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When data collection is expensive, gathering fewer and strategically located points

may reduce costs while maintaining important information. Inpainting then allows

for the intelligent reconstruction of missing data from the sparse observations. In

this thesis work, we propose the least squares differences algorithm, a new scheme

for de-trending data with repeated observations based on classical least squares

fitting along with an empirical guideline for constructing good sampling strategies.

Furthermore, we develop and present a novel inpainting algorithm – penalized

dictionary inpainting – that utilizes a variable penalty term and exhibits nonlocal

sensitivity. Armed with these two innovations, we illustrate how current atomic

force microscopy (AFM) imaging can be made more efficient. In particular, we

apply least squares differences to the analysis of non-raster scanning

methodologies, along with the inpainting of sparse or subsampled data.
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CHAPTER 1

INTRODUCTION

The motivation for our work came from the current challenges faced in the

field of atomic force microscopy (AFM). However, the theory we developed is

sufficiently general to be of use in other problem domains. For this reason, the

paper is comprised of two independent parts.

The first part of this paper is devoted to developing two distinct

mathematical algorithms free of context. The hope is that these novel algorithms

may prove useful in other applications, if not fascinating by their own right. Least

squares differences is our extension of classical least squares fitting, suitable to the

analysis of data with repeated, “overlapping” observations. By leveraging a

somewhat unusual basis and a little linear algebra, we show how to effectively

model any low frequency noise that may be present in signals, provided a few

criteria are met. Penalized dictionary inpainting, on the other hand, is our own

attempt at creating an inpainting algorithm with the ability to complete patterns

and edges, in addition to propagating known information into unknown territory.

The second part is concerned with applications to atomic force microscopy,

and how the two algorithms play relevant roles in the cutting-edge of fast AFM.

Atomic force microscopy is a relatively new imaging technique which sees, not

through light, but by the tactile response of a microscopic probe upon the

substrate. Atomic force microscopes are in the cutting-edge for imaging and

manipulating matter in the small scale. However, there is still much to be

improved in the field, especially in regards to imaging speed. To that end we adopt
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alternative scanning techniques which are more auspicious for quick scans, and

these require more advanced analytical techniques than have been available so far

to the field of atomic force microscopy. Least squares differences plays the part of

background removal, rectifying an otherwise stilted signal, while penalized

dictionary inpainting allows us to infer what has gone unseen. In practice, we

found that least squares differences performs very well when applied to real data

collected by real AFMs. However, penalized dictionary inpainting runs much too

slowly to be an alternative for the already established methods of inpainting.

Nonetheless, the combination of non-raster scan paths with the least squares

differences algorithm and sparse image inpainting proves to be a competitive

alternative to the current methods. Furthermore, unlike raster scans, non-raster

scans are amenable to a direct scaling of scan speeds, so that any improvements in

hardware capability will directly translate to workable gains under the non-raster,

least squares differences, and inpainting framework.
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CHAPTER 2

THEORY OF DIFFERENCES

This chapter is aimed at developing our theory of differences, which is a

natural extension of classical least squares fitting. It is of particular practical

importance because it is readily applied to observations which have a certain

degree of redundancy. First, we present and review some results about regular

least squares fitting, then we mirror the development with differences.

As applied to our work in atomic force microscopy, the algorithm of least

squares differences developed in this chapter is the cornerstone of our method for

removing deleterious background noise and thermal drift. Concretely, our aim is to

leverage the “overlapping” observations of alternative scan paths to model the

background noise accurately.

Classical Least Squares

In this section we define some useful terms and give a brief introduction to

the classical theory of least squares approximation.

Definition 2.1. Given a function f : Ω→ R, we call some finite collection of

pairs (x, f(x)) a set of observations O.

Theorem 2.2. Let Ω ⊂ R. Given observations O of a function f : Ω→ R and a

basis {φn} on Ω, we can construct a finite dimensional least squares

approximation, f̃ =
∑n

i=1 αiφi by solving a linear system for the coefficients α [1].

3



Proof. Let

F =



f(x1)

f(x2)

...

f(xl)


,Φ =



φ1(x1) φ2(x1) · · · φn(x1)

φ1(x2) φ2(x2) · · · φn(x2)

...
...

...
...

φ1(xl) φ2(xl) · · · φn(xl)


, α =



α1

α2

...

αn


where O = {(xk, f(xk))}.

Then define the squared error of an approximation by E = ||F− Φα||2. We wish

to find the choice of α which minimizes the error.

E = (F− Φα)T (F− Φα) = FTF− 2αTΦTF + αTΦTΦα. (2.1)

∂E

∂α
= −2ΦTF + 2ΦTΦα = 0 (2.2)

ΦTF = ΦTΦα (2.3)

α = (ΦTΦ)−1ΦTF. (2.4)

Equation 2.4 above has a solution minimizing E provided ΦTΦ is

nonsingular. Usually this condition is satisfied if there are sufficient observations;

that is, more observations than basis elements. However, unusual circumstances

may arise which cause even an excess of observations to have many linear

dependencies, rendering the matrix ΦTΦ rank deficient. In such singular cases, one

can still recover some form of solution by expressing Φ in its singular value

decomposition, making special use of the property that both U and V are

orthogonal matrices.

ΦF = ΦTΦα,Φ = USVT

VSTUTF = VSTSVTα

4



α = VS−1UTF

where S−1 is the element-wise inverse of the nonzero diagonal elements of S.

Notice that the procedure detailed above is basis-agnostic, and as such is

applicable to any set of basis. Common examples are the polynomial basis {xn}

and the trigonometric basis {sinnx, cosnx}.

Corollary 2.3. (Linear Regression) Let Ω ⊂ R. Given observations O of a

function f : Ω→ R, we can construct a linear least squares approximation to f by

solving a linear system for the coefficients α [1].

Proof. This is a simple application of Theorem 2.2 with Φ =



1 x1

1 x2

...
...

1 xl


Theorem 2.4. Let f : Ω→ R. Given an orthonormal basis {φn} on Ω, the least

squares approximation of f is equivalent to the orthogonal projection of f onto

{φn} [7].

Proof. Define the least squares error by

E =

∫
Ω

(f −
∑
n

αnφn)2dµ.

∂E

∂αj
= −2

∫
Ω

(f −
∑
n

αnφn)φjdµ.

From the minimization condition ∂E
∂αj

= 0 we obtain∫
Ω

fφjdµ =

∫
Ω

∑
αnφnφjdµ =

∑
n

αn

∫
Ω

φnφjdµ.

Then orthonormality of our basis ensures that all but one of the terms on the right

vanish. ∫
Ω

fφjdµ = αj.

5



Now recognize that
∫

Ω
fφjdµ =< f, φj > is the projection of f onto the jth basis

element.

In the theorem above we did not require that the the region of interest Ω be

a finite set of discrete points, or indeed even countable. To apply Theorem 2.4 to a

finite or countable set of points, you need only use the discrete measure in place of

µ.

Corollary 2.5. Given observations O of a function f : Ω→ R, and a basis {φn}

that is orthonormal on the domain of observations, the least squares approximation

of f is the orthogonal projection of f onto {φn} [7].

Proof. Apply Theorem 2.4 with Ω being the domain of observations and µ the

discrete measure.

Corollary 2.5 is not as useful as it may seem. Although computing

projections is a lot less costly than solving the linear system of Theorem 2.2, the

crucial hypothesis that {φn} be orthonormal on the domain of observations O is,

in general, not true. For example, although the trigonometric basis is orthogonal

on the interval [0, π
2
], it is not necessarily so on an arbitrary collection of discrete

points. However, as we see below, given an orthonormal basis on some domain X,

it is possible to construct a related basis that is orthonormal on a restriction of the

domain. This basis can then be used repeatedly to quickly find the least squares

approximation of many different functions, so long as we only care about the

restricted domain.

Definition 2.6. Given a basis {φn} on a space X and a subset Ω ⊂ X, we define

the restricted basis {φΩ
n} by restricting the domain of each basis element to Ω. The

original basis {φn} is called the mother basis.

Gram-Schmidt Orthogonalization allows us to construct an orthonormal

restricted basis while retaining some of the qualities of its mother basis, such as

6



Algorithm 1 Gram-Schmidt Orthogonalization [7]

1. for i = 0, 1, . . . , m

(a) Set φ̂Ω
i to φi

(b) for j = 0, 1, . . . , i - 1

i. Subtract the (restricted) projection of φ̂Ω
j from φ̂Ω

i

ii. Set φ̂Ω
i to the remainder of the difference above

2. Normalize φ̂Ω
i

continuity or differentiability. This is of importance as we will see later. Armed

with a restricted orthonormal basis we can perform least squares fitting as easily

as computing inner products, as Corollary 2.5 describes. However, there is one

caveat while performing Gram-Schmidt Orthogonalization on a restricted basis.

