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Abstract—The theory of illumination subspaces is well developed and has been

tested extensively on the Yale Face Database B (YDB) and CMU-PIE (PIE) data

sets. This paper shows that if face recognition under varying illumination is cast as

a problem of matching sets of images to sets of images, then the minimal principal

angle between subspaces is sufficient to perfectly separate matching pairs of

image sets from nonmatching pairs of image sets sampled from YDB and PIE.

This is true even for subspaces estimated from as few as six images and when

one of the subspaces is estimated from as few as three images if the second

subspace is estimated from a larger set (10 or more). This suggests that variation

under illumination may be thought of as useful discriminating information rather

than unwanted noise.

Index Terms—Face recognition, illumination subspaces, principal angle,

set-to-set classification.

Ç

1 INTRODUCTION

THE computer vision community has made great progresses in
understanding how the appearance of objects in images changes
with illumination. For instance, it is known that the set of images of
a convex Lambertian surface acquired under varying illumination
conditions forms a convex “illumination cone” [1]. Moreover, it has
been shown both empirically and theoretically that this illumina-
tion cone is intrinsically low-dimensional [2], [3], [4], in the sense
that illumination cones can be embedded in approximately 9- or
10-dimensional linear subspaces, which are sometimes called
“illumination subspaces.”

To help test these theories, the Yale Face Database B (YDB) [5]

and CMU-PIE [6] data sets were created to collect images of

subjects under varying illumination, under conditions that match

as closely as possible the assumptions underlying the theory of

illumination cones. These databases have therefore been used to

test many face recognition approaches that either model or remove

illumination variations. See [5], [7], and [8] for lists of examples.
This paper makes two empirical claims about the nature of the

YDB and PIE data sets and, in particular, about the subspaces

spanned by sets of frontal images of any single subject sampled

from these data sets. Stated formally, the first claim is given as
follows:

Claim 1. Let Si be the complete set of frontal images of subject i in either

the YDB or PIE data set. Let IIi be the set of all linear subspaces

spanned by k or more images in Si and let X i and Yi be any two

elements of IIi. Finally, define P ðX ;YÞ to be the minimal principal

angle between two subspaces X and Y. Then, for k ¼ 10 in the YDB

and k ¼ 6 in the PIE data set

P ðX i;YiÞ < min
j 6¼i

P ðX i;YjÞ; P ðYi;X jÞ
� �

:

Informally, the minimum principal angle between any two
subspaces estimated from a sufficient number of frontal images of
a single subject under varying illumination will always be smaller
than the minimum principal angles between subspaces estimated
from images of different subjects. The connection between the
theory of illumination cones and this claim is summarized in
Section 3. The empirical evidence for this claim is presented in
Sections 4 and 5 and, specifically, Figs. 2 and 3.

Our second claim considers the case where the sets of images
being compared may not be of equal size. Stated formally, the
second claim is given as follows:

Claim 2. Let Si and P be defined as above. Let X i;k represent a subspace

estimated from exactly k frontal images of subject i and let Yj;l
represent a subspace estimated from exactly l frontal images of subject

j, both from PIE. Then,

P ðX i;k;Yi;lÞ < min
j6¼i

P ðX i;k;Yj;lÞ; P ðYi;l;X j;kÞ
� �

;

for all k � 3 and l � 10.

The empirical evidence supporting this claim is presented in
Section 6 and, specifically, Fig. 4.

There are at least three reasons why these claims are important.
First, they offer solid measurable support for predictions arising
from the theory of illumination subspaces. The importance of this
empirical support should not be underestimated given the
simplifying assumptions upon which illumination subspace theory
rests and the degree to which these assumptions are violated by
even well-controlled data collections such as YDB or PIE.

The second reason these claims are important is that the
measure proposed for comparing linear subspaces derived from
image samples, namely, the minimum principal angle, is about as
close as we can come to a simple objective universal metric for
comparing linear subspaces. In our other work [9], we have
considered alternative measures of geodesic distance on the
Grassmann manifold. However, this additional complexity is not
necessary here, and our claims as stated above are readily
understood simply in terms of the minimum principal angle: a
concept we will both review and illustrate in Section 3.

