should become better listeners [11] — Not only should we develop a systematic approach
to tackle student misconceptions, but it is equally important, if not more, to better
understand what the misconceptions are and how they develop. Hence, we bear in mind
two fundamental elements in our lesson designs — (1) promoting conceptual
understanding of key topics through a series of well-directed questioning to really
probe student thinking and detect their misconceptions and (2) adopting a
motivation-first, theory-second approach to stimulate students’ intellectual needs
for learning. Specifically, we wish to gain from this practice the source of students’
faulty ways of thinking, such as arriving at conclusions on the sole basis of
assumptions without examining their meaning and truth. Through a series of well-
posed questions, we can explore the steps students take to form a solid concept
image — a mental picture consisting of what the person knows about the concept (e.g.
similarity and difference to other concepts, examples and non-examples, etc.) [5].

3. Rationale to a practical approach

From my personal experience in learning and teaching linear algebra over the years,
I have noticed that failure in linear algebra is often associated with the fact that
students fail to see the connection of seemingly abstract topics to real-world
applications. Students may have an easier time with manipulations of matrices than
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understanding the purpose of learning vector spaces and inner product spaces;
however, they have a hard time finding uses of all abstract mathematical ideas in
daily life. I find myself constantly looking for ways to convince students what they
are learning is worthwhile and useful, and motivate difficult concepts with interesting
applications that students can relate to. I do so before a concept is formally
introduced instead of giving it after as an application. This approach helps to keep
students engaged and provides a concrete medium for students to relate to during the
lesson.

We understand that people learn new things differently. Some are visual, some
are auditory and some are both. In fact, approximately 20-30% of the school-aged
population remembers what is heard; 40% remembers well visually the things that
were seen or read; many must write or use their fingers in some manipulative way to
help them remember basic facts; others cannot internally convert information or
skills unless they use them in real-life activities. We believe that this aspect should not
be overlooked in a well-rounded lesson design. It might not be possible to design
lessons that incorporate all three aspects at once all the time due to constraints such
as the location of the classroom and availability of the hardware and software.
In general, instructors should strive to find what works best for their teaching style in
consideration of the resources available.

For the remainder of this article, we present two example lessons that supply a set
of discussion topics and incorporate simple image processing applications to offer
a practical purpose to learning matrix multiplication and orthogonal projection.
Instructors may use this guide to accomplish two things simultaneously — (1) by
soliciting answers from students, faculty listeners have a chance to correct students’
faulty ways of thinking and (2) by posing questions appropriately, students are
expected to be actively involved in the problem-solving process instead of passively
receiving information from instructors.

4. Matrix multiplication lesson

In this example, we give an example lesson on matrix multiplication through a
practical use of feature extraction. The lesson presented here requires minimally an
overhead projector and can be easily transformed into a computer lab activity if
desired. Instructors who have access to a smart classroom might find it even more
beneficial to illustrate the example with a computer and LCD projector for better
resolution.

Objectives:

(1) Understand the physical meaning of matrix multiplication.
(2) Understand when a matrix multiplication makes sense and when it does not.
(3) Matrix multiplication is not commutative.

A digital image of size M x N can be represented using a matrix of size M x N
where each cell of the matrix contains a value between 2° and 2* that gives different
shades of grey and k is the number of bits a computer affords. For example, an 8-bit
(k =8) machine has 256 (0-255) shades of grey where a value of 0 means the pixel is
completely dark while a value of 255 means the pixel is completely white. Figure 1
shows how a simple black-and-white image is represented by a corresponding matrix
of the respective size.



Downloaded by [Jen-Mei Chang] at 09:13 19 July 2011

International Journal of Mathematical Education in Science and Technology 249

jiry

o ks Y ik

1
1
1
1
1
1

e [

Figure 1. An illustration how an 8-bit image is represented by a matrix. In this example, black
pixels are represented numerically by 0 while the white pixels are represented by 1.

