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ABSTRACT

We present a face recognition method using multiple images

where pose and illumination are uncontrolled. The set-to-

set framework can be utilized whenever multiple images are

available for both gallery and probe subjects. We can then

transform the set-to-set classification problem as a geometric

one by realizing the linear span of the images in a given res-

olution as a point on the Grassmann manifold where various

metrics can be used to quantify the closeness of the identi-

ties. Contrary to a common practice, we will not normalize

for variations in pose and illumination, hence showing the ef-

fectiveness of the set-to-set method when the classification

is done on the Grassmann manifold. This algorithm exploits

the geometry of the data set such that no training phase is re-

quired and may be executed in parallel across large data sets.

We present empirical results of this algorithm on the CMU-

PIE Database and the Extended Yale Face Database B, each

consisting of 67 and 28 subjects, respectively.

1. INTRODUCTION

Face recognition under variations in illumination and pose

has long been recognized as a difficult problem with pose

appearing somewhat more challenging to handle than vari-

ations in illumination [1]. A direct approach to deal with

such images has been to develop algorithms that normalize

for variations in illumination and then to focus on a solution

for pose [2], [3]. In contrast, as is shown in [4] and [5], it is

an appealing and plausible idea that sets of images acquired

under varying or non-uniform illumination conditions possess

valuable discriminatory information. Furthermore, both the-

oretical and empirical evidence have demonstrated that there

exist low-dimensional representations for a set of images of a

fixed object under variations in illumination conditions [6, 4].
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This suggests that a wider range of discriminatory informa-

tion can be captured in a low dimensional model as opposed

to discarding a portion of the data as noise. This observa-

tion is not new and examples of algorithms that attempt to

solve the face recognition problem under variations of illumi-

nation and pose without factoring out the illumination varia-

tions are [7, 8, 9, 10].

Algorithms that are successful in recognizing subjects in

uncontrolled environments rely on good models for both il-

lumination and pose variations. In the typical representation

of image data, variations in illumination is inherently linear.

More precisely, images collected under a convex set of illu-

mination conditions themselves form a convex set [9] and a

vast majority of the energy of such data can be captured with

a relatively low-dimensional linear space [4]. In contrast, im-

ages collected under variations in pose is not inherently linear.

As a consequence, linear methods such as those based on the

SVD perform poorly when pose variations are included. One

natural non-linear approach for addressing pose variations is

with a 3D Morphable Model as described in [10]. Such non-

linear approaches often come with the expense of a training

phase and manual feature extraction at the recognition stage.

Much work on face recognition has focused on defining

the classification problem as comparing distances from a sin-

gle incidence of the probe class to a single or multiple inci-

dence(s) of the gallery classes. Such methods have a major

drawback. For example, if the input image is noisy or the

face is occluded, then the recognition result will not be reli-

able. Therefore, it is natural to consider the paradigm where

multiple images for both the gallery and the probe subjects

are available. The set-to-set framework used in this work is

an example of the model-based approach where a subspace is

formed for each set of images. Distances between subspaces

are calculated on the Grassmann manifold and identification

is accomplished based on the nearest neighbor criterion. Al-

gorithms that rely on the framework of set-to-set comparison

have shown significant promise in their ability to classify both

still-images and video sequences [11, 12, 13, 5].

When a collection of images are available for a subject,

we view the data as sampling (with noise) an underlying man-
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ifold. In this paper, the underlying data manifold, M , captures

pose and illumination variations of a fixed subject. If we fix an

illumination condition, then the underlying data manifold, X ,

captures pose variation. There is a natural map φ : M → X

(under the fixed illumination condition). The fibers of the map

(i.e. the inverse images of points on X) capture variations in

illumination for a fixed pose. For each pose we can capture,

with a low-dimensional linear space, the variations in illu-

mination. Fixing the dimension of the linear space used to

capture the illumination data to be k, we obtain a map of X

into the parameter space of k-dimensional linear spaces inside

the ambient space used to represent the images. We proceed

with this model in the background. As we shall see, the set-

to-set paradigm affords algorithms that require no training.

Although we present our results in the context of other work,

given the paradigm shift, direct comparisons are difficult at

best. We will attempt to demonstrate the robustness of the

proposed algorithm by purposely omitting the preprocessing

stage: we employ the Yale and CMU-PIE data sets with none

of the images geometrically normalized and with registration

essentially ignored. We present a suite of experiments that

illustrate the potential of the set-to-set framework.

