Face Recognition Under Varying Viewing Conditions with Subspace Distance

JEN-MEI CHANG

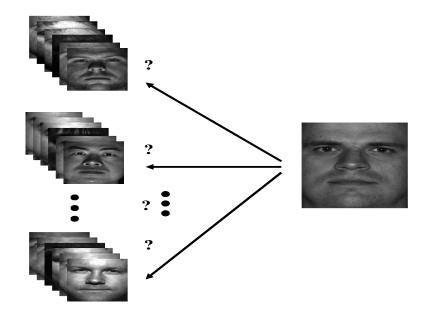
Department of Mathematics and Statistics California State University, Long Beach jchang9@csulb.edu

Int'l Conf. on Artificial Intelligence and Pattern Recognition (AIPR-09)

JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 1/26


Outline

Problem Statement

- Background
 - Illumination and Pose
 - Tangent Distance
- Experimental Results
 - Subspace Distance
 - Pose
 - Illumination

Summary and Remarks

PROBLEM STATEMENT

JULY 14, 2009 3 / 26

(4日)

Database

Yale Face Database B (YDB) (Georghiades et al., 2001).

• • • • • • • • • • • •

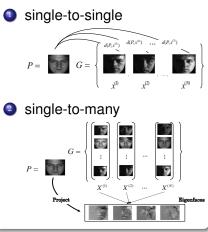
Motivation for Multi-Set Distances

Images of a single person seen under variations of illumination appear to be more difficult to recognize than images of different people (Zhao et al., 2003).

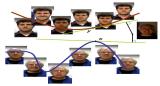
Can you tell who this is?

Subject 1

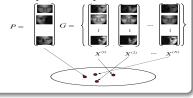
JULY 14, 2009 5 / 26


Motivation for Multi-Set Distances

Can you tell them apart now?

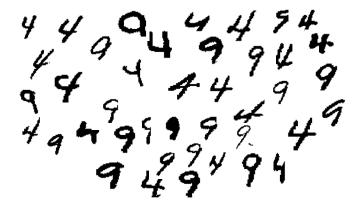

Architectures

Traditionally



Currently

subspace-to-subspace



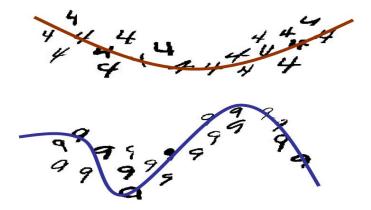
many-to-many

Handwritten Digit Classification

The first use of tangent distance in a pattern recognition problem was for the handwritten digit classification (Simard et al., 2001).

くロト (同) (ヨト (ヨ)

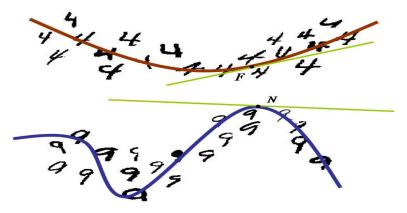
Handwritten Digit Classification


How do we tell whether a new digit is a 4 or a 9?

9999999 9 9.9

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Digit Manifolds

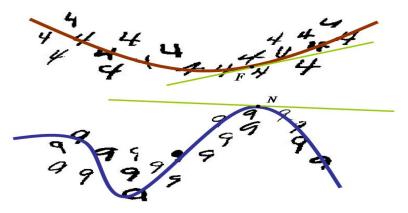

Imagine a high-D surface (red curve) where all 4's live on and a high-D surface (blue curve) where all 9's live on.

▶ < ∃ >

Tangent Spaces - Training

Create a Tangent Space of the 4's at F and create a Tangent Space of the 9's at N.

Dimensions of the tangent spaces depend on the degree of variations.


JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 11 / 26

Tangent Spaces - Training

Create a Tangent Space of the 4's at F and create a Tangent Space of the 9's at N.

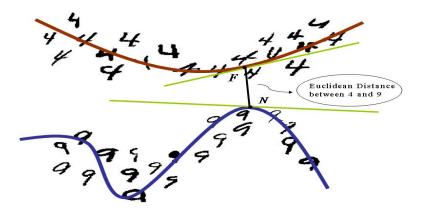

Dimensions of the tangent spaces depend on the degree of variations.

JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 11 / 26

Euclidean Distance



Euclidean distance between each pair of 4 and 9 varies drastically.

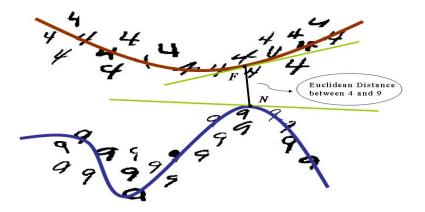
Calculation is time-consuming.

< ロ > < 同 > < 三 > < 三 >

Euclidean Distance

Euclidean distance between each pair of 4 and 9 varies drastically.

Calculation is time-consuming.


JEN-MEI CHANG (CSU, LONG BEACH)

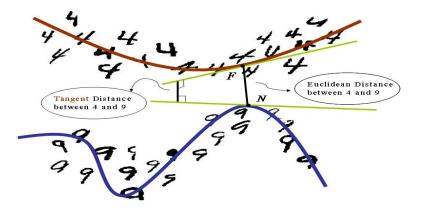
SUBSPACE DISTANCE

JULY 14, 2009 12 / 26

< □ > < □ > < □ > < □ >

Euclidean Distance

Euclidean distance between each pair of 4 and 9 varies drastically.


• Calculation is time-consuming.

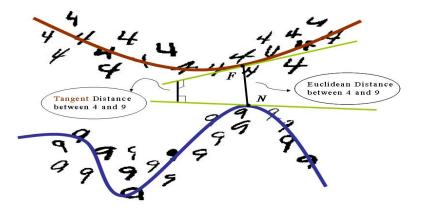
JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 12 / 26

Tangent Distance

• Tangent distance captures the geometry.


Calculation is efficient.

JEN-MEI CHANG (CSU, LONG BEACH)

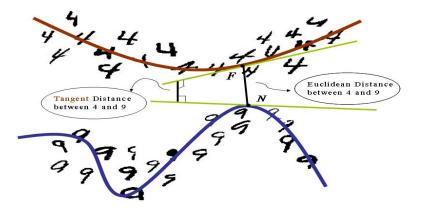
SUBSPACE DISTANCE

JULY 14, 2009 13 / 26

Tangent Distance

Tangent distance captures the geometry.

Calculation is efficient.


JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

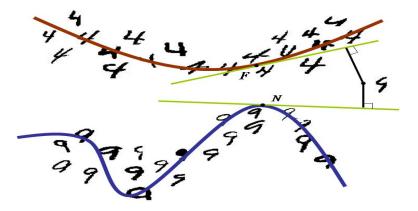
JULY 14, 2009 13 / 26

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tangent Distance

- Tangent distance captures the geometry.
- Calculation is efficient.

JEN-MEI CHANG (CSU, LONG BEACH)


SUBSPACE DISTANCE

JULY 14, 2009 13 / 26

< ロ > < 同 > < 三 > < 三 >

Classification

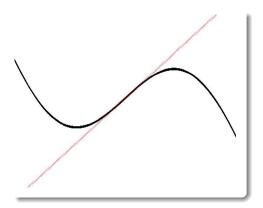
So, is it a 4 or a 9?

3

Classification Result

4 49999999999 99999999999

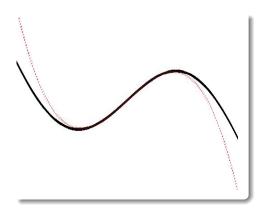
JEN-MEI CHANG (CSU, LONG BEACH)


SUBSPACE DISTANCE

JULY 14, 2009 15 / 26

<ロ> <四> <四> <四> <三</p>

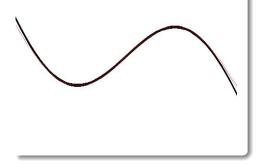
Subspace Distance


Instead of approximate the manifold with a *linear* subspace, use higher dimensional ones.

We, hence, call the distance between these higher dimensional subspaces the *subspace distances*.