While by definition the mother basis is linearly independent, its restriction may

not be. A trivial example is some basis {φn} restricted to Ω = {0}. Clearly the

restriction can have dimension at most 1. This pathology manifests itself in the

Gram-Schmidt algorithm when normalizing. Should some basis element φΩ
i be a

linear combination of the previous {φΩ
n}i−1

n=1 it can be safely discarded, as it has no

additional discriminative power in the restricted space.

Example 1.

Let {φn} = {sinx, sin 2x, sin 3x} and Ω =
{π

3
,
π

2

}
Then we can write our restricted basis succinctly like so

{φΩ
n} = {[

√
3

2
, 1], [

√
3

2
, 0], [0,−1]}

Applying algorithm the Gram-Schmidt algorithm, we produce a new basis that is

7



orthonormal on the restricted domain Ω.

φ̂Ω
1 =

φΩ
1

||φΩ
1 ||

= [

√
3√
7
,

2√
7

]

φ̂Ω
2 =

φΩ
2− < φΩ

2 , φ̂
Ω
1 > φ̂Ω

1

||φΩ
2− < φΩ

2 , φ̂
Ω
1 > φ̂Ω

1 ||
= [

2√
7
,−
√

3√
7

]

But now the process must stop, because φΩ
3 is by necessity linearly dependent upon

the two previous vectors:

φΩ
3− < φΩ

3 , φ̂
Ω
1 > φ̂Ω

1− < φΩ
3 , φ̂

Ω
2 > φ̂Ω

2 = [0, 0]

The previous example illustrates that the linear independence of a mother

basis does not guarantee the linear independence of its restricted basis. In

practice, this should not pose any problem provided Ω has sufficiently many

points. However, Ω may be much too small to force independence or its very

structure can conspire against orthogonality of the restricted basis. If so, the

system of Theorem 2.2 will be singular. In particular any minimizing solution will

be but one member of an infinite family of solutions. In such cases, it is possible to

cull the restricted basis by way of Gram-Schmidt Orthogonalization rather than

resort to the pseudo-inverse solution detailed before.

Least Squares Differences

We now begin the development of our differences method in earnest. Many

of the results should seem familiar, as they mimic the exposition given in Section

2.1.

Definition 2.7. Given a function f : X→ R, we call a finite collection of triples

(a,b, f(a)− f(b)), where a and b are elements of X, a set of difference

observations O, or differences for short.

8



Note how this is a special case of Definition 2.1. We could study the related

function F : X×X→ R and consider our observations to be O′ with domain

X×X and values F (x,y) = f(x)− f(y). However, it will be convenient later to

think of difference observations separately.

Theorem 2.8. (Least Squares Differences) Let Ω ⊂ R. Given difference

observations O of a function f : Ω→ R and a basis {φn} on Ω, we can construct a

finite dimensional least squares approximation, f̃ =
∑

n αiφi by solving a linear

system.

Proof. Notice that f̃(a)− f̃(b) =
∑

n αi(φi(a)− φi(b)). By interpreting each

difference observation as a constraint of the form f(a)− f(b) ≈ f̃(a)− f̃(b) , we

proceed much the same way as we did in Theorem 2.2.

Let

F =



f(a1)− f(b1)

f(a2)− f(b2)

...

f(al)− f(bl)


,Φ =



φ1(a1)− φ1(b1) φ2(a1)− φ2(b1) · · · φn(a1)− φn(b1)

φ1(a2)− φ1(b2) φ2(a2)− φ2(b2) · · · φn(a2)− φn(b2)

...
...

...
...

φ1(al)− φ1(bl) φ2(al)− φ2(bl) · · · φn(al)− φn(bl)



α =



α1

α2

·

αn


where O = {(ak, bk, f(ak)− f(bk))}.

Then define the squared error of an approximation by E = ||F− Φα||2. As before,

we wish to find the choice of α which minimizes the error.

E = (F− Φα)T (F− Φα) = FTF− 2αTΦTF + αTΦTΦα.

∂E

∂α
= −2ΦTF + 2ΦTΦα = 0

9



ΦTF = ΦTΦα, α = (ΦTΦ)−1ΦTF.

All the caveats and remarks from Theorem 2.2 apply. In addition to the

parallels, it is important to notice the differences between the two. We could have

performed a least squares fit, in the vein of Theorem 2.2, to the related function

F : X×X→ R. But we specifically chose to use a basis on the original space X as

it maintains the differences viewpoint, making Theorem 2.8 much more applicable.

Definition 2.9. A basis {φn} of some function space F[X] is called “zero average”

if
∫
X
φndx = 0 for every n.

Theorem 2.10. (Basis Projection Theorem for Differences) Let f : Ω→ R. Given

an orthonormal and zero average basis {φn} on Ω, the least squares approximation

of the differences of f is proportional to the orthogonal projection of f(x)− f(y)

onto {φn(x)− φn(y)}.

Proof. For convenience, we define the differences of f by

F (x, y) = f(x)− f(y)

Then the least squares error is given by the formulation

E =

∫∫
Ω×Ω

[
F (x, y)−

∑
n

αn(φn(x)− φn(y)

]2

dµxdµy.

∂E

∂αj
= −2

∫∫
Ω×Ω

[
F (x, y)−

∑
n

αn(φn(x)− φn(y))

]
(φj(x)− φj(y))dµxdµy.

From the minimization condition ∂E
∂αj

= 0 we obtain∫∫
Ω×Ω

F (x, y)(φj(x)− φj(y))dµxdµy

=

∫∫ ∑
n

αn(φn(x)− φn(y))(φj(x)− φj(y))dµxdµy

10



=
∑
n

αn

∫∫
(φn(x)− φn(y))(φj(x)− φj(y))dµxdµy

=
∑
n

αn

∫∫
φn(x)φj(x) + φn(y)φj(y)− φn(x)φj(y)− φn(y)φj(x)dµdµ

=
∑
n

αn

∫
Ω

< φn, φj > dµ+

∫
Ω

< φn, φj > dµ−
∫

Ω

φndµ

∫
Ω

φjdµ−
∫

Ω

φndµ

∫
Ω

φjdµ

Then the orthonormality and balance of our basis ensures that all but two of the

terms on the right vanish. Thus, we arrive at∫∫
Ω×Ω

F (x, y)(φj(x)− φj(y))dµxdµy = 2αjµ(Ω)

Now recognize that
∫∫

Ω×Ω
F (x, y)(φj(x)− φj(y))dµxdµy = 〈F, φj(x)− φj(y)〉Ω×Ω,

the projection of F onto the jth difference basis element.

αj =
< F, φj(x)− φj(y) >Ω×Ω

2µ(Ω)

Corollary 2.11. Given difference observations O of a function f : Ω→ R, and a

basis {φn} that is orthonormal and zero average on the domain of observations, the

least squares approximation of f is proportional to the orthogonal projection of

F (x, y) = f(x)− f(y) onto {φn(x)− φn(y)}.

Proof. Apply Theorem 2.10 with Ω being the domain of observations and µ the

discrete measure.

Corollary 2.11 enables us to quickly perform least squares fitting of

difference observations, provided we have at our disposal a orthonormal and zero

average basis on the domain of observations, since under those circumstances the

least squares differences fit can be done by a simple inner product. This is often

not the case, usual bases, such as the polynomial and trigonometric, are not in

general orthogonal nor zero average on a restricted set. We can overcome this

11



Algorithm 2 Augmented Gram-Schmidt Orthogonalization

For each restricted basis element, first balance them by subtracting their integral

divided by the measure of the space. Then proceed with Gram-Schmidt as normally.

problem, much in the same way we did before. Example 2 demonstrates why the

augmented Gram-Schmidt process preserves zero average.

Example 2. Let {φΩ
n} be some restricted basis on Ω ⊂ X. We construct an

orthonormal and zero average basis on Ω as follows:

Define

ψΩ
n = φΩ

n − cn

where cn = 1
µ(Ω)

∫
Ω
φΩ
ndµ, so that ψΩ

n is zero average. Then notice that any linear

combination of zero average basis elements is still zero average:

∫
Ω

∑
n

βnψ
Ω
n dµ =

∑
n

∫
Ω

βnψ
Ω
n dµ = 0

So in particular, Gram-Schmidt Orthogonalization will preserve the zero average

aspect of the basis.

We can use Corollary 2.11 and the Augmented Gram-Schmidt

Orthogonalization algorithm to quickly perform least squares differences fitting on

data with the same observation domains. That is, by making the investment of

orthogonalizing a (possibly restricted) basis on some domain, all subsequent least

squares differences fit on that domain can be done via inner products, which is

asymptotically faster than solving a linear system. This is both of use in practice

and of theoretical interest.

Numerical Stability of Solution

While the previous sections were mostly concerned with a theoretical

12



formulation for the theory of differences, little mention was given to numerical

stability. In fact, the proposed solution involving the normal equation is

suboptimal due to its inherent numerical instability – the inversion of a possibly

ill-conditioned matrix.

Example 3. Let

A =

 1 0

0 ε


So that det(A) = ε.

But,

ATA =

 1 0

0 ε2


with det(ATA) = ε2. Therefore the symmetric matrix ATA is more ill-conditioned

than the original matrix A.

Example 3 suggests that the normal equation solution to the least squares

problem detailed before is numerically unstable, since it involves the inverse of the

more ill-conditioned matrix ΦTΦ. Fortunately, the least squares problem can be

solved directly, without ever forming the ill-conditioned symmetric matrix ΦTΦ.

Returning to the original formulation of the problem, we seek to find α such

that the error ||F−Φα||2 is minimized. To find an alternative, more numerically

stable solution, we exploit the fact that if U is an orthogonal matrix,

||Ux||2 = ||x||2. This is readily apparent from calculation:

||Ux||2 = (Ux)T (Ux) = xTUTUx = xTx = ||x||2

By way of singular value decomposition, we write Φ = USVT. So that

||F−Φα||2 = ||U(UTF− SVTα)||2 = ||UTF− SVTα||2

13



Letting ϕ = VTα and ∆ = UTF we cast the original problem to an equivalent

formulation

||∆− Sϕ||2.

This new system can easily be minimized since S is diagonal. In some cases, S

may be rank deficient (more columns than rows). This implies a choice for ϕ, and

by convention we set all the free variables to 0, thereby minimizing ϕ’s magnitude.

For the typical case, where there are many more rows than columns, we ignore the

zero rows, giving rise to the residual error. After solving for ϕ, recovering α = Vϕ

is a simple matter.

Summary

In this chapter we laid the foundation for the analysis of differences

observations. These are of practical importance in our work with AFMs.

Remaining questions about choice of basis shall be addressed in the next chapter.
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CHAPTER 3

MORE ON BASES

In Chapter 2 we discussed least squares fitting and least squares differences

in a general setting. For any practical application we require that the general

abstractions be made specific. In particular, Chapter 2 did not address the choice

of basis – it simply assumed that one was already available. It turns out that

real-world performance is intimately tied with the choice of basis. That is, the

usual polynomial or trigonometric bases exhibit undesirable numerical instabilities,

especially the higher order terms.

Polynomial and Trigonometric Bases

The most commonly used bases are the polynomial basis

{xn}∞n=0

and trigonometric basis

{sinnx}∞n=1 ∪ {cosnx}∞n=0 or {einx}∞n=−∞

For any computation on a real computer we must consider only finitely many

terms, so when we speak of a basis in practice, we mean a finite basis spanning a

subspace of the full space.

To accurately approximate an arbitrary function f , we usually require

many terms. This is problematic for the two bases above, as finite precision

floating point numbers lead to egregious arithmetical errors. Example 4 clearly

demonstrates this limitation inherent of computer arithmetic.
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Example 4. Approximating a function f on the interval [0, 2] with a polynomial

basis quickly becomes infeasible. Consider the points x1 = .0001 and x2 = 1.9999.

Then

x20
1 ≈ 0 and x20

2 ≈ 1, 047, 528.

So that, under machine arithmetic, all precision is lost when differencing the two:

x20
2 − x20

1 = x20
2

Additionally, polynomials necessarily blow up at the edges of the

approximating region (see Example 5). There are ways to deal with this, such as

extending the approximating region with synthetic data. But even so, numerical

instability precludes any approximation relying on the detail of higher-order terms.

Similar problems arise when dealing with the higher frequency terms of a

trigonometric basis. Therefore, in practice we must resort to cleverer

approximating formulations. In particular splines are well suited for fine-grained

approximation while maintaing a low degree [26]. For our purposes we require a

basis for the splines, differing from the standard treatment of approximating

splines, which is mainly concerned with cubic splines.

Example 5. Figure 1 demonstrates one of the disadvantages of using a polynomial

basis – polynomials blow up at the edges. Because of this, approximations become

increasingly inadequate towards the edges. Furthermore, this poses significant

problems when using a polynomial fit in a pipeline of algorithms, wherein errors

can propagate and multiply.

B-Splines

Usually splines are introduced as a way to interpolate discrete points

without resorting to an inordinately high degree polynomial. It turns out that

splines are also excellent at constructing least squares approximating functions,
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FIGURE 1. Blow up for a polynomial fit

but for that we require a spline basis. B-Splines are a special kind of spline which

can be constructed through a basis [26].

Definition 3.1. Given knot vector a = t0 < t1 < t2 < · · · < tm−1 < tm = b, a

function f̃ is a spline of degree n if:

1. On each interval (ti, ti+1), f̃ is a polynomial of degree n.

2. f̃ is continuous and twice differentiable everywhere, including the knot

points, {ti} [26].

Definition 3.2. (B-Spline) Given a knot vector T = {t0, t1, · · · , tm}, where T is

nondecreasing, recursively define the basis functions as

Ni,0(t) =

 1 if ti ≤ t < t+ i+ 1

0 otherwise

Ni,j(t) =
t− ti
ti+j − ti

Ni,j−1(t) +
ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t)

Where j is the degree of the basis, and for a given j there are m− j elements.
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Then

f̃(t) =

m−j−1∑
i=0

αiNi,j(t)

is a B-Spline of degree j [26].

B-splines are highly localized and approximate a Gaussian, as their degree

increases. In a given family, there are more splines at lower degree. At higher

degrees, the splines lack influence near the edges of the knot vector. We illustrate

some B-spline bases elements in Figure 2.
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t

B−Spline Basis of Degree 9

FIGURE 2. Illustration of a few different B-Spline bases elements

Notice how there are fewer higher degree basis elements, and that their

influence doesn’t much extend to the edges. This is actually of practical concern,

while polynomial approximations tend to blow up at the edges, B-spline

approximations die down. To combat this effect, we employ phantom knots.

Phantom knots are additional knots that are artificially added to the edges of the

knot vector. For instance, the knot vector T = {0, 1, 2, 3, 4, 5} could be augmented

to include phantom knots at −1 and 6, so that the new knot vector would be

T∗ = {−1, 0, 1, 2, 3, 4, 5, 6}.

Example 6. (Phantom Knots) In this example we fit the function

f(t) = sin(t) + cos(t) + 0.3t using a B-spline basis on the interval [−10, 10]. The

fits have been shifted vertically to aid visual comparison.

Example 6 makes it clear that phantom knots drastically improve the
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FIGURE 3. The effect of the inclusion of phantom knots

fidelity of B-spline fits; and they are indeed an integral part of an effective B-spline

regression. There is yet another technique which can be applied to least squares

fitting – the inclusion of a smoothing parameter [28, 27].

Smoothing Splines: Adding a Penalty Term

Often times in interpolation, the data we seek to model may contain wild

oscillations. These fluctuations may be undue artifacts from the collection

procedure, random noise and glitches, or even inherent to the data-generating

system itself. In any case, attempting to fit a model to such overly-complex data

can lead to very poor generalization results. As such, controlling for the complexity

of the interpolant occasionally is desirable, even if at the cost of increased residual

error. Similar considerations apply to the least squares differences problem.

We define the complexity of a fit f̃ to be its total roughness, i.e.
∫

Ω
f̃ ′′2dµ.

From this we write the new regularized optimization objective, with λ ≥ 0 an
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arbitrary regularization constant [28, 27]:

E = ||F−Φα||2 + λ

∫
Ω

(∑
i

αiφ
′′
i

)2

dµ

The former term is the familiar least squares error, while the latter term is new

and seems formidable. However, some calculation shows that this penalty term can

be written simply in matrix form.

∑
i

αiφ
′′
i =

[
φ′′1 φ′′2 · · · φ′′n

]


α1

α2

...

αn


So that

(
∑
i

αiφ
′′
i )

2 = αT



φ′′1φ
′′
1 φ′′1φ

′′
2 · · · φ′′1φ

′′
n

φ′′2φ
′′
1 φ′′2φ

′′
2 · · · φ′′2φ

′′
n

...
...

. . .
...

φ′′nφ
′′
1 φ′′nφ

′′
2 · · · φ′′nφ

′′
n


α

and

E = ||F−Φα||2 + λαTMα

where

M =



∫
φ′′1φ

′′
1

∫
φ′′1φ

′′
2 · · ·

∫
φ′′1φ

′′
n∫

φ′′2φ
′′
1

∫
φ′′2φ

′′
2 · · ·

∫
φ′′2φ

′′
n

...
...

. . .
...∫

φ′′nφ
′′
1

∫
φ′′nφ

′′
2 · · ·

∫
φ′′nφ

′′
n


is a symmetric matrix.

Notice how this problem is still convex, since M is positive semidefinite.

Therefore we expect to find a global minimum. Cast in this form, the regularized
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least squares problem has a solution much the same as before:

α = (ΦTΦ + λM)−1ΦTF

Furthermore, if we assume M is positive definite, then ΦTΦ + λM is invertible for

λ > 0, so that the regularization parameter also enforces a global optimality to the

solution of the least squares problem.

Theorem 3.3. Let M be positive definite and λ > 0. Then ΦTΦ + λM is

nonsingular [32].

Proof. Let x 6= 0, and define y = (ΦTΦ + λM)x. Then xTy > 0 since ΦTΦ is

positive semidefinite and M is positive definite:

xTy = xTΦTΦx+ λxTMx > 0

Therefore y 6= 0, and since x was arbitrary we conclude ΦTΦ + λM is

nonsingular.

Theorem 3.3 ensures that we can invert ΦTΦ + λM as required by the

normal equation solution for the least squares problem. However, as a matter of

practice, one might find the presence of the ill-conditioned matrix ΦTΦ

misfortunate and seek to ensure numerical stability by choosing λ large enough.

It is worth noting the analysis above did not exploit any property of

B-splines, and as such it applies to any basis functions. Moreover, as λ→∞ the

fit approaches the best-fit line. In that sense, the regularization imposed by our

smoothing parameter is one that seeks to enforce as little curvature as possible. By

varying λ we can choose the trade-off between data fidelity and smoothness of fit.

Example 7. (Regularized B-spline Regression) Example fits for different

regularization values (Figure 4). Notice how high regularization flattens the fit. In

the limit, a regularized B-spline regression becomes the best fit line.The curves have

been shifted vertically to aid visual comparison.
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Efficiently Evaluating B-Splines

Recall from Definition 3.2 that B-splines are recursively defined in terms of

lower degree B-splines. This is problematic, since function evaluation of a basis

element is exponential in its degree. In short, the naive recursive implementation

of B-splines in wholly unsatisfactory. However, if the points of evaluation are

known a priori, we can restrict our attention to a discrete mesh and build the basis

functions bottom-up through dynamic programming. This algorithm runs in linear

time with degree, and is described by Algorithm 3.

Table 1 details the time savings afforded by the bottom-up approach. Run

was performed on a 1.7 Ghz Macbook Air with 4 Gb of memory running

MATLAB 2010. B-splines of various degrees were evaluated on a 100-point grid.

Notice how the bottom-up method is significantly more performant, in addition to

scaling roughly linearly, unlike the naive method, which takes an order of

magnitude more time to evaluate a degree 15 spline.
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Algorithm 3 B-spline Evaluation [6]

1. For i = 0, 1, . . . , m

Initialize each Ni,0 on discrete mesh as an array, where each element is the

basis function evaluated at a mesh point.

2. For j = 2, 3, . . . , n

Set Ni,j(t) = t−ti
ti+j−tiNi,j−1(t) +

ti+j+1−t
ti+j+1−ti+1

Ni+1,j−1(t) using element-wise array

operations. Each t here is one of the discrete mesh points.

Summary

B-splines are a good tool for interpolation and regression because of their

robust numerical properties. In this chapter we motivated the need for bases other

than the trigonometric and polynomial, as well as develop a framework for

regularizing the least squares solution by means of a roughness penalty. Finally we

showed how B-splines can be efficiently evaluated by using a bottom-up approach.

All these concepts are of paramount importance to our work with AFMs. The

excellent properties of B-splines allow us to accurately apply least squares

differences to AFM signals of varying time scales, while maintaining real-time

computational performance via the bottom-up evaluation approach. Additionally,

the free regularization parameter can be tuned to experiment-specific settings,

leading to a more customizable least squares differences fit.
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TABLE 1. Computational Complexity of B-Spline Evaluation (seconds)

Degree Naive Method Bottom-Up Method

1 0.0425 0.0228

2 0.0427 0.026

3 0.0428 0.0321

4 0.0431 0.0373

5 0.0436 0.0426

6 0.0439 0.048

7 0.0472 0.0534

8 0.0528 0.0468

9 0.0642 0.0629

10 0.0854 0.0694

11 0.129 0.066

12 0.2151 0.0797

13 0.3894 0.0853

14 0.7068 0.0686

15 1.4248 0.0927
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CHAPTER 4

INPAINTING

Inpainting is the process of recovering missing information in images. There

are many different inpainting algorithms, such as H1, TV-L1, LCIS, and many

more [8, 33, 4]. However, they all operate roughly in the same way: the

extrapolation of missing detail from known data.

Currently, the most popular paradigm for image inpainting is the

variational approach, whereby an energy functional is minimized by evolving a

partial differential equation [9, 3]. The state-of-the-art techniques exhibit a host of

interesting and desirable properties, such as the ability to complete edges and

extrapolate patterns in a nonlocal fashion [5]. Many papers have been written on

the subject of variational inpainting, and we will not belabor the point. Instead in

this chapter we aim to introduce a novel inpainting algorithm based on the

successful submissions to the Netflix Prize [18]. While we have had great success

applying standard inpainting algorithms to our problem domain, we view that the

alternative algorithm proposed herein holds much promise: it has the dual

capacity of pattern completion and propagation of irregular information.

As we shall see in the next chapter, this kind of image reconstruction plays

an important role in our proposal for fast atomic force microscopy. By scanning

more sparsely, we can achieve much quicker scans while reproducing accurate

images by inpainting the unknown regions.

Netflix Prize

In 2009, Netflix awarded the Netflix Prize. The Netflix Challenge was an
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open competition seeking the best collaborative filtering algorithm for predicting

users’ movie ratings, based on their previous predilections. All successful

algorithms had one thing in common. At heart, they performed a kind of singular

value decomposition to find a succinct description of each users’ movie ratings:

Formally, if B is the matrix of movie ratings, with users as rows and movies

as columns, then the winning algorithm sought to write B in a simpler form.

B ≈ PV



b11 b12 · · · b1l

b21 b22 · · · b2l

...
...

. . .
...

bn1 bn2 · · · bnl


n×l

≈



p11 · · · p1k

p21 · · · p2k

...
. . .

...

pn1 · · · pnk


n×k


v11 v12 · · · v1l

...
...

. . .
...

vk1 vk2 · · · vkl


k×l

This decomposition has an illuminating interpretation. Each user is

associated with a row Pi in P and each movie is associated with a column Vj in V.

Then the rating bij corresponds to the inner product between Pi and Vj. In essence

we are measuring how well a user’s preferences match with a movie’s descriptors.

The number of salient features k used for matching is arbitrarily chosen and

constitutes a dimensionality reduction.

In general we cannot hope to reconstitute B exactly if k is less than the

number of nonzero singular values of B, but we can get close. In fact, singular

value decomposition provides a way to factor an arbitrary matrix into the product

of smaller, simpler matrix. However, such expediency is not possible in the Netflix

Prize because the matrix B has unknown entries. Instead, standard gradient

descent provides a simple method to estimate P and V [18].
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Let B̃ = PV be an approximation to B. Then define the reconstitution

error by E = ||B−PV||2F , the sum of the squares of all the entries of the matrix

B−PV. Then

E =
∑
i

∑
j

(bij − b̃ij)2

∂E

∂Pq
= −2

∑
i

∑
j

(bij − b̃ij)
∂b̃ij
∂Pq

= −2
∑
j

(bqj − b̃qj)
∂b̃ij
∂Pq

Since b̃ij does not depend on Pq unless i = q. Therefore, we can write

∂E

∂Pq
= −2

∑
j

(bqj − b̃qj)Vj

Gathering the terms, we can express all derivatives simultaneously by

∂E

∂P
= −2(B−PV)VT

Similarly, we can derive the partial derivative with respect to V:

∂E

∂V
= −2PT(B−PV)

Armed with these derivatives, we can perform simultaneous dual gradient

descent on the nonlinear optimization problem. We start with a random guess for

P and V and follow the gradient (Algorithm 4). It is important to know that the

minimum found will be local in nature, and in fact, notice that if P and V are

both initialized to 0, then gradient descent will be at a standstill. Moreover, the

algorithm may fail to converge if the learning rate is set too high, or we pick a

particularly bad starting position. Nonetheless, this dual gradient descent

algorithm is powerful because of its strong convergence properties [18, 30].

For some positive learning rate τ and a mask M which is 0 where B is

unknown and 1 otherwise, the update rule is

P′ = P + τ [(B−PV) ~ M]VT

27



V′ = V + τPT[(B−PV) ~ M]

where ~ indicates element-wise multiplication. The choice of τ is application

dependent and a bit of a black-art. Too small a τ leads to slow convergence,

whereas if τ is too large the algorithm may altogether diverge.

Example 8. Texture completion

Example of the Netflix Algorithm’s capacity to complete patterns. An

artificial binary matrix exhibiting a checkerboard pattern can be recovered

completely despite damage (Figures 5 and 6). Since the checkerboard is a highly

regular pattern, the Netflix Algorithm finds a simple common basis with which to

succinctly describe the rows of the matrix. Experiment was performed on 1.7 Ghz

i5 processor Macbook Air with 4 Gb of memory and MATLAB 2010. While in the

limit complete recovery is achieved (Figure 5), it does take time. Table 2 shows

the, admittedly slow, convergence for the first few iterations.
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FIGURE 5. Convergence of error after many iterations
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FIGURE 6. The Netflix Algorithm repairing a damaged pattern

Algorithm 4 Netflix Algorithm

1. Randomly initialize the entries of P and V

2. While convergence criterion not met

Set P = P + τ [(B−PV) ~ M]VT

Set V = V + τPT[(B−PV) ~ M]
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TABLE 2. Errors for the first twenty iterations of the Netflix Algorithm

Iteration Error

0 9.8233

1 9.4105

2 9.0556

3 8.7489

4 8.4828

5 8.251

6 8.0481

7 7.8701

8 7.7131

9 7.5743

10 7.451

11 7.3412

12 7.2429

13 7.1547

14 7.0752

15 7.0033

16 6.9379

17 6.8783

18 6.8236

19 6.7733

...
...
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Penalized Dictionary Inpainting

As illustrated by Example 8, the method of finding a low dimensional

decomposition of a matrix with missing data can be useful in recovering damaged

patterns. With our proposed penalized dictionary inpainting we hope to leverage

that power but in an image processing setting. In effect, our aim is to create a

dictionary of image patches which collectively describe almost all the information

in the image. Furthermore, by imposing a regularization penalty, we may enforce a

desirable smoothing condition on the reconstructed image. For the case of images,

this regularization favors the reasonable assumption of similarity between

neighboring patches.

Before, we were concerned with reconstructing a low rank matrix from

partial information. That is, we assumed the rows of the matrix shared a compact,

common basis. To apply the Netflix Algorithm to images, we must instead collect

all p× p neighborhoods and express them as rows of the matrix B. Concretely, for

each square patch of the image we form a vector from serializing all the pixel

values and put said vector into the neighborhood matrix B (see Figure 7). Below

we demonstrate this transformation (column concatenation) on an example pixel

patch:
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14 250 253 255

13 14 250 254

10 12 14 250

10 10 12 13


⇒



14

13

10

10

250

14

12

10

253

250

14

12

255

254

250

13


In this way, we avoid the inherent anisotropy of the Netflix Algorithm and

also pick up nonlocal sensitivity – distant patches can be correlated [23]. Each row

Bi of neighborhood matrix B corresponds to some patch on the image. Since we

expect the image to mostly feature smooth pixel transitions, it is reasonable that

immediately adjacent patches be very similar. Hence, by regularizing we require

that the preference vectors Pi of neighborhoods that differ by exactly one pixel

shift be nearly the same:

||Pk − Pm||2 < ε

for adjacent patches k and m. Each neighborhood Np centered at pixel p may be
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FIGURE 7. The box highlights a typical neighborhood of an image

adjacent to two, three, or four different neighborhoods, contingent on it being an

edge case. Together, these are interpretable as a derivative penalty in the error

formulation. For instance, if we let the neighborhood size be of a single pixel, then

the penalty corresponds to the square of magnitude of the gradient at each pixel.

To encode this in matrix form, recall that left matrix multiplication yields linear

combinations of rows, so that each A?p picks out the difference for one direction.

Furthermore, the magnitude of each of these differences can be written as a

quadratic form. Hence, after taking derivatives we can promptly combine the

terms into the penalty matrix M.

E = ||B−PV||2F + λ
∑
p

{
||A(left)

p P||2 + ||A(right)
p P||2 + ||A(up)

p P||2 + ||A(down)
p P||2

}
Where λ is a regularization parameter and

Aleftp =

[
0 0 · · · 0 −1 1 0 0 · · · 0

]
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Arightp =

[
0 0 · · · 0 1 −1 0 0 · · · 0

]
Aupp =

[
0 · · · 0 −1 0 · · · 0 1 0 · · ·

]
Adownp =

[
0 · · · 0 1 0 · · · 0 −1 0 · · ·

]
with the 1 in the position corresponding to neighborhood Np’s row in P and the

−1 in the position corresponding to the neighborhood above, below, and besides.

For edge cases, we abide by the convention of an all 0s A?
p array for the missing

direction.

Proceeding as before, we differentiate the error by P and V. Summing up

the A?p we arrive at the derivatives

∂E

∂P
= −2(B−PV)VT + λMP

∂E

∂V
= −2PT(B−PV)

M is a tribanded matrix with entries in {−1, 0, 1, 2, 3, 4}, as displayed in Figure 8.

The space between the bands and values are governed by the image dimensions:

light blue corresponds to 0, dark blue to -1. Yellow, orange, and red correspond to

2, 3, and 4 respectively. Correctly forming the penalty matrix is challenging, we

refer the reader to the attached source code for a more thorough demonstration.

Briefly, the off-diagonals correspond to neighboring pixel-patches, hence the

periodic edge cases. As with the Netflix Algorith, we pursue a gradient descent

strategy for finding the minimum, but with the additional complexity of

dismantling the image into neighborhoods and rebuilding it from the computed

solution (Algorithm 5).

Summary
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FIGURE 8. The repeating pattern corresponds to rows in the image

Penalized dictionary inpainting borrows heavily from the Netflix

algorithm’s pattern insights. However, by adding a penalization term we hope to

both enforce geometric considerations upon the reconstructed image, as well as aid

in the propagation of information. Mathematically the λ term plays a role similar

to that of diffusion in the heat equation. To see this, consider a simplified error

formulation with only the regularized penalty term. In this case, it is easy to see

that it penalizes gradients. Figure 9 shows the dual capacity of the PDI algorithm,

both pattern completion and gradient diffusion, as applied to a checkerboard
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Algorithm 5 Penalized Dictionary Inpainting

1. Form neighborhood matrix from the image by placing each neighborhood Np

centered at pixel p as a row vector in B

2. Randomly initialize the entries of P and V

3. While convergence criterion not met

Set P = P + τ
{

[(B−PV) ~ M]VT − λMP
}

Set V = V + τPT[(B−PV) ~ M]

4. Recombine neighborhoods into an image. Overlapping areas are taken as the

average of all its respective values.

image. With no regularization, a perfect reconstruction of the original pattern is

recovered, courtesy of the low-rank completion properties of PDI. With higher

regularization (λ = 6) the algorithm starts favoring neighborhood similarity over

completing patterns. This blurring ability is integral in propagating known

information into unknown territory when the image exhibits irregularity, while

PDI’s grounding on linear algebraic structure favors maintaining and completing

patterns. The run, taking 1.3 seconds, was performed on a 1.7 Ghz Macbook Air

with 4 Gb of memory. Notice how higher regularization eschews reconstruction

accuracy for gradient propagation (Table 3).
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FIGURE 9. Penalized dictionary inpainting pattern completion with different λs
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TABLE 3. Convergence of PDI

Iteration Error (λ = 0) Error (λ = 6)

150 9.781237 21.179384

300 6.778566 16.812058

450 3.999007 12.472860

600 1.322371 10.441871

750 0.489060 9.479906

900 0.220346 8.943725
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CHAPTER 5

EXPERIMENTAL RESULTS

Equipped with the theoretical developments of the previous chapters, we

are now able to detail how to improve the speed of atomic force microscopy scans.

However, first we give a brief background of AFMs proper. We introduce the

common method of data processing currently in use and highlight its issues before

presenting our own alternative – sparse cycloidal and spiral scans coupled with

least squares differences noise removal and inpainting for image rendering.

Atomic Force Microscopy

Atomic force microscopy is a type of microscopy which acquires its images

not by optical means, but by measuring the force interactions between a

mechanical cantilever and sample. High resolution images can be obtained by

methodically scanning an area of a sample and recording these minute interactions.

Atomic force microscopes (AFMs) can attain sub-nanometer resolution and, under

ideal circumstances, even achieve atomic resolution. In addition to their fantastic

imaging capabilities, atomic force microscopes can also operate in the absence of a

vacuum and even in liquid environments. Furthermore, samples need not be

especially prepared for imaging, as with alternative microscopy approaches, such

as tunneling or scanning electron microscopes. For these reasons, AFMs have

garnered some prominence in applied scientific research [11].

The way atomic force microscopes work is surprisingly simple: A laser is

shone on a reflective cantilever and the reflected light is captured by a photodiode.

The cantilever has a needle-like tip which is deflected by interactions with the
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surface of the sample. These deflections translate to changes in the photodiode’s

measurements. Finally, to obtain an image, the entire sample table is moved under

the tip by very precise piezoelectric motors. See Figure 10 for a schematized

drawing.

While AFMs have excellent resolution and performance characteristics,

they are not without problems. They tend to be considerably slower than their

scanning electron microscope counterparts. In addition, thermal fluctuations cause

the laser measurements to drift [31, 25, 15]. Lengthy scan times further exacerbate

the drift problem, as it introduces significant distortion to images. Even more

insidiously is the drift and creep present in the piezoelectric motors. The operation

of an atomic force microscope requires very finely tuned movements in the order of

nanometers or less. The piezos can indeed be very precise, but they suffer from

highly nonlinear behavior and hysteresis [14, 16]. Because of this, scanning a

predetermined path is not always so straight-forward. Finally, because of the

sensitivity of the AFM apparatus, it is particularly susceptible to vibrations and

mechanical resonance.

The present cutting edge research in atomic force microscopy is concerned

with increasing scan speed, the goal being “video rate” scans, i.e. image

reproduction at several Hz [29]. The primary focus has been on improving the

hardware, but recently alternative scan modes have been suggested; some with the

hopes of forestalling the mechanical resonance problem [2, 10, 22], while others

aim to find and track only the salient features [12, 13, 20].

Raster Scan And Line Flattening

Raster scanning is the traditional scan technique and still very much the

norm. In raster scanning, the needle moves back and forth across the sample in a

sawtooth pattern. Because of the sharp transition in velocity at the extremes of
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FIGURE 10. Atomic force microscopy schematic

[35]

the journey, mechanical vibrations are introduced to the machine setup. This

presents problems when increasing the scan speed, as the higher frequencies can

quickly cause resonance within the apparatus, thereby distorting the image.
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An advantage of raster scanning is the simplicity of processing the raw

image to remove thermal drift. By assuming that each scan line has an average

intensity of zero and that the thermal drift is adequately modeled by a linear

function, each line can be processed individually. This technique is called line

flattening and it works quite well when the assumptions hold, albeit introducing

some distortions. However, when the assumptions are faulty, significant

information can be lost (Figure 12). Additionally, since each scan line is handled

separately, there is no continuity enforced along the orthogonal direction, leading

to visible striations. Nonetheless, raster scan with line flattening has remained the

de facto standard in atomic force microscopy and does indeed perform admirably

well in the vast majority of cases. Figure 11 depicts how line flattening is highly

capable of removing thermal drift, which manifests itself as the gradient of the left

image. While the recovered image on the right contains a lot of fine detail, it also

exhibits the typical glitches and striations associated with line flattening.

FIGURE 11. Line flattening of a raster scan with thermal drift
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FIGURE 12. Distortions are introduced when assumptions do not hold

Alternative Scan Paths

Recent literature has introduced alternative scan paths to address the

mechanical resonance problem which has impeded increasing scanning frequency.

Prominent among them are spiral and cycloid paths [21, 34]. Because these paths

are comprised of arcs, they exhibit much more favorable frequency characteristics.

To wit, cycloidal scans have only two frequencies in Fourier space whereas

(constant linear velocity) spiral scans have bounded and small frequency when the

region near the origin is excluded. By leveraging this property of the two scans,

video rate and near video rate scanning has been demonstrated on regular AFMs

without highly specialized equipment.

An intrinsic property of the cycloid scan is its self-intersections. To some

degree, this redundancy indicates wastes of effort and time, but the increased tip

velocity more than makes up for this. Moreover, these overlapping observations
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allow us to use the powerful tools developed in Chapter 2 (least squares differences

with B-splines) to remove thermal drift. So desirable is this property, that we

propose the double cycloid scan to introduce intersections for the express purpose

of employing the differences algorithm to thermal drift correction. Figures 13 and

14 show cycloid and double Archimedean spiral paths with their associated

“bundle plots”. To understand these bundle plots, recall that any self-intersection

in the scan path corresponds to a point on the sample substrate being visited

twice. Each line segment in the bundle corresponds to one such self-intersection,

connecting the two observations in time.

FIGURE 13. Cycloid scan path with its associated bundle plot

Before implementing these ideas on a physical atomic force microscope, we

investigated the algorithms in a simulated environment. Producing drift corrected

images from raw sensor data actually involves a complicated pipeline: To apply the

differences algorithm to the collected data, we first identify all self-intersections by

way of a quadtree – a data structure from computer science well-suited for such

44



FIGURE 14. Spiral scan path with its associated bundle plot

tasks [17]. This process is in practice made more involved by the discrete nature of

the AFM’s signal. Only after thusly detrending the data, did we employ inpainting

algorithms to fully render the image. Figures 15 and 16 demonstrate the dramatic

effect background removal has on the rendering of cycloid scanned data. In

particular, Figure 16 is almost completely devoid of any ringing or artifacts

induced by the simulated thermal drift. These simulated results were confirmed on

our experimental data, which displays similar improvement (Figure 20).

Inpainting And Sparsity

Inpainting plays a double role when it comes to alternative scans such as

the double Archimedean spiral and cycloid scans. Firstly, by scanning more

sparsely and inpainting the missing regions, we can capture images in less time.

Secondly, by the undirected nature of these scans, it is unclear how to reconstitute

an image from position and intensity triplets as compared to the simplicity of
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FIGURE 15. Image generated from a simulated cycloid scan sans drift correction

rendering raster images. The easy and correct solution is to inpaint the domain

while holding the known data fixed [12].

While it had been our hope that Penalized Dictionary Inpainting (PDI)

would prove to be a competitive algorithm for rendering AFM images, it is simply
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FIGURE 16. Image generated from a simulated cycloid scan after drift correction

too computationally expensive at this time to run along side a video rate scanner.

Such is also the case for more sophisticated inpainting algorithms like TV-L1,

therefore in practice we used a fast implementation of the heat equation H1

algorithm for rendering our images [4]. Despite its computational shortcomings,
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Penalized Dictionary Inpainting fared favorably against TV-L1 for the types of

images we are interested in, when time is not a constraint. Figure 17 shows a

side-by-side comparison between PDI and TV-L1. PDI successfully propagates

information into the unknown regions and more closely resembles the original

(Figure 7). TV-L1 on the other hand, makes for very crisp edges. Figure 18 is a

screenshot of our algorithm as it converges to the optimal solution.

FIGURE 17. Comparison between PDI (left) and TV-L1 (right)

Putting It All Together

We had access to an atomic force microscope at the Lawrence Berkeley

National Laboratory which we programmed to use our routines for scanning. As

detailed before, the Fourier spectra of cycloid and spiral scans allow for a much

faster scan than possible with the conventional raster pattern. However, practical

considerations limited our ability to scan as fast as we desired. Namely, the

cantilever itself floats above the sample, kept in check by a z-axis piezo, whose

latency and speed fundamentally limited how fast we could scan across high-relief
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FIGURE 18. A screenshot demonstrating PDI’s slow convergence

topography. Furthermore, the considerable nonlinearities in the piezoelectric

motors driving the scan table made it difficult to localize the tip position. This

problem is further compounded by the very low resolution position sensors that
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were available to us. Despite these challenges, the images we gathered in the lab

show much promise. Additionally, we did meet our goal of improving scan time

while retaining image quality. In some cases we were able to increase the speed by

four-fold. Figure 19 shows the successful imaging of two calibration grids using

cycloid scan. The dense cycloid scan, albeit slow, yielded very clear images of the

high relief topography. Figure 20 is a near real-time (0.25 Hz) rendering of

spiral-scanned annealed gold with background noise removed via least square

spline differences and H1 inpainting.

FIGURE 19. Cycloid scans of calibration grids

Summary

In this chapter we showed how our methodology of non-raster scan paths,

differences drift correction, and sparse image inpainting can be applied to atomic

force microscopy to produce fast and accurate scans. Promising results were

achieved when testing our techniques on an AFM in the Lawrence Berkeley

National Laboratory.
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FIGURE 20. Before and after drift correction images of spiral scanned gold

51



CHAPTER 6

SUMMARY AND CONCLUSIONS

In this paper we presented two mathematical ideas for the analysis of data:

the theory of differences and penalized dictionary inpainting. We also illustrated

how they can be applied to the overarching idea of sparse, alternative scan paths

for atomic force microscopy.

Least Squares Differences

The differences algorithm seems especially well-suited to the

self-intersecting paths of fast atomic microscopy, as it provides a powerful

alternative to the unsatisfactory line flattening approach. Least squares differences

doesn’t suffer from the internal inconsistencies and pathological distortions

inherent to the established methods.

Penalized Dictionary Inpainting

Penalized dictionary inpainting exhibits non-local sensitivity, with its

capability to complete regular patterns. However, it runs very slowly so it is not a

competitive choice, given the recent innovations in solving L1-Regularized

problems [19]. With increasing computational power, it may be that this

algorithm becomes practical, especially because the matrix operations of the

algorithm are highly parallelizable.

Future Work

There is still much to improve in applying differences to atomic force

microscopy. Because of hardware limitations, the position sensors on an atomic

force microscope do not have a very high precision. This shortcoming, coupled
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with piezo creep and drift, lead to erroneous positional measurements. These can

in turn spoil the fit generated by least squares differences. To combat this

insidious problem, we have been investigating filtering the position sensor signal.

In particular, in our future data collections, we would like to apply Kalman

filtering, or perhaps the Viterbi algorithm, to better understand the path the

atomic force microscope sampled. The primary difficulty in formulating these

Markov models is characterizing the physics of the process evolution. Nonetheless,

this information – albeit arcane – can be found within the literature [14, 16], hence

we are confident significant strides can be made in this area.
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SOURCE CODE

54



We present here source code for the relevant routines – splinesmooth, bpoly,

bspline, and pdi – as well as two example scripts for how to use them.

Additionally, bsplineslow is included for completeness and for comparison.

Listing 6.1. Differences Fitting Example Script

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Least squares difference example script for how to use splinesmooth()%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 f = @(t) sin(t) + cos(t) + .3∗t; % Simulated signal

6 T = linspace(−10,10,5000); % Discrete mesh

7 Ti = T(ceil(rand(2,400)∗5000)); % Randomly generated temporal differences (intersection times)

8 Z = f(T);

9 Delta = f(Ti(2,:)) − f(Ti(1,:)); % Simulated observed differences

10

11 %%

12 figure; hold on;

13 plot(T, Z, ’g’);

14 [A B M] = bpoly(Ti, T, 20, 0.0001); % Sets up matrices needed by splinesmooth(). See bpoly()

15 newZ = splinesmooth(Delta, A, B, M, 0); % Smoothing with 0 regularization

16 plot(T, newZ+2, ’b−−’);

17 newZ = splinesmooth(Delta, A, B, M, 500000); % Smoothing with large regularization

18 plot(T, newZ+4, ’r−−’);

19 legend(’original’, ’lambda = 0’, ’lambda = 500000’);

20 title(’Polynomial Basis’);

21 hold off;

22 clear A

23 clear M
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24 clear newZ

25

26 %%

27 figure; hold on;

28 plot(T, Z, ’g’);

29 knots = [T(1)−2 T(1)−1 linspace(T(1), T(end), 10) T(end)+1 T(end)+2]; % knot vector

30 [A B M] = bspline(Ti, T, knots, 3, 0.0001); % Sets up matrices needed by splinesmooth()

31 newZ = splinesmooth(Delta, A, B, M, 0); % No regularization

32 plot(T, newZ+2, ’b−−’);

33 newZ = splinesmooth(Delta, A, B, M, 900000);

34 plot(T, newZ+4, ’r−−’);

35 legend(’original’, ’lambda = 0’, ’lambda = 900000’); % Large regularization

36 title(’B−Spline Basis’);

37 hold off;

Listing 6.2. Differences Smoothing Spline

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % splinesmooth() fn for least squares differences fitting a signal. %

3 % Matrix set up for A, B, M are performed by bpoly(), bspline().%

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 function [ newZ ] = splinesmooth( Delta, A, B, M, Lambda )

6 % Delta: Observed differences

7 % A: Matrix of basis differences values (rows) over intersections Ti

8 % B: Matrix of basis values over all time

9 % M: Second derivative penalty matrix, the ijth entry

10 % corresponds to the integral of the second derivative of

11 % the ith basis times the second derivative of the jth
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12 % basis over T.

13 % Lambda: Parameter enforcing smoothness condition. If set to 0,

14 % fit obtained is the ordinary least squares of the basis

15 % onto the data. As Lambda approaches infinity the

16 % solution converges to the least squares line fit.

17 Alpha = linsolve(A∗A’ + Lambda ∗ M, A∗Delta’);

18 newZ = Alpha’ ∗ B; % Smoothing spline solution over a mesh. Same time dimension as B.

19 end

Listing 6.3. Differences Polynomial Basis Evaluator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % bpoly() sets up the matrices required by splinesmooth() fn %

3 % when performing a polynomial fit with a mesh of step size h %

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 function [ A, B, M ] = bpoly( Ti, T, Degree, h )

6 % T: Time span for computing polynomial matrices

7 % Ti: Two dimensional matrix of intersection times

8 % Degree: The degree of the polynomial fit desired

9 % h: Step size for computing penalty matrix approximation

10 Tlower = Ti(1,:);

11 Tupper = Ti(2,:);

12 DiffT = T(1):h:T(end);

13 B = cell2mat(arrayfun(@(k) (T.ˆk)’, 1:Degree, ’UniformOutput’, false))’;

14 A = cell2mat(arrayfun(@(k) (Tupper.ˆk − Tlower.ˆk)’, 1:Degree, ’UniformOutput’, false))’;

15 K = cell2mat(arrayfun(@(k) (DiffT.ˆk)’, 1:Degree, ’UniformOutput’, false))’;

16 K = diff(K, 2, 2); % Approximates second derivative of basis elements over time span

17 M = K∗K’ ./ hˆ2; % Approximately computes the integrals, for penalty matrix M
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18 end

Listing 6.4. Fast Differences Smoothing Spline Evaluator [6]

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % bspline() uses bottom−up approach to set up the matrices required %

3 % by splinesmooth() when performing a spline fit with mesh step size h%

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 function [ A, B, M ] = bspline( Ti, T, Knots, Degree, h )

6 % Input:

7 % Ti Times on which intersections occurred, 2xl matrix

8 % T Time range for basis evaluation and penalization matrix

9 % Knots Vector of knots

10 % Degree Degree of basis elements

11 % h Mesh size for evaluation and taking second differences

12 % Output:

13 % A Matrix of basis differences values on intersections (rows)

14 % B Matrix of basis values over relevant times T

15 % M Second derivative penalty matrix, the ijth entry

16 % corresponds to the integral of the second derivative of

17 % the ith basis times the second derivative of the jth

18 % basis over T.

19 % See also bsplineslow

20 m = length(Knots);

21 Tlower = Ti(1,:); % Lower intersection times

22 Tupper = Ti(2,:); % Upper intersection times

23 DiffT = T(1):h:T(end); % Fine mesh for computation of second differences

24 basisT = zeros(m−1, length(T)); % Basis values on relevant times T
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25 basisL = zeros(m−1, length(Ti)); % Basis values on Tlower of intersections

26 basisU = zeros(m−1,length(Ti)); % Basis values on Tupper of intersections

27 basisD = zeros(m−1,length(DiffT)); % Basis values on a fine mesh for second differences

28 H = @(t) t >= 0; % Heaviside helper function

29 % First we precompute all the 0 degree spline elements we will need in the time span

30 for j = 1:m−1

31 basisT(j,:) = H(T − Knots(j)) .∗ (1 − H(T − Knots(j+1)));

32 basisL(j,:) = H(Tlower − Knots(j)) .∗ (1 − H(Tlower − Knots(j+1)));

33 basisU(j,:) = H(Tupper − Knots(j)) .∗ (1 − H(Tupper − Knots(j+1)));

34 basisD(j,:) = H(DiffT − Knots(j)) .∗ (1 − H(DiffT − Knots(j+1)));

35 end

36 for n = 1:Degree % Now loop over the degrees until we reach the desired order

37 for j = 1:m−n−1 % Update new basis elements according to recursive formula

38 % Update basisT

39 f1 = basisT(j,:);

40 f2 = basisT(j+1,:);

41 basisT(j,:) = (T − Knots(j)) ./ (Knots(j+n) − Knots(j)) .∗ f1 + ...