The remainder of this paper is organized as follows: in

Section 2, we review the set-to-set framework for object clas-

sification. In Section 3, we present results of experiments

that illustrate the set-to-set comparison paradigm in the face

recognition problem with variations across illumination and

pose. In addition, we discuss the computational complexity

of the proposed algorithm. In Section 4, a few well-known

state-of-the-art algorithms are presented to compare and con-

trast with the proposed method. Section 5 provides a sum-

mary of our observations.

2. CLASSIFICATION ON THE GRASSMANNIANS

An r × c gray scale digital image corresponds to an r × c

matrix where each entry enumerates one of the 256 possible

gray levels of the corresponding pixel. The image can then be

seen as an element of R
n = R

r×c. We will group k (generally

independent) example images of a subject and consider the k-

dimensional feature subspace they span in R
n. This is the

basis for a many-to-many set comparison paradigm.

If we let G(k, n) denote the Grassmann manifold (Grass-

mannian) parameterizing k-dimensional real vector subspaces

of the n-dimensional vector space R
n, then the set-to-set clas-

sification problem can be transformed to a problem on G(k, n)
if we realize the linear span of a set of k images as a k-

dimensional vector subspace of the space of all possible im-

ages at a given resolution. Our objective is to match an un-

labeled set of images by comparing its associated point with

a collection of given points on G(k, n). As a consequence of

the encoding of sets of images as points on a Grassmann man-

ifold we may avail ourselves of a variety of well-known dis-

tance measures between points on the manifold. For example,

if we realize G(k, n) as a submanifold of R
(n2+n−2)/2 (as a

Euclidean space) via the embedding described in [14] and if

we restrict the Euclidean distance function on R
(n2+n−2)/2

to the Grassmannian, then we obtain the projection F norm

or chordal distance, denoted by dc. Specifically, the chordal

distance between two points X, Y ∈ G(k, n) is dc(X, Y ) =
|| sin θ||2, where θ1 ≤ θ2 ≤ · · · ≤ θk are the principal angles

between the subspaces X and Y . Other example metrics be-

tween points on the Grassmannian are the Fubini-Study met-

ric and the arc length metric1. For additional details, see [15].

A recursive definition and an SVD-based algorithm for

computing the principal angles between X and Y can be found

in [16]. Briefly, if X and Y are two vector subspaces of R
n

such that p = dim(X) ≥ dim(Y ) = q ≥ 1, then the prin-

cipal angles θk ∈
[

0, π
2

]

, 1 ≤ k ≤ q between X and Y are

defined recursively by

cos(θk) = max
u∈X

max
v∈Y

uT v = uT
k vk

subject to ||u||2 = ||v||2 = 1, uT ui = 0 and vT vi = 0
for i = 1 : k − 1. Note that the standard distance be-

tween subspaces that is often presented in linear algebra is

determined by the largest angle between the two subspaces.

This ignores the geometric information associated with the

smaller angles. We have observed that in many instances it

is in fact the smallest (not largest) principal angle that carries

the most significant information. It is then natural to con-

sider an ℓ-truncated semi-chordal pseudo-metric as the fol-

lowing, dℓ
c = || sin θℓ||2, where θ1 ≤ θ2 ≤ . . . ≤ θℓ and

1 ≤ ℓ ≤ min {dim X, dimY }. It is a pseudo-metric since

dℓ
c(X, Y ) = 0 whenever dim(X ∩ Y ) ≥ ℓ.

If variations in pose are restricted to the equivalent of

moving a camera in a horizontal circle at a fixed distance from

the subject and with lens pointed at the subject, then by asso-

ciating to each pose a k-dimensional linear space which cap-

tures variations in illuminations we obtain a map of a circle

into G(k, n). If variations in pose are restricted to all orien-

tations of the camera a fixed distance from the subject and

with lens pointed at the subject, then the variations in illumi-

nation provide a map of the lie group SO(3) into G(k, n).
The image of these maps are what we think of as illumination

invariant pose manifolds. Of course, the coarseness of regis-

tration and depth of field yields a more complicated picture.

Nevertheless, we find the formulation to be compelling in the

design of algorithms.

3. EXPERIMENTS

The data sets we used to empirically test our algorithm are

the Extended Yale Face Database B (E-YDB) [9] and the “il-

lum” subset of the CMU-PIE Database [17]. For the E-YDB,

there are 28 different subjects each recorded under 9 poses

1Classification results depend on the geometry of the Grassmann mani-

fold, which is determined by the metric selected.
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Fig. 1. Example images in the E-YDB that are used in the

experiments.

and 65 illumination conditions. For the CMU-PIE Database,

there are 67 subjects each recorded under 13 poses and 21 il-

lumination conditions. We denote the image corresponding

to subject s, pose p and illumination condition i by Js,p,i.