The third reason these claims are important is that they
represent a basic intrinsic property of the data sets themselves
and not a claim about a particular algorithm. In other words, on
these data sets, there is a simple comparative metric that
determines whether two subspaces were estimated from the same
subject or different subjects. As a result, any face recognition
system that compares randomly selected sets of frontal images of
one subject to sets of images of another should be expected to
perform perfectly when using a sufficient number of frontal
images, namely, 10 images for YDB and six images for PIE.

There is also a larger message implied by the image set
separability of both the YDB and PIE imagery summarized in
Claim 1 and Claim 2. While the common view is that variation in
illumination is a confounding nuisance, under the correct
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circumstances, the variation in appearance of an individual’s
face under different illumination conditions is highly discrimi-
natory and potentially useful. Indeed, future face recognition
systems might do well to acquire many images under
intentionally varied lighting and then approach face recognition
as a subspace-to-subspace, rather than image-to-image, matching
problem.

2 BACKGROUND

The YDB and PIE data sets have been widely used to study face
recognition algorithms and to develop new face recognition
techniques that will work under varying illumination. The most
common approach is to try to remove the effects of illumination
before matching, as in [7], [10], and [11]. Closer to this paper are
methods that preserve illumination variations, although most of
these define recognition as the task of matching either single
images to single images or single images to a set of images, for
example, [5], [12], and [8].

There are relatively fewer works on set-to-set image compar-
isons. Srivastava et al. [13] looks for an optimal linear subspace
representation on the Grassmann manifold to represent a set of
images. Similar to many other recognition schemes, this type of
comparison requires a significant amount of training a priori
before recognition can take place. Although perfect recognition
after extensive training is good, it is even better to be able to use
general subspace representations to achieve perfect recognition
without extensive training.

At the heart of our findings is a well-known method for
comparing two linear subspaces, namely, principal angles. Many
others have used principal angles in the context of face recognition.
For example, Yamaguchi et al. [14] used the minimal/first
principal angle (or maximum correlation) between training and
testing subspaces to capture the similarity between the two sets
and called their method the Mutual Subspace Method (MSM). Since
then, the concept of canonical correlation has been widely used.
For example, the central idea in the Constraint Mutual Subspace
Method (CMSM) [15] is that by projecting the probe and gallery
subspaces to a constrained subspace (generated by considering the
difference subspaces), the new principal angle preserves the
difference between people while excluding unnecessary compo-
nents for recognition, namely, undesirable variations.

In the Multiple Constrained Mutual Subspace Method (MCMSM)
[16], multiple constrained subspaces are created using methods of
ensemble learning (bagging and boosting), and MSM is used to
classify. The combined similarity between two subspaces is given
by combining the similarities calculated on each constrained
subspace. In [17] and [18], the authors proposed a new feature
extraction method and a new feature fusion strategy based on the
generalized canonical correlation analysis (GCCA). Kim et al.
proposed in [19] a method that maximizes the canonical correla-
tions of within-class sets and minimizes the canonical correlations
of between-class sets that is inspired by Linear Discriminative
Analysis.

Other extensions of Canonical Correlation Analysis include
Kernel Principal Angles (KPAs) by Wolf and Shashua [20] and
Incremental Kernel SVD by Chin et al. [21]. Kim et al. [22] addressed
one of the major shortcomings of MSM-based methods: ad hoc
fusion of information contained in different principal angles. They
proposed using principal angles to build simple weak classifiers,
which are then combined using the AdaBoost algorithm [23].

One major distinction between the prior works and the
proposed method is the requirement of training. This could be
subspace training [15], [16], [24], feature extraction [18], [19], or
classifier training [22]. In contrast, face recognition algorithms
based on principal angles may not require training, and Claims 1
and 2 suggest that they may obtain excellent results when lighting
variations are observable.

Our findings strongly suggest that the minimum principal
angle is useful in the context of face recognition, and it is
reasonable to ask about the maximum principal angle. The
maximum or largest principal angle is related to the notion of
distance between equidimensonal subspaces that are defined
based on the orthogonal projections onto the subspaces [25], [26].
While the largest principal angle is useful in a lot of statistical
applications, our experience suggests that it conveys little useful
information for set-to-set face recognition.

