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Background: Data Matrix

An r -by-c gray scale digital image corresponds to an r -by-c
matrix where each entry enumerates one of the 256 possible
gray levels of the corresponding pixel.
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Background: Data Vector

Realize the data matrix by its columns and concatenate
columns into a single column vector.

IMAGE → MATRIX → VECTOR
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Classification/Recognition Problem

3. Classification
Assign label to probe 
and assess accuracy 

2. Present novel data
a.k.a. Probe

1.5 Preprocessing
Geometric normalization, 

Feature extraction, etc 

1. Data collection
Database creation 

a.k.a. Gallery
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Face Recognition Problem

True Positive

Who is it?Who is it? False Positive

= 

False Positive
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Architectures
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Commercial Applications
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A Possible Mathematical Approach

 

      Eigenfaces 

Feature space 

…

Image space 

 
 
 

(Adapted from Vladimir Bondarