Some Interesting Problems in Pattern Recognition

JEN-MEI CHANG

Department of Mathematics and Statistics
California State University, Long Beach
jchang9@csulb.edu

Claremont Math-in-Industry Workshop
Outline

1. Face Recognition - PCA
2. Bankruptcy Prediction - LDA
3. Cocktail Party Problem - BSS
4. Speech Recognition - DFT
5. Handwritten Digit Classification - Tangent
6. Traveling Salesman Problem - Unsupervised Clustering
7. A Challenge Problem For You
Data Matrix

An r-by-c gray scale digital image corresponds to an r-by-c matrix where each entry enumerates one of the 256 possible gray levels of the corresponding pixel.

\[\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix} \]
Data Vector

Realize the data matrix by its columns and concatenate columns into a single column vector.

\[\text{IMAGE} \rightarrow \text{MATRIX} \rightarrow \text{VECTOR} \]
Classification/Recognition Problem

1. Data collection
 Database creation
 a.k.a. Gallery

2. Present novel data
 a.k.a. Probe

3. Classification
 Assign label to probe and assess accuracy

1.5 Preprocessing
 Geometric normalization, Feature extraction, etc
Face Recognition Problem

Who is it?

True Positive

False Positive

Gallery

Probe

JULY 24, 2009 6 / 42
Architectures

Historically

- single-to-single

\[P = \{ x^{(i)} \} \]

\[G = \left\{ \begin{array}{c}
 \ldots \\
 x^{(0)} \\
 \ldots \\
 x^{(N)} \\
 \end{array} \right\} \]

- single-to-many

\[P = \{ x^{(i)} \} \]

\[G = \{ \ldots, \ldots, \ldots, \ldots \} \]

Currently

- subspace-to-subspace

\[P = \text{Grassmann Manifold} \]

\[G = \text{Grassmann Manifold} \]

- many-to-many

\[P = \text{Image Set 1} \]

\[G = \text{Image Set 2} \]
Commercial Applications

- **2D Inputs** → **3D Shape** + **2D Texture**
 - **Pattern Recognition** → **2D Face Recognition**

- **Password:**

- **Nikon**
 - **Password:**

- **Lenovo**

- **Ramen Machine**
 - **Password:**
A Possible Mathematical Approach

(Adapted from Vladimir Bondarenko at University of Konstanz, ST; http://www.inf.uni-konstanz.de/cgip/lehre/na_08/Lab2/5_FaceRecognition/html/myFaceRecognition.html)
A Possible Mathematical Approach

Database in feature space

Classification in feature space

(Adapted from Vladimir Bondarenko at University of Konstanz, ST; http://www.inf.uni-konstanz.de/cgip/lehre/na_08/Lab2/5_FaceRecognition/html/myFaceRecognition.html)
→ \(X = USV^T \)

- \(V = [v_1, \ldots, v_r, v_{r+1}, \ldots, v_n] \) is orthogonal with \(v_i \)'s eigenvectors of \(X^TX \).
- \(S = \text{diag}(s_1, \ldots, s_r, 0, \ldots, 0) \) is diagonal with \(s_i \)'s square root of eigenvalues of \(X^TX \).
- \(U = S^{-1}XV \) is orthogonal with \(u_i \)'s eigenvectors of \(XX^T \).
Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt\(^1\).

- Form a feature vector for each firm.
- Two-class classification problem.

\(^1\)adapted from Wikipedia
Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt\(^1\).

- Form a feature vector for each firm.
- Two-class classification problem.

\(^1\)adapted from Wikipedia
Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt\(^1\).

- Form a feature vector for each firm.
- Two-class classification problem.

\(^1\)adapted from Wikipedia
A Possible Mathematical Approach

Question: Characteristics of a GOOD projection?
A Possible Mathematical Approach

Question: Characteristics of a GOOD projection?
Two-Class LDA

\[m_1 = \frac{1}{n_1} \sum_{x \in D_1} w^T x, \quad m_2 = \frac{1}{n_2} \sum_{y \in D_2} w^T y \]

Look for a projection \(w \) that

- maximizes (inter-class) distance in the projected space,
- and minimizes the (intra-class) distances in the projected space.
Two-Class LDA

Namely, we desire a w^* such that

$$w^* = \arg \max_w \frac{(m_1 - m_2)^2}{S_1 + S_2},$$

where $S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$ and $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2$.

Alternatively, (with scatter matrices)

$$w^* = \arg \max_w \frac{w^T S_B w}{w^T S_W w}, \quad (1)$$

with $S_W = \sum_{i=1}^{2} \sum_{x \in D_i} (x - m_i)(x - m_i)^T$, $S_B = (m_2 - m_1)(m_2 - m_1)^T$.
Two-Class LDA

Namely, we desire a w^* such that

$$w^* = \arg \max_w \frac{(m_1 - m_2)^2}{S_1 + S_2},$$

where $S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$ and $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2$.

Alternatively, (with scatter matrices)

$$w^* = \arg \max_w \frac{w^T S_B w}{w^T S_W w},$$

with $S_W = \sum_{i=1}^{2} \sum_{x \in D_i} (x - m_i)(x - m_i)^T$, $S_B = (m_2 - m_1)(m_2 - m_1)^T$.
The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

\[S_B w = \lambda S_W w. \]

LDA for multi-class follows similarly.
The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

\[S_B w = \lambda S_W w. \]

LDA for multi-class follows similarly.
Cocktail Party Problem

Three people are simultaneously talking in the same room.
Three microphones record their conversations.
Each recording is a linear mixture of each of the three conversations...

(adapted from André Mouraux)
Cocktail Party Problem

\[x = A \cdot s \]

s = source signals
\[s = \{s_1(t), \ldots, s_N(t)\} \]

x = signals recorded at sensors
\[x = \{x_1(t), \ldots, x_N(t)\} \]

linear mixture by unknown matrix A

(adapted from André Mouraux)
Cocktail Party Problem

Find an ‘unmixing matrix’ allowing to recover the original source signals

\[s \rightarrow x = As \rightarrow x = Wx \rightarrow u \]

- \(x = \text{signals recorded at sensors} \)
- \(x = \{x_1(t), \ldots, x_N(t)\} \)
- \(u = \text{recovered source signals} \)
- \(u = \{u_1(t), \ldots, u_N(t)\} \)
- \(W = \text{unmixing matrix} \)

(adapted from André Mouraux)
A Similar Problem: EEG

Blind Source Separation (BSS) applied to EEG

(adapted from André Mouraux)
Commercial Applications

(\[\text{http://computer.howstuffworks.com/brain-computer-interface1.htm}\])
A Possible Mathematical Approach

- Decompose observed data into its *noise* and *signal* components:
 \[x^{(\mu)} = s^{(\mu)} + n^{(\mu)}, \]

 or, in terms of data matrices,
 \[X = S + N. \quad (S = \text{signal}, \quad N = \text{noise}) \]

- The optimal first basis vector, \(\phi \), is taken as a superposition of the data, i.e.,
 \[\phi = \psi_1 x^{(1)} + \cdots + \psi_P x^{(P)} = X \psi. \]

- May decompose \(\phi \) into signal and noise components
 \[\phi = \phi_n + \phi_s, \]
 where \(\phi_s = S \psi \) and \(\phi_n = N \psi. \)
The basis vector ϕ is said to have maximum noise fraction (MNF) if the ratio

$$D(\phi) = \frac{\phi_n^T \phi_n}{\phi^T \phi}$$

is a maximum.

A steepest descent method yields the symmetric definite generalized eigenproblem

$$N^T N \psi = \mu^2 X^T X \psi.$$

This problem may be solved without actually forming the product matrices $N^T N$ and $X^T X$, using the generalized SVD (gsvd).

Note that the same orthonormal basis vector ϕ optimizes the signal-to-noise ratio. And this technique is called Blind Source Separation (BSS).
Audio

(adapted from AT&T Lab Inc. - http://www.research.att.com/viewProject.cfm?prjID=49)
Audio-Visual

(Adapted from Project MUSSLAP - http://musslap.zcu.cz/img/audiovizualni-zpracovani-reci/schema.jpg)
Commercial Applications

How Speech Recognition Works

1. The PC audio card converts analog voice signals into a digital signal.
2. The software reads the digital signal and compares it to phrases in a stored dictionary.
3. The software decides what it thinks the person said and displays the best match on the screen.
A Possible Mathematical Approach

- Continuous $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t} \, dt$

- Discrete $f(\omega) = \sum_{k \in \mathbb{Z}} c_k e^{ik\omega}$
How

- Fourier analysis is applied to speech waveform in order to discover what frequencies are present at any given moment in the speech signal with time on the horizontal axis and frequency on the vertical.

- The speech recognizer has a database of several thousand such graphs (called a codebook) that identify different types of sounds the human voice can make.

- The sound is “identified” by matching it to its closest entry in the codebook.
Handwritten Digits
How do we tell whether a new digit is a 4 or a 9?
Commercial Applications

Santa thought to himself, “only if these mails can go to the right place according to their zip code”.
A Possible Mathematical Approach

Imagine a high-D surface (red curve) where all 4’s live on and a high-D surface (blue curve) where all 9’s live on.
Manifold Learning

Create a **Tangent Space** of the 4’s at F and create a **Tangent Space** of the 9’s at N.
Which Distance?

- Tangent Distance between 4 and 9

- Euclidean Distance between 4 and 9
Classification

So, is it a 4 or a 9?
Given a list of cities and their pairwise distances, the goal is to find a shortest route that visits each city exactly once.

(Adapted from Wikipedia: http://en.wikipedia.org/wiki/Travelling_salesman_problem)
A Possible Mathematical Approach

The SOFM (Kohonen’s Self-Organizing Feature Map) Algorithm

Given a data set \(X = \{ x^{(\mu)} \} \),

1. Initialize a set of center vectors \(\{ c_i \} \), \(i \in \mathcal{I} \).
2. Present \(x^{(\mu)} \) to the network.
3. Determine the winning center vector \(c_{i'} \).
4. Update all the center vectors using

\[
 c_i^{n+1} = c_i^n + \epsilon h(d(i, i'))(x^{(\mu)} - c_{i'}).
\]

5. Repeat

\(d(i, i') \) is a (topological) metric on the indices. Typically, \(h(x) \) is taken to be a Gaussian, i.e., \(h(x) = \exp(-x^2/r^2) \).
SOFM Result on 150 Cities
Example Cats

Courtesy of Dr. J.R. Beveridge in the Department of Computer Science at CSU.
Example Dogs

Courtesy of Dr. J.R. Beveridge in the Department of Computer Science at CSU.
Why is the problem of pattern recognition challenging?

Jen-Mei Chang (CSU, Long Beach)
Why is the problem of pattern recognition challenging?

Probe Set
Get Started!

- This talk is available via
 http://www.csulb.edu/~jchang9/files/patternRecTalk_Claremont_JMC.pdf

- The problem data set can be accessed from
 http://www.csulb.edu/~jchang9/files/PatternRecData.mat