3 ILLUMINATION SUBSPACES AND PRINCIPAL ANGLES

The theory of illumination cones and the illumination subspaces
they lie in is well developed. It assumes that the geometry of the
scene is invariant and that the surfaces are convex and Lambertian.
Care was taken in the construction of both the YDB and PIE data
sets to try to match, as much as possible, these assumptions. Thus,
empirical evidence from these data sets suggests that the theory is
a good predictor of how empirically estimated illumination
subspaces behave.

The theory predicts that for any given person and pose, a
collection of images drawn from a wide variety of different
lighting conditions are well approximated by a 9- or 10-dimen-
sional linear subspace. This prediction, in turn, suggests that the
linear subspace spanned by an appropriately distributed and
modest-sized set of sample images taken under varying illumina-
tion should span a reasonable portion of the entire illumination
subspace. Moreover, if for a given person’s face, the process is
repeated using two sets of, say, 10 sample images each, then the
two linear subspaces spanned by these sample images should
approximate the same illumination subspace and should therefore
be similar. It is through this connection that the empirical results
below, which compare the similarity of linear subspaces derived
from images under varying illumination, reveal just how well the
implications of the theory are manifested in face images from the
YDB and PIE data sets.

3.1 Measuring Principal Angles

To find the minimum principal angle between pairs of subspaces
that are basis independent, we use a robust method developed by
Björck and Golub [27]. Formally, let X and Y be collections of k and
l images:

X ¼ ½x1; x2; . . . ; xk� and Y ¼ ½y1; y2; . . . ; yl�; ð1Þ

where column vectors xi and yi are understood to contain n pixels
from a face image that has been geometrically normalized to place
the eyes at a fixed location. In addition, pixels outside the face oval
have been cropped.

It is also understood that all the images in X are of the same
person, and all the images in Y are of the same person. Sets X and
Y may contain images of the same or different people. The two
image sets X and Y span two vector subspaces X and Y in IRn,
respectively.

Given that the YDB and PIE data set images sample variations
in illumination, as k grows beyond approximately 10, much of the
total energy/variation in X and Y is captured by the first
10 dimensions. However, there are other sources of variation,
and we have never observed an X or Y that is not full rank.
Consequently, the dimensionality of these subspaces is equal to the
number of sample face images, specifically k for X and l for Y.

The minimal principal angle, �, between the vector subspaces X
and Y is then defined as follows:

cosð�Þ ¼ max
u2X
kuk2¼1

max
v2Y
kvk2¼1

uTv: ð2Þ

While our claims are only concerned with the minimum/first
principal angle, an additional principal angle is defined by
searching in the complement of spaces spanned by u and v. In
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recursive fashion, an entire sequence of principal angles may thus

be defined.
The minimum principal angle between two sets of images has

an intuitive interpretation. It is essentially a measure of correlation

between two images, each of which is defined as some linear
combinations of the original images in each of the two sets. Thus,
the minimum principal angle may be thought of as answering the
question: “What linear combination of images in one set comes
closest to a linear combination of images in a second set?”

If one names the sets “left” and “right,” one can then describe
the closest pair of linear combinations of images as the left and
right principal vectors. Fig. 1 shows principal vectors and angles
for four image set comparisons from the YDB. Specifically, the first
three principal vectors and angles are shown for four distinct
comparisons, two involving different sets of images of the same
person (upper row) and two involving different sets of images of
different people (bottom row). Vectors and angles for sets
containing 6 and 12 images are shown. These examples are drawn
from the YDB study presented below.

One thing to note in Fig. 1 is that the minimum/first principal
angle between sets of images of the same person are not zero.
Given that the theory of illumination subspaces leads us to expect a
single low-dimensional subspace for a face, given all the appro-
priate caveats, one might be excused for at first expecting explicit
overlap in the illumination subspaces and, consequently, a zero
angle. Such an overlap would also manifest itself in the left and
right principal vectors being identical. In practice, this never
happens, or at least, we have never in our studies encountered a
zero minimum principal angle.