Discussion:

(1) Discuss with students various ways to store information. In
particular, get students to see that matrices can be used to represent digital
images.

e Question: What are some ways to conveniently represent a collection
of similar objects so we can recall the content easily?

e Question: How 1is a black-and-white digital image represented
mathematically?

e Question: How is a colour image represented mathematically?
(A colour image can be represented using a mixture of three matrices,
one for red, one for green and one for blue.)

Let X be the 499 x 387 matrix that represents the image shown in Figure 2. In
general, we denote the content that occupies mth column and nth row of the matrix X
by X,,.,. For simplicity, we drop the comma between the integers m and 7 if they are
both less than 10. For example, the fourth column and third row of the matrix X is
given by the value x43 or xg43.

There are multiple ways to define matrix multiplication, both geometrically and
algebraically. Geometrically, the action of AB, where A is of size m x n and B is of
size n x p, can be realized as performing linear transformation on column vectors of
B, ie. AB=A[b; b, --- b,]=[4b, 4b, --- Ab,]. Understanding the action of AB
amounts to understanding the action of Ax, where x is a column vector. This concept
may have or have not already been introduced to students in a previous lesson.
In either case, it might be beneficial to remind students that the entries in
X =[xy, X2,...,X,] serve as weights in the linear combination of

X1

X2
Ax:[a1 a - an] . = X141 + xa + - - - + Xx,a,.

X,
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Figure 2. An image of size 499 x 387 that is represented by the matrix X.

This discussion should lend itself very well to the conformability of matrix
multiplication, i.e. when it makes sense to multiply two matrices and the size of the
resulting matrix.

On the other hand, using the purely algebraic row—column rule, one obtains the
(i,pth entry of AB via the expression Y ,_, awby = ajbij+ apby + -+ + apby,.
With the column—row rule,

b

b, n
AB=[a; ay - a,]| . :Zaibi,

: p

by,
where each ab; is an outer product of size m x p.
Discussion:

(1) Discuss the numerical representation of matrices, i.e. X=(x;;), where
1 <i<M and 1 <j<N, using the language of images if needed.

e Question: Give ways to represent the entries in X so that we can
retrieve information easily.

e Question: What do you think it means to multiply two matrices?
Elaborate both geometrically and physically using any definition of
matrix multiplication.

e Question: Does it matter which order I multiply the two matrices? i.e.
is XY =YX in general? Why or why not?

e Question: Is matrix multiplication always possible for any size of
matrices? Why or why not?
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Figure 3. (a) Horizontal edges of Figure 2, accomplished by the matrix multiplication HX.
(b) Vertical edges of Figure 2, accomplished by the matrix multiplication XV

e Question: What does the matrix H have to look like so that

X11 — X21 X12 — X22 cee X1,387 — X2,387
X21 — X31 X22 — X32 s X2,387 — X3,387
HX =
X499,1 — X111 X4992 — X12 -+ X499.387 — X499,387

The matrix H such that

-1 -1 0 .
0 ~1
0 0 1 —10

H =
0 0 0 0 0 -~ 1 —1 0
o 0 0 0 0 --0 1 -1
-1 0 0 0 0 -~ 0 0 1

acts like a horizontal edge detector by taking differences between consecutive rows.
This is because in areas where the pixels in consecutive rows do not change much in
value, the components of HX are pretty close to zero (black). Conversely, whenever
there is a boundary (along a row), the values of HX will be large (white), and the
larger they are, the whiter the resulting pixel. So multiplying by H on the left might
be thought of as a very naive method for detecting boundaries along the rows in X.
See the result of HX in Figure 3(a).

Discussion:
(1) Check for student understanding on the concepts discussed so far.

e Question: What is the size of H?
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e Question: Is XH possible? Why or why not?

(2) Check to see if students really master the concepts by asking them to find
patterns on their own.

e Question: How do we compute differences along the consecutive
columns of X?
e Question: Is it possible to find a matrix V" such that

X11 — X12 X2 —X13 X1,387 — X11

X21 — X22 X22 = X23 X2,387 — X21
VX = . . . . ?

X499,1 — X499,2 X499, — X4993 X499,387 — X499,1

Why or why not? If so, find it. What is the size of V? If not, how do you
fix it?

