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Yale Face Database B (YDB) (Georghiades et al., 2001).
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Motivation for Multi-Set Distances

Images of a single person seen under variations of illumination appear
to be more difficult to recognize than images of different people (Zhao
et al., 2003).

Can you tell
who this is?

Subject 1 Subject 2
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Motivation for Multi-Set Distances

Can you tell them apart now?
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BACKGROUND ILLUMINATION AND POSE

Architectures

Traditionally
@ single-to-single
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© single-to-many

Currently
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Handwritten Digit Classification

The first use of tangent distance in a pattern recognition problem was
for the handwritten digit classification (Simard et al., 2001).
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Handwritten Digit Classification

How do we tell whether a new digitis a 4 or a 97
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Digit Manifolds

Imagine a high-D surface (red curve) where all 4’s live on and a high-D
surface (blue curve) where all 9’s live on.
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Tangent Spaces - Training

Create a Tangent Space of the 4’s at F and create a Tangent Space of
the 9’s at N.
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Tangent Spaces - Training

Create a Tangent Space of the 4’s at F and create a Tangent Space of
the 9’s at N.

Dimensions of the tangent spaces depend on the degree of variations.
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Euclidean Distance
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Euclidean Distance

@ Euclidean distance between each pair of 4 and 9 varies drastically.
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Euclidean Distance

@ Euclidean distance between each pair of 4 and 9 varies drastically.
@ Calculation is time-consuming.
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Tangent Distance
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Tangent Distance

@ Tangent distance captures the geometry.
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Tangent Distance

@ Tangent distance captures the geometry.
@ Calculation is efficient.
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Classification

So, isita 4 ora9?
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D TANGENT DISTANCE

Classification Result
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EXPERIMENTAL RESULTS SUBSPACE DISTANCE

Subspace Distance

Instead of approximate the manifold with a linear subspace, use higher
dimensional ones.

We, hence, call the distance
between these higher
dimensional subspaces the
subspace distances.
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EXPERIMENTAL RESULTS SUBSPACE DISTANCE

Experimental Design

@ YDB Pose Data, Xp. 90 images of 10 individuals each seen
under a fixed point light source with 9 distinct pose conditions.

@ YDB lllumination Data, X;. 640 images of 10 individuals each
seen under frontal pose with 64 distinct lighting conditions.

@ Increase pose data by including mirror images to form Xp.

@ Adopt a leave-one-out cross-validation routine for error estimates.
@ Error reports for the following two parameters:

@ Subspace dimension.
@ Cardinality of training images.
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EXPERIMENTAL RESULTS POSE

Xp: Subspace Dimension
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Figure: Error rate versus subspace dimension when the classifier is trained
on Xp and Xp, respectively.
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EXPERIMENTAL RESULTS POSE

Xp: 7D Subspace Distance

(b) Images missed when trained on Xp
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EXPERIMENTAL RESULTS POSE

Xp: Cardinality of Training Set
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EXPERIMENTAL R ILLUMINATION

X;: Subspace Dimension
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Figure: Error rate versus subspace dimension when the classifier is trained
on X,.
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X;: 12D Subspace Distance

Figure: Images missed when trained on X;.
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EXPERIMENTAL RESULTS ILLUMINATION

X;: Cardinality of Training Set
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SUMMARY AND REMARKS

Summary

@ Tangent space/distance = subspace distance.

@ This model is a feature-invariance one that can be extended to
any type of variation.

@ The model will benefit from having ample training samples.
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SUMMARY AND REMARKS

Open Areas and Future Directions

@ Curvature information.
@ Combination of illumination and pose variations.
@ Other types of set-to-set classification paradigm.
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