There are myriad reasons why sampled illumination spaces
never truly overlap, but one particularly easy one to explain is the
simple presence of independent sensor noise at each pixel. There
are of course other more important factors at play, including, for
example, the fact that faces are not rigid, convex, or perfectly
Lambertian.

While sampled illumination spaces do not overlap, as the
example in Fig. 1 clearly demonstrates, the minimum principal
angle for comparisons between image sets of the same person are
notably smaller than for comparisons involving different people.
The role played by k, the number of images in the set, is also evident
in the minimum/first principal vectors and associated minimum
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Fig. 1. The first three left and right principal vectors and associated principal angles for comparisons from the YDB. The top comparisons are for sets of images of the

same person, while the bottom comparisons are for sets of images of different people. Note that the values for the minimum/first principal angles, �1, are notably lower on

the top, and the principal vectors are more visually similar. The comparisons are for sets containing 6 (left) and 12 (right) images.

Fig. 2. Box whisker plots of the minimal principal angles of the matching ðþÞ and
nonmatching ð�Þ subspaces where image sets are of size 6 to 16 from left to right,
accordingly, selected from YDB. Numbers of match angles that are greater than or
equal to the smallest nonmatch angles are shown along the top of the
distributions. Notice that perfect separation of the matching and nonmatching
subspaces is observed when the image set size is greater than or equal to 10.
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principal angles when the sets are for the same person (top row of
Fig. 1). The shift from 6 to 12 images drops the minimum principal
angle from 0.0527 to 0.0376, a nearly 30 percent reduction.

In general, questions of closeness of linear subspaces lead into
the broader question of how to compute distances between
subspaces; metrics for calculating distances between subspaces
can be found in [28]. Further, it can be shown that all unitarily

invariant metrics for subspaces are functions of principal angles
between subspaces [26], and hence, the robustness of the method
can be explored through the study of matrix perturbation theory. A
detailed discussion of this approach as it relates to face imagery
can be found in [29], and as already stated in our introduction, it is
not necessary for us to pursue these greater questions in order to
convey the essential results of this paper.
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Fig. 3. Box whisker plots of the minimal principal angles of the matching ðþÞ and nonmatching ð�Þ subspaces where image sets are of size 6 to 10 from left to right,

accordingly, selected from CMU-PIE Database. (a) Plots when mirrored images are included. (b) The results when mirrored images are not included.

Fig. 4. Box whisker plots of the minimal principal angles of the matching ðþÞ and nonmatching ð�Þ subspaces where the smaller sets contain one through four images

and the larger sets contain 8, 10, and 12 images for all i selected from CMU-PIE images with room lights off. As in Fig. 2, the number of match angles greater than or

equal to the smallest nonmatch angle is shown along the top of the distributions.
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3.2 Augmenting the Samples with Mirror-Reflected
Images

Before continuing to the empirical results for the YDB and PIE data
sets, there is an important additional detail associated with
estimating illumination subspaces. Kirby and Sirovich [30] first
introduced the use of symmetry-augmented image sets including
both an original face image and an additional face image obtained
by reflecting the image about the vertical centerline of the face.
This operation has consistently shown itself to be useful when
estimating linear subspaces from face imagery, and it will be used
here. Formally, the image sets defined in (1) are augmented here:

X ¼ x1; x
m
1 ; x2; x

m
2 ; . . . ; xk; x

m
k

� �
and

Y ¼ y1; y
m
1 ; y2; y

m
2 ; . . . ; yk; y

m
l

� �
;

ð3Þ

where column vectors xm and ym are the mirror-reflected versions
of face images x and y. The dimensionality of the subspaces X and
Y associated with X and Y rises to 2k and 2l, respectively, with the
addition of mirror-reflected images. Due to the symmetry of the
face, one may think of this step as approximating how a face might
appear under a greater variety of lighting conditions. It is clear
from the results below that this step improves the separation
between subspaces associated with the same person and subspaces
associated with different people.