Subspace Distance

Instead of approximate the manifold with a *linear* subspace, use higher dimensional ones.


We, hence, call the distance between these higher dimensional subspaces the *subspace distances*.

SUBSPACE DISTANCE

JULY 14, 2009 16 / 26

Subspace Distance

Instead of approximate the manifold with a *linear* subspace, use higher dimensional ones.

We, hence, call the distance between these higher dimensional subspaces the *subspace distances*.

Experimental Design

- YDB Pose Data, X_P. 90 images of 10 individuals each seen under a fixed point light source with 9 distinct pose conditions.
- **YDB Illumination Data**, *X_I*. 640 images of 10 individuals each seen under frontal pose with 64 distinct lighting conditions.
- Increase pose data by including mirror images to form \hat{X}_P .
- Adopt a leave-one-out cross-validation routine for error estimates.
- Error reports for the following two parameters:
 - Subspace dimension.
 - 2 Cardinality of training images.

X_P : Subspace Dimension

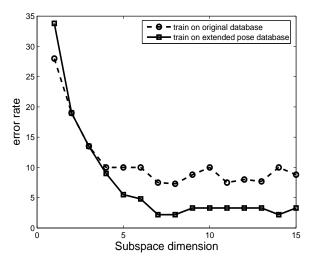


Figure: Error rate versus subspace dimension when the classifier is trained on X_P and \hat{X}_P , respectively.

JEN-MEI CHANG (CSU, LONG BEACH)

JULY 14, 2009 18 / 26

POSE

X_P : 7D Subspace Distance

(a) Images missed when trained on X_P

(b) Images missed when trained on \hat{X}_P

JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 19 / 26

- E B

X_P : Cardinality of Training Set

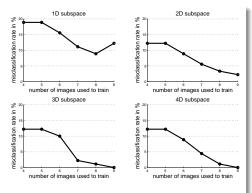


Figure: Error rate versus cardinality of training set on X_P .

	X_P	Âγ
2	81.1	81.1
6	90	95.6
7	92.2	97.8
8	91.1	97.8

Table: A sample of recognition rate versus subspace dim. on X_P and \hat{X}_P .

X_I : Subspace Dimension

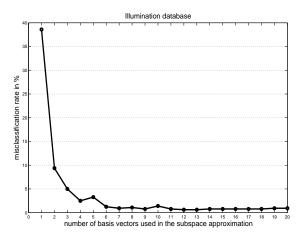


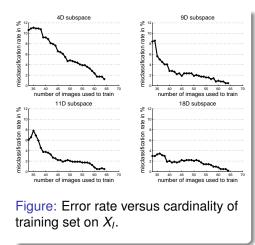
Figure: Error rate versus subspace dimension when the classifier is trained on X_{l} .

JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 21 / 26

X_I: 12D Subspace Distance


Figure: Images missed when trained on X_l .

JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 22 / 26

X_l: Cardinality of Training Set

	X_l
2	90.63
6	98.75
9	99.22
12	99.38

Table: A sample of recognition rate versus subspace dim. on X_l .

JEN-MEI CHANG (CSU, LONG BEACH)

SUBSPACE DISTANCE

JULY 14, 2009 23 / 26

Summary

- Tangent space/distance \Rightarrow subspace distance.
- This model is a feature-invariance one that can be extended to any type of variation.
- The model will benefit from having ample training samples.

Open Areas and Future Directions

- Curvature information.
- Combination of illumination and pose variations.
- Other types of set-to-set classification paradigm.

References

(Georghiades et al., 2001) A. Georghiades, P. Belhumeur, & D. Kriegman, "From few to many: Illumination cone models for face recognition under variable lighting and pose", *PAMI*, 23(6):643–660, 2001.

(Simard et al., 2001) P. Simard, Y. Cun, J. Denker, & B. Victorri, "Transformation invariance in pattern recognition – tangent distance and tangent propagation", *IJIST*, 11:181–194, 2001.

(Zhao et al., 2003) W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld, "Face recognition: A literature survey". *ACM Comp. Surv.*, *35*(4):399–458, 2003.