See Figure 1 for an illustration of images with variations in

pose and illumination from the E-YDB. As you can see, the

images in these databases are coarsely centered and coarsely

controlled. The rough nature of the data makes the exper-

iments applicable to a wider variety of real-life applications.

We consider three experiments to test the proposed algorithm.

In Experiment I, the poses are treated separately. In Ex-

periments II and III, the poses are pooled for each subject. In

Experiments I and II, we include the probe pose in the gallery

and the probe and gallery images each use a distinct set of k il-

luminations taken from each pose. These two experiments are

merely a sanity check. Any recognition algorithm that claims

to be successful in dealing with variations of illumination and

pose should perform very well in these two experiments. In

Experiment III, we remove the probe pose from the gallery in

addition to using a distinct set of k illuminations. To this end,

we test the algorithm’s ability to recognize novel viewpoints.

We describe the experiments below for a single probe set.

Let the number of distinct subjects in either the E-YDB or the

CMU-PIE Database be s0, the number of distinct poses be p0,

and the number of distinct illuminations be i0. The distance

measure used will be d = dℓ
c in the following experiment de-

scriptions. We will describe how the set of probe and gallery

images are selected, indicate how error statistics are compiled

and analyze the results.

3.1. Experiment I

In Experiment I we view each pose as an additional subject

in the database while retaining the information that each of

the p0 poses are associated with a given subject. The probe

set (resp. gallery set) associated with subject α and pose β is

written as Pα,β (resp. Gα,β). We have

Pα,β =
⋃

i∈IP

Jα,β,i and Gα,β =
⋃

i∈IG

Jα,β,i,

where IP denotes the set of illuminations associated with the

probe and IG denotes the set of illuminations associated with

the gallery. The set of indices defining IP and IG is chosen

randomly with the restriction that IP ∩ IG = ∅. In Experi-

ments I, II, and III, we use |IG| = |IP | = k with k = 16 for

E-YDB and k = 10 for CMU-PIE. For a fixed α and β,

Ps∗,p∗ = argmin
s,p

d(Pα,β , Gs,p).

If s∗ = α and p∗ = β, then we have achieved the correct clas-

sification. Thus a single pose of a single subject is compared

individually to each pose set of each subject. In essence this

requires the algorithm to recognize both pose and identity.

3.2. Experiment II

We now consider the case where, for the gallery, we pool the

different poses and illuminations into a single set associated

with each subject, i.e.,

Gs =

p0
⋃

p=1

⋃

i∈IG

{Js,p,i}.

Now the gallery set consists of s0 sets of images where each

set has p0 different poses and |IG| illuminations. Again, a

single probe set Pα,β is associated with one subject α and

one pose β over a set of |IP | illuminations. For a fixed α and

β, we solve Ps∗ = arg mins d(Gs, Pα,β). If s∗ = α, then the

classification is correct.

3.3. Experiment III

In this experiment we remove the pose associated with the

probe from all of the sets in the gallery. Hence, for each α =
1, . . . , s0 and β = 1, . . . , p0 we seek to solve the equation

Ps∗ = argmins d(G′
s, Pα,β), where

G′
s =

p0
⋃

p=1
p6=β

⋃

i∈IG

{Js,p,i}.

If s∗ = α, then classification is correct.

3.4. Analysis

For each experiment we compute the errors using each pose

and each subject, therefore a total of 28 × 9 = 252 probe

sets for E-YDB and 67 × 13 = 871 for CMU-PIE. In ad-

dition, we randomly partition i0 illumination conditions into

two disjoint sets of k, one for the gallery and the other for the

probe. Table 1 shows the recognition rates for experiments I

– III on both databases when using the 1- truncated chordal

distance d1
c .

To visualize the contrast in performance of the algorithm

for Experiments I and II versus Experiment III, we examine

the first principal vector for a set of probe and gallery set using

images in CMU-PIE in each Experiment in Figures 2 and 3.
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Error Rate (%) Experiment

Database I II III

Extended YDB 0 0 6.7

CMU-PIE 0 0 43.2

Table 1. Average recognition error rate for Experiments I –

III with d1
c on both Extended YDB and CMU-PIE.

When the probe pose for each subject is present in the gallery,

the algorithm is able to come up with a good representation in

the gallery that models the pose in the probe. However, when

the probe pose is not found in the gallery, the algorithm can

only use the variations in the gallery to try and come up with a

representation that matches the probe pose as closely as pos-

sible. This observation is built upon the fact that a subject’s

pose manifold is non-linear in its standard representation and

we are using methods that are linear in nature.