To simplify the visual appearance and interpretation of the
principal vectors and principal angles shown in Fig. 1, they were
determined not using mirror-reflected images. However, hence-
forth, unless otherwise stated, it should be assumed that image sets
are augmented with mirror-reflected images as defined in (3).

4 THE YALE FACE DATABASE B (YDB)

Although the YDB contains imagery for only 10 people, it is the
oldest and most studied illumination database with images
spanning a large range of possible illuminations. The box whisker
plots in Fig. 2 show the range of minimum principal angle values
for matching and nonmatching pairs of image sets sampled from
YDB. These are standard box whisker plots from the R statistics
package. The top and bottom lines of the box in the box whisker
plot represent the upper and lowest quartile values, whereas the
circle in the box represents the median. The whiskers attempt to
extend above and below the box to a distance 1.5 times the
interquartile range. However, they must terminate on a data point,
so the whiskers “shrink back” until they land on a sample.

When the largest angle1 between any two matching subspaces
is less than the smallest angle between any two nonmatching
subspaces, the data is perfectly separable by the minimal principal
angle. The comparison is made for sets of 6, 8, 10, 12, and 16 Yale
images acquired under frontal pose and 64 possible illumination
conditions. The set sizes are shown along the top of the plots.

To generate this plot, two disjoint image sets of size k are
randomly selected for each of the 10 Yale subjects. For a random
selection of sets, there are 10 matches where the angle is measured
between sets associated with the same person. There are 90 angles
associated with different people. In the plot, a “þ” is used to
indicate the match distribution, and “�” indicates the nonmatch
distribution. This process of randomly selecting disjoint sets is then
repeated 10 times. Thus, there are a total of 100 match angles and
900 nonmatch angles in the distribution shown in Fig. 2. This
random sampling approach is used to test Claim 1 because
exhaustive sampling is infeasible.

At the top of each pair of distributions, the actual number of
match angles greater than or equal to the smallest nonmatch angle
is shown. For example, for sets of size 8, there is one match angle

that is greater than or equal to the smallest nonmatch angle; the
distributions are almost but not completely disjoint. For sets of size
10, there is no match angle larger than the smallest nonmatch
angle; the sample distributions are disjoint. Indeed, for sets of size
greater than or equal to 10 in YDB, perfect separation between the
matching and nonmatching subspaces by the minimal principal
angle is observed.

The distributions shown in Fig. 2 use the mirror image
augmentation defined in Section 3.2. Therefore, for example, set
size 10 means that the matrix of image samples X defined in (3)
includes 20 columns. For the sake of comparison, were the mirror
images not included, then a set size of 10 would imply an X with
only 10 columns as defined by (1). When mirror images are not
included the number of match angles larger than or equal to the
smallest nonmatch angle for the cases shown in Fig. 2 would be 40,
7, 1, 1, and 0, respectively. Hence, pure separability does not arise
until k ¼ 16 when mirrored images are excluded.

5 THE CMU-PIE DATABASE

There are 67 subjects but only 42 illumination variants in the CMU-
PIE database. In addition, 21 illumination variants are sampled
with the background (ambient) room lights on, and 21 are sampled
with the room lights off. Fig. 3 shows box whisker plots of
principal angle distribution for matching and nonmatching pairs of
image sets sampled from PIE for the cases where the room lights
are off, the room lights are on, and there is a pool of both.

The distributions shown are obtained in a manner similar to
that used to generate Fig. 2. Since there are only 21 images
available for each of the room lights on and room lights off cases,
the disjoint sets of equal size cannot be larger than 10. Fig. 3a
shows the distributions with mirror images included, and Fig. 3b
shows distributions where mirror images are not included.

As before, random disjoint image sets are selected indepen-
dently 10 times. Thus, the distribution of match angles is based
upon 670 samples, and the distribution of nonmatch angles is
based upon 44,220 nonmatch angles. Unlike the YDB results in
Fig. 2, here, in all cases, there is complete separation of match
versus nonmatch angles; thus, counts of overlaps between the
distributions are not included. It is true that the case of mixed
lighting and k ¼ 6 in Fig. 3b comes very close to having an overlap,
and generally, the distributions are better separated in Fig. 3a than
in Fig. 3b.