42 (Knots(j+n+1) − T) ./ (Knots(j+n+1) − Knots(j+1)) .∗ f2;

43 % Update basisL

44 f1 = basisL(j,:);

45 f2 = basisL(j+1,:);

46 basisL(j,:) = (Tlower − Knots(j)) ./ (Knots(j+n) − Knots(j)) .∗ f1 + ...

47 (Knots(j+n+1) − Tlower) ./ (Knots(j+n+1) − Knots(j+1)) .∗ f2;

48 % Update basisU

49 f1 = basisU(j,:);

50 f2 = basisU(j+1,:);

51 basisU(j,:) = (Tupper − Knots(j)) ./ (Knots(j+n) − Knots(j)) .∗ f1 + ...
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52 (Knots(j+n+1) − Tupper) ./ (Knots(j+n+1) − Knots(j+1)) .∗ f2;

53 % Update basisD

54 f1 = basisD(j,:);

55 f2 = basisD(j+1,:);

56 basisD(j,:) = (DiffT − Knots(j)) ./ (Knots(j+n) − Knots(j)) .∗ f1 + ...

57 (Knots(j+n+1) − DiffT) ./ (Knots(j+n+1) − Knots(j+1)) .∗ f2;

58 end

59 end

60 K = diff(basisD(1:m−1−Degree,:), 2, 2); % Approximate derivatives

61 A = basisU(1:m−1−Degree,:) − basisL(1:m−1−Degree,:);

62 B = basisT(1:m−1−Degree,:);

63 M = K ∗ K’ ./ hˆ2; % Approximate integrals for penalty matrix M

64 end

Listing 6.5. Slow Differences Smoothing Splines Evaluator

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % bsplineslow() returns a function handle for a spline. It uses a %

3 % naive evaluation strategy which leads to exponentially many %

4 % function calls. − Example usage: func gen = bsplineslow(T) %

5 % my spline = func gen(2, 4) returns a function handle to the %

6 % second spline (with respect to the knot vector) of degree 4. %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 function [ spline ] = bsplineslow( T )

9 % Input:

10 % T: Knot vector

11 %

12 % Output:

60



13 % spline−gen: A function which generates splines of arbitrary degree.

14 cache = {}; % Shares a little memory between recursive calls

15 H = @(t) t >= 0; % Heaviside function

16 for j = 1:length(T) − 1 % Populates the base cases for the spline

17 cache{j,1} = @(t) H(t − T(j)) .∗ (1 − H(t − T(j+1))); %#ok<AGROW>

18 end

19 function [ func ] = recursion( j, n ) % The spline generating function

20 if j + n > length(T)

21 error (’j + n must not exceed the number of control points.’)

22 end

23 [l, k] = size(cache);

24 if j > l || n > k || isempty(cache{j,n}) % Checks to see if we have already cached this spline

25 f1 = recursion(j, n−1); % recursively retrieves lower degree spline definitions

26 f2 = recursion(j+1, n−1); % recursively retrieves lower degree spline definitions

27 % Applies recursive definition to compute unknown basis values

28 cache{j,n} = @(t) (t − T(j)) ./ (T(j+n−1) − T(j)) .∗ f1(t) + ...

29 (T(j+n) − t) ./ (T(j+n) − T(j+1)) .∗ f2(t);

30 end

31 func = cache{j,n};

32 end

33 spline = @recursion;

34 end

Listing 6.6. Penalized Dictionary Inpainting Example Script

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Penalized Dictionary Inpainting example script for how to use pdi()%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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4 colormap gray

5 % Creating an artificial data set

6 I = [1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0;

7 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1;

8 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0;

9 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1;

10 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0;

11 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1;

12 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0;

13 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1;

14 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0;

15 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1;

16 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0;

17 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1];

18 figure(1); imagesc(I); title(’original’);

19 Ic = I;

20 Ic(rand(size(I)) > .4) = nan; % Damaging a portion of it

21 Icdisplay = Ic;

22 Icdisplay(isnan(Ic)) = .5;

23 figure(2); imagesc(Icdisplay); title(’damaged’); colormap gray

24 Ip = pdi(Ic, 6, 4, 0); % Reconstructing damaged image with pdi()

25 figure(3); imagesc(Ip); title(’reconstructed lambda = 0’); colormap gray

26 figure(4); imagesc(pdi(Ic, 6, 4, 6)); title(’reconstructed lambda = 6’); colormap gray

Listing 6.7. Penalized Dictionary Inpainting [18, 23]

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %pdi() implements the Penalized Dictionary Inpainting Algorithm%
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3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 function [Ip, error] = pdi(I, p, k, lambda)

5 % Input:

6 % I: (Damaged) Image we wish to reconstruct

7 % p: Dimension of neighborhood (size of window). It is important that this value

8 % be comparable to the size of the structure in the images if we wish to

9 % effectively capture nonlocal information and complete patterns

10 % k: Number of singular vectors to keep.This controls for the complexity of the

11 % learned dictionary of pieces

12 %

13 % Output:

14 % Ip: Inpainted image

15 % error: Error progression over iterations

16 fprintf(’Populating neighborhood matrix ... ’);

17 A = neighborhoods(I, p); % Creates neighborhood matrix from image I

18 fprintf(’DONE\n’);

19 tau = 0.003;

20 tol = 10ˆ−2;

21 maxiter = 1000;

22 Mask = isfinite(A);

23 A(˜Mask) = 0;

24 P = rand(size(A,1), k);

25 V = rand(k, size(A,2));

26 fprintf(’Creating penalty matrix ... ’);

27 M = penaltyMatrix(I, p); % Creates the penalty matrix for gradient descent

28 fprintf(’DONE\n’);

29 fprintf(’Iterating ... \n’)
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30 counter = 1;

31 Delta = A − P∗V .∗ Mask;

32 error = norm(Delta, ’fro’);

33 % Perform gradient descent

34 while error(end) > tol && counter < maxiter

35 if mod(counter, 150) == 0 % Display progress occasionally

36 fprintf(’Iteration %d: Error = %f\n’, counter, error(end));

37 end

38 counter = counter + 1;

39 P = P + tau ∗ Delta ∗ V’ − tau ∗ lambda ∗ M ∗ P; % Update P

40 V = V + tau ∗ P’ ∗ Delta; % Update V

41 Delta = (A − P∗V) .∗ Mask; % Update Delta

42 error(end+1) = norm(Delta, ’fro’);

43 end

44 B = P∗V;

45 Ip = reconstitute(B, I, p); % Recover image from neighborhood matrix representation

46 end

47

48 function [ A ] = neighborhoods(I, p)

49 % Runs a sliding window across image and creates serialization for neighborhood matrix

50 [h w] = size(I);

51 A = zeros((w−p+1) ∗ (h−p+1), pˆ2);

52 for i = 1:h−p+1

53 for j = 1:p

54 A((i−1)∗(w−p+1)+1 : i∗(w−p+1), j∗p−p+1: j∗p) = I(i:i+p−1, j:w−p+j)’;

55 end

56 end
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57 end

58

59 function [ M ] = penaltyMatrix(I, p)

60 % Creates penalty matrix corresponding to one−pixel shifted differences

61 % Edge cases are tricky.

62 [h w] = size(I);

63 maindiag = repmat([3 repmat(4, 1, w−p−1) 3], 1, h−p−1);

64 maindiag = [2 repmat(3, 1, w−p−1) 2 maindiag 2 repmat(3, 1, w−p−1) 2];

65 adjdiag = repmat([repmat(−1, 1, w−p) 0], 1, h−p+1);

66 fardiag = −ones(1, size(maindiag, 2));

67 M = spdiags([maindiag’ adjdiag’ adjdiag’ fardiag’ fardiag’], ...

68 [0 1 −1 (w−p+1) −(w−p+1)], (h−p+1)∗(w−p+1), (h−p+1)∗(w−p+1));

69 end

70

71 function [ Ip ] = reconstitute(B, I, p)

72 % To recover image from neighborhood matrix B, we take the average pixel

73 % intensity across its various representations.

74 [h w] = size(I);

75 Ip = zeros(h, w); % Initiate pixel intensity to 0

76 hits = zeros(size(Ip)); % Number of times a pixel is represented, used for averaging

77 for i = 1:h−p+1

78 for j = 1:p

79 Ip(i:i+p−1, j:w−p+j) = Ip(i:i+p−1, j:w−p+j) + ...

80 B((i−1)∗(w−p+1)+1 : i∗(w−p+1), j∗p−p+1: j∗p)’; % Increment pixel intensity

81 hits(i:i+p−1, j:w−p+j) = hits(i:i+p−1, j:w−p+j) + 1; % Increment representation count

82 end

83 end
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84 Ip = Ip ./ hits; % take average (pixel−wise)

85 end
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