Fig. 2. Top: first principal vector for a sample probe. Bot-

tom: first principal vector for the correct gallery set that the

algorithm identifies for experiments I, II , and III from left to

right. The first principal angle between the top and bottom

vector is 0.066, 0.069, and 0.269 radians, from left to right.

To further understand which viewpoints are difficult to

handle, we look specifically at the individual error rates for

each viewpoint in CMU-PIE in Table 2. We note that recog-

nition results for probe poses c07, c09, c25, and c31 are not

reported in studies [10, 7] and we observed the highest error

rates on these poses in our experiments. Without considera-

tion of those 4 poses, our error rate is approximately 26.9%
for CMU-PIE in Experiment III. We suspect the reason for the

degradation of the algorithm’s performance for these 4 poses

is due to the variation in depth of field on top of the actual

pose variation.

We also conducted experiments where the only variations

in the gallery and probe is the viewpoint. For each probe

and gallery set in E-YDB and CMU-PIE, we randomly chose

4 and 6 non-overlapping poses and calculated their mirror

images to create sets of 8 and 12 distinct pose images, re-

spectively. Then for each α = 1, . . . , s0, we solve Ps∗ =

(a) (b) (c)

(d) (e) (f)

Fig. 3. (c) The first principal vector for a sample probe. (f)

The first principal vector for the incorrect gallery set that the

algorithm identifies for experiments III. (a),(b) First principal

vector for a sample probe set. (d),(e) First principal vector of

a sample gallery set of a different subject from the ones in (a)

and (b). The first principal angle between the top and bottom

vector is 0.731, 0.275, and 0.369 radians, from left to right.

pose c02 c05 c07 c09 c11 c14 c22

error (%) 13.4 31.3 83.6 73.1 0 1.5 23.9

pose c25 c27 c29 c31 c34 c37

error (%) 82.1 22.4 16.4 80.6 76.1 56.7

Table 2. Average break-down recognition error rate for each

pose in Experiment III using d1
c on CMU-PIE. We observe

that some pose subsets perform much better than others.

argmins d(Gs, Pα), where

Gs =
⋃

p∈PG

i=frontal

{Js,p,i},

and PG denotes the set of poses associated with this gallery

set. We repeat this experiment 10 times to create a total of

10×s0 probe sets. The average error rate is 32.1% and 19.4%
for E-YDB and CMU-PIE, respectively. We suspect the rea-

son why the error rate for CMU-PIE is smaller than it is for

E-YDB is because there are more pose variations in CMU-

PIE, hence creating a better sampled characterization for the

subjects. This observation supports the claim that the pro-

posed algorithm captures the characteristics within a family

of patterns and can be extended to handle other general object

recognition problems.

3.5. Computational complexity

The algorithm for computing principal angles between a pair

of subspaces comprises of two major steps: QR-decomposition

of the representation matrices and SVD of the inner product

of the Q matrices. The MATLAB qr command is based on

Householder reflections. For a general m-by-n matrix, QR-

decomposition using Householder reflections costs 2n2m −
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2
3n3 flops. For the same size matrix, the MATLAB svd com-

mand costs 4n2(m − 1
3n) flops to reduce it to a bidiagonal

form using Householder reflections. If only singular values

are required, it costs just O(n2) for the rest of the operations.

Therefore, a MATLAB svd routine costs 4n2(m − 1
3n) +

O(n2) flops to compute the singular values of a m × n ma-

trix. Thus, most of the computation is in calculating the QR-

decomposition of the gallery sets, which can be computed a-

priori off-line.

On a 2.8GHz AMD Opteron processor, it takes approx-

imately 0.4 seconds to do a qr on a single probe set of size

147167×10 and 0.25 seconds to do an economy size SVD of

a matrix of size 120 × 10. Therefore, it costs about 0.65 sec-

onds to compare a single pair of probe and gallery sets with

the set-to-set paradigm (in Experiment III on CMU-PIE). Ta-

ble 3 shows the computational speed for a few state-of-the-

art algorithms along with the proposed algorithm. Note that

our algorithm is significantly faster if the image resolution is

smaller. Recall, we purposely omit the preprocessing stage in

order to reflect the robustness of the algorithm.

4. RELATED WORK

We review a few start-of-the-art models here to compare and

contrast with the experimental results shown in Section 3.4.