6 ASYMMETRIC COMPARISONS WITH FEW IMAGE

SAMPLES

Up to this point, illumination spaces were empirically estimated
based upon an equal number of samples in each set. This need not
be the case. Fig. 4 shows results for asymmetric set-to-set
comparisons where the sizes of sets are unequal. In particular, it
shows comparisons between small sets of between one and four
images to larger sets of size 8, 10, or 12 images. As before, disjoint
random sets are selected independently 10 times. Since our
previous results established the value of including mirror images
as described in Section 3.2, only results using mirror images are
shown in Fig. 4.

The numbers of match angles exceeding the smallest nonmatch
angles can be seen to decrease monotonically reading from left to
right. Perfect separation is first achieved when a subspace based
upon three images is compared to a subspace based upon
10 images. These results are for the case of more extreme lighting
changes associated with the room lights off. Separation between
distributions was even better for the room-lights-on case, with
overlaps of only seven, four, and five for the comparison of one
image to 8, 10, and 12, respectively. Room-lights-on comparisons of
two or more images yielded zero overlap.

These exact cutoffs are probably artifacts of the PIE data set, but
scanning across Fig. 4, the trend is clear: large separations in
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1. Where there is little risk of confusion, “minimum principal angle” will
be shortened to “angle.” Further, “match angle” is short for “the minimum
principal angle between two subspaces derived from images of the same
person” and “nonmatch angle” is short for “the minimum principal angle
between two subspaces derived from images of different people.”
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principal angle are observed between matching and nonmatching
subspaces, even when one of the subspaces is estimated from a
relatively small number of samples. This may be important in
operational face recognition scenarios where larger numbers of
images can be collected during enrollment than operation.

It is useful to relate this result to illumination subspace theory.
If the images satisfied the assumptions perfectly and the larger set
spanned the face’s illumination subspace, then we would expect
the minimum principal angle to be zero, even if the smaller set
contained only a single image. This is not what we see in Fig. 4.
Instead, the minimum principal angles between single PIE images2

and sets of PIE images of the same people can be quite large,
ranging up to 0.35 radians when the larger set contains eight
images—the leftmost distribution in Fig. 4. Earlier, we discussed
why in practice minimum principal angles are never zero. The
observation that minimum principal angles measured to a single
image can be large further reinforces our understanding that in
real data such as PIE, there are factors not modeled by illumination
theory. Fortunately, as the size of the smaller set grows, the match
angles drop quickly. The overall point is that while it is not
necessary to have as many sample images as the expected
dimensionality of the illumination space, there is considerable
value in using two or three images rather than just one.

7 CONCLUSION

There is, we think, a growing consensus that frontal imagery from
the YDB and PIE data sets is in some sense easy. Certainly, a
variety of good algorithms achieve very high levels of performance
on this data. The contribution of this work is that it helps explain
why this is true. Illumination spaces associated with individual
people in these data sets are very distinctive, and by Claim 1
above, 10 images are sufficient to perfectly disambiguate indivi-
duals. Further, as indicated by Claim 2, similar separability is
observed with fewer samples when those fewer samples are
compared to a larger set of samples. By implication, any algorithm
that taps into this information, either through training or directly
through sampling, ought to do very well on these data sets.

Stepping beyond just the YDB and PIE data sets, our results
strongly support the view that changes in illumination are
informative and may provide a basis for highly accurate recogni-
tion systems. The orientation of an illumination cone, after all, is a
function of both the 3D shape and the reflectance properties of a
face. It makes sense that it should be discriminating, and this
intuition is supported by the data presented here. More definitive
support for this claim, of course, will require tests on larger data
sets, and we are in the early stages of collecting such a set.
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2. Recall that these results use mirror-reflected images, so results for sets
containing a single original PIE image have two columns in X and the
subspace X spans two dimensions. This fact does not alter the underlying
thread of our argument since the small angle predicted by the theory for a
single image without the additional mirror images certainly holds true for
the case including mirror images.
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