For the similar reasons, right multiplication by

10 0 —17
-1 1 0 0
0 -1 0 0
V=
0 0 - 0 0
0 0 10
Lo 0 o -1 1

can be thought of as a method for extracting boundaries along the columns of X,

hence a vertical edge detector. Precisely,

X11 X12
X21 X2
XV =
| X499.1 X499
X11 — X12
X21 — X22
| X499,1 — X4992

X499,2 — X499,3

X1,387

X2,387

X499,387

X12 — X13

X22 — X23

X1,387 — X11

X2,387 — X21

X499,387 — X499,1

The vertical edges extracted this way is shown in Figure 3(b).
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Discussion:
(1) Provide other food for thoughts.

e Question: What is the difference between inner product and outer
product?

e Question: Can you come up with other types of edge detectors via
matrix multiplications?

e Question: What else can matrix multiplication mean? (For example,
matrix multiplication can be thought as a form of linear transforma-
tion such as rotation and scaling.)

e Question: What other operations can you do to a collection of
matrices/images? What result do they give you? Use the language of
images if needed. (For example, multiplying —1 to every pixel turns
the negatives into positives, multiplying a positive scalar to a image
matrix is equivalent to turning the light intensity up, take the average
of many face images produce an average human face.)

5. Orthogonal projection lesson

In this example lesson, we connect the geometric meaning of the orthogonal
projection of a vector onto a subspace with an image processing algorithm called the
novelty filter. The lesson is inspired by an example presented in [12].

Objectives:

(1) Be familiar with the geometrical interpretation of inner products.
(2) Understand the mathematical meaning and practical uses of the equation
y =¥+ z for high-dimensional vectors.

Students first see the concept of orthogonal projection formally in a multivariable
calculus class when they are asked to decompose a (column) vector y into two vectors
¥ and z such that § is in the direction of a given vector u and z is perpendicular to u.
As illustrated in Figure 4(a),

T
~ A . yu
=y+z and = Proj,y = ——u.
y=y y MY = e

In the high-dimensional analogue, the orthogonal projection of a vector y onto a
p-dimensional subspace, W, that is spanned by a collection of p orthogonal basis
vectors {uj, uy, ..., u,} is given by

T T T
A Yy u yw yu, A A ~
— u —1u c e —u, = e .
y uTu, 1+ uTu; 24+ upTup =Y +Yo+--+Y,
If we imagine that W=W,® W,@---@® W,, where each W;=span{u;} is the 1-D

subspace spanned by u;, then the expression ﬂ;—“’ui =y, is the orthogonal projection of

u;

y onto each W,, for i=1,2,...,p. Figure 4(lb) gives a visual presentation for p=2.

Notice that this formulation is only possible under the assumption that {u;, u,, ..., u,}
forms an orthogonal basis for W. The formula simplifies further if the basis is
orthonormal, i.e. if {u;,u,, ..., u,} is an orthonormal basis for W, then

y= (yTu])u] + (yTllz)llz +---+ (yT“p)“p'
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(a) (b)

W2=span{u2}

y

Y W,=span{u,}

Figure 4. Geometric illustrations of y=y +z. (a) ¥ is the orthogonal projection of y onto the
1-D subspace spanned by u. (b) ¥ is the orthogonal projection of y onto the 2-D subspace
spanned by u; and u,. Notice that § =§; + ¥», where §; is the orthogonal projection of y onto
the subspace spanned by w; for i=1,2.

This fact can be represented via a matrix equation
y=00"y.

where Q =[u; |uy|---|u,] and Q07 serves as a projection matrix that takes y onto W.

In a way, the vector ¥ is the part of y that can be represented by vectors in W and
the vector z, which lives in the orthogonal complement, W=, of W is the part of y that
could not be represented by vectors in W. Therefore, z measures how different the
vector y is from the subspace W. For this reason, we call z the novelty (or residual) of
y when compared to vectors from W.