Works of [18, 13, 19] also used the set-to-set framework to

solve a general object recognition problem under varying illu-

mination and viewpoints. However, variations in illumination

is normalized away before identification. We will focus on al-

gorithms that model both the illumination and pose variations

in the following discussions.

A work which utilizes joint information given by varia-

tions in both illumination and pose and that is related to our

work is given by Belhumeur et al. [9]. They developed a gen-

erative procedure that gives rise to a representation based on

pose-specific illumination cones for each face class. A single

face representation consists of multiple pose-specific illumi-

nation cones that are approximated linearly to capture over

99% of the variability. Recognition of a test image is per-

formed by first normalizing its vector representative to unit

length and then computing its distance to each face represen-

tation. This way, the pose and identity information of the

test image can be revealed. When tested on the Yale Face

Database B [9], the average error rate reported in [9] is about

2.9% out of 4050 (45 illuminations × 9 poses × 10 subjects)

images tested. The algorithm performs the worst on extreme

illumination and pose conditions with 12.6% error rate out

of 420 (14 illuminations × 3 poses × 10 subjects) images

tested. Note that the most extreme illumination conditions

were not even considered and it is reported in [20] that this

is the best result obtained on YDB. Further note that the il-

lumination cone method uses a single-to-many classification

scheme, which is fundamentally different from the one af-

forded by the set-to-set method proposed in this paper.

Another example by Gross et al. [8] uses the concept of

light field [3] to handle pose variations and Fisher Discrim-

inant Analysis (FDA) to handle the illumination variations.

The concept of light-field is similar to FDA where a set of

“ideal” eigen light-fields can be learned from a collection of

training images from which the identities are not necessarily

found in the testing images. Images in the gallery and probe

are then written as linear combinations of the known eigen

light-fields with appropriate weights. A probe identity x is

then assigned to the identity in the gallery whose eigen light-

field representation is the closest to that of x (in the Euclidean

metric). The classification is based on many-to-many image

comparisons using correlations where any number of gallery

and probe images per subject are allowed. Better classifica-

tion outcomes are achieved as the number of images used in

both gallery and probe increases.

When tested on the CMU-PIE Database, the average error

rate for the Fisher light-field method is about 53%, while it is

59% for the eigen light-field method when the gallery set con-

sists of simply the frontal pose and frontal illumination. The

pose variations in CMU-PIE are significantly more difficult to

recognize compared to those in the Extended YDB. The error

rate is improved slightly when the variation of illumination is

handled by a Lambertian reflectance model [7] with 47% in

the most difficult case. In all the cases above, pose and illu-

mination conditions for the probes are different than the ones

from the gallery. Moreover, in all of the methods reported

above, a significant amount of training is required.

It is reported in a recent survey paper [20] that the best

recognition result on the “lights” subset of PIE is achieved by

a 3D Morphable Model [10] when using only front, side, and

profile views in both gallery and probe set. However, there are

two limitations to the practical version of the 3D morphable

model. Training of the faces are required in order to build a

3D model and it is necessary to manually select 7 landmark

points on probe images to provide a good estimate of 3D pose.

5. DISCUSSION

We have presented an approach to extract geometric charac-

teristics of families of patterns that are viewed under varying

conditions, such as pose and illumination. This is an exten-

sion to the previous work in [5], where only variations in il-

lumination were considered. We observe that both the CMU-

PIE and Extended YDB may be classified with high accuracy

if samples of the pose are available in the gallery. This sug-

gests that sufficient sampling of the variations is important

and that this is more critical for pose than illumination (likely

due to the non-linearity of the pose manifold).

In summary, the algorithm works under the assumption

that multiple images of a class under each variation are avail-

able. By realizing sets of images as points on a Grassmannian,

we employ a geometric perspective for computing metrics

that compare subspaces and extract neighborhood informa-
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3DMM Illumination Cone Set-to-Set

Data set used “lights” of PIE YDB “illum” of PIE

Image resolution 200 × 200 42 × 36 367 × 401
2.5 min. 2.5 sec./gal. ind. 0.65 sec./gal. ind.

Identification time for one probe Pentium IV Pentium II AMD Opteron 8220SE

2.0GHz 300MHz 2.8 GHz

Table 3. Computational speed of two state-of-the-art face recognition algorithms and the proposed set-to-set algorithm. Given

the disparity in processors and in image resolution, care must be exercised in interpreting CPU time.

tion. The algorithm requires no data preprocessing or train-

ing and can be trivially parallelized for large data sets. What

we have shown here is a blueprint for set-to-set image com-

parison that can be extended to any general object recogni-

tion problem where families of patterns reside in characteris-

tic subspaces.
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