Discussion:

(1) Get students to see the geometric meaning of inner product in 2-D as well as
in higher dimensions.

e Question: What is the orthogonal projection of a vector y € R* onto
another vector ueR? (Recall definitions of dot product from
Calculus if needed.)

e Question: What is the orthogonal projection of a vector y € R? onto a
subspace W spanned by linearly independent vectors u; and u, in R*?
Draw a picture to illustrate your ideas.

e Question: Generalize your idea to vectors in higher dimensions and
find the orthogonal projection of yeR" onto a p-dimensional
subspace W that is spanned by {uj,u,,...,u,}.

® Question: Why is the fact that {u;, w,,...,u,} forms an orthogonal
basis necessary in the expression of §? (Consider writing y as a linear
combination of /s, i.e. y=cju; +coux + - - - +¢,u,. What happens if
the u;’s do not form an orthogonal basis?)

Now imagine that we are given three (rasterized) 5 x 4 images, as shown in
Figure 5. Assume that the black square entries have numerical value 1 and the blank
entries have numerical value 0. These images can be realized as points in R*® after
column concatenation and serve as the basis for W, i.e. W=span{vy, v,, v3}.
Moreover, let y be a pattern that does not live in 1, as shown in Figure 6. That is,
there is no way that we can come up with y by taking linear combinations of v,’s.
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Vi V2 V3

Figure 5. Basis elements for W =span{vy, v,, v3} that are used as a gallery/training set.

Figure 6. A given pattern that is outside of W, used as a probe.

Thus, to figure out how different (or novel) y is from the space generated by
{vi,vo,v3}, the first thing we need to do is to find an orthogonal basis for
W =span{vy, v,,v3}, call it {u;,u,, u3}. Then the amount of novelty is given by the
residual vector y—§, where y = Z?Zl y;. This can be accomplished by finding
the projection of y onto each W,, denoted by §¥,, followed by a sum. The result of the
three respective orthogonal projections is shown in Figure 7. Each §; gives the part of
y that can be represented using vectors in W;. For example, W3 is sort of redundant
since elements in W, can already describe the first and last row of squares in vs,
therefore §3 is close to a zero vector. For plotting purposes, the imagesc command in
MATLAB automatically re-scales the image from its dynamic range to the entire
interval [0,255] in order to make grey values that are close to zero visible. This
explains the greyish effect in Figure 7.

We can then write y as a sum of orthogonal vectors, one in W and one in the
orthogonal complement of W, W* ie. §=§+z where §e W and ze W*. See
Figure 8 for this graphical result. Notice that the three vertical squares in the second
column of y appears to be different (novel) from the space W, hence cannot be
generated from any linear combination of vectors in W.

Discussion:

(1) Get students to see the practical use of high-dimensional orthogonal
projections.

e Question: Why can we realize these 5 x 4 images as points in R**?
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§s=

Figure 7. Orthogonal projections of y onto the subspace W =span{v,v,,v3} expressed
separately in each subspace spanned by u;, i=1,2,3.

y = y + z

Figure 8. y Written as a sum of two orthogonal vectors § and z, where § € W and ze W+,

e Question: How is y different from the space spanned by vy, v, and v3?
That is, what is the novelty (or residual) when you orthogonally
project y onto W =span{vy, v, v3}? (We are essentially looking for the
part of y that can not be represented by the v;’s, which are the three
squares down the second column.)

e Question: What does each §; mean in this context? What do y and z
mean in this context?

e Question: Can you think of a situation where performing orthogo-
nal projection can be useful? (For example, anomaly and motion
detection.)

6. MATLAB implementation

Upon loading the MATLAB program, save the following to a blank script file.
Make sure your image file can be found in the current directory or direct the code
to the appropriate path as shown in this sample. The codes provided here are not
optimized numerically and are meant to only provide convenience for the readers.
The purpose of having codes available to instructors is to allow immediate
modifications depending on instructional needs. The accessibility and portability of
programs is a major deciding factor in lesson adoption. Comments in the code
appear after %.

6.1. Matrix multiplication lesson

clear
X=imread(‘../data/myImage.jpg’);
%% comment out the line above and uncomment the line below
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%% if the image is in the current directory
% X=1imread (‘myImage. jpg’);
cd ../ %) up one level to working directory

Y =rgb2gray(X); %% convert myImage.jpg to monochrome
pattern=double(Y); %% convert myImage.jpg to double precision
[m,n] =size(pattern); % reads in the image size

%% construct horizonal edge detector
H=eye(m,m);
fori=1:m-1
H@,i+1) =-1;
end
H(m,1) =-1;
RowEdge = H*pattern; %% perform edge detection

%% construct vertical edge detector
H=eye(n,n);
for i=1:n-1
H(i+1,i) =-1;
end
H(n,1) =-1;
ColEdge =pattern*H; %% perform edge detection

%% plot the results in separate windows

figure, imagesc(pattern), colourmap(gray), axis square
title(‘Original Image’)

figure, imagesc(RowEdge), colourmap(gray), axis square
title(‘Horizontal Edges’)

figure, imagesc(ColEdge), colourmap(gray), axis square
title(‘Vertical Edges’)

6.2. Orthogonal projection lesson

%% black square =1, blank square =0
%% create gallery points

vi=[1,1,1,1,1,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1]";
v2=[1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1]°;
v3=[1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1]";

%’ probe
y:[130,0’0’1’1,1,1,1’1’170303031’1’1’1,1,1]’;

%% obtain orthogonal basis for the training subspace
V=[vl v2v3];
[Q,R] =qr(V,0);

ul=Q(:,1);
u2=0Q(:,2);
u3=0Q(:,3);

%% orthogonal projection onto each direction
y1l_hat = ((y’*ul)/(ul’+*ul)).*ul;
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y2_hat = ((y’*u2)/(u2’*u2)) .*u2;
y3_hat = ((y’*u3)/(u3’*u3)) .*u3;

y_hat =yl_hat + y2_hat + y3_hat;
%% alternatively, y_hat =Q*Q’*y;
z=y - y_hat; %% residual/novelty

%% graph the results:

I=ones(5,4);

templ =reshape(yl_hat,5,4); templ=1I - templ;
figure, imagesc(templ), colourmap(gray), axis off

temp2 =reshape(y2_hat,5,4); temp2=1I - temp2;
figure, imagesc(temp2), colourmap(gray), axis off

temp3 =reshape (y3_hat,5,4); temp3=1I - temp3;
figure, imagesc(temp3), colourmap(gray), axis off

y_hat =reshape(y_hat,5,4); y_hat=1I - y_hat;
figure, imagesc(y_hat), colourmap(gray), axis off

z=reshape(z,5,4); z=1 - z;
figure, imagesc(z), colourmap(gray), axis off

7. Summary and discussions

Teaching and learning should be thought as a two-way information exchange.
Skilfully-posed questions allow instructors to hear how students process new
information and pinpoint the source of errors while it also gives students a
chance to be actively involved in the problem-solving process. The use of
applications at the beginning of a lesson makes the concepts relevant and provides
students with a concrete grasp of abstraction. Designing lessons that incorporate
both of these two ideas may not be realistic on a daily basis; however, the
practice of thinking in this framework should be emphasized and carried over to
all areas of mathematics.
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Deal or No Deal: using games to improve student learning, retention
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Student understanding and retention can be enhanced and improved by
providing alternative learning activities and environments. Education
theory recognizes the value of incorporating alternative activities (games,
exercises and simulations) to stimulate student interest in the educational
environment, enhance transfer of knowledge and improve learned retention
with meaningful repetition. In this case study, we investigate using an
online version of the television game show, ‘Deal or No Deal’, to enhance
student understanding and retention by playing the game to learn expected
value in an introductory statistics course, and to foster development of
critical thinking skills necessary to succeed in the modern business
environment. Enhancing the thinking process of problem solving using
repetitive games should also improve a student’s ability to follow non-
mathematical problem-solving processes, which should improve the overall
ability to process information and make logical decisions. Learning and
retention are measured to evaluate the success of the students’
performance.

Keywords: statistics; expected value; experiential learning

1. Introduction

For a number of years, educators have recognized that experiential techniques and
alternative learning environments are useful in helping students better understand
and retain information. For example, according to the proponents of Activity
Theory [1-3], learning is conceptualized not just as a function of a game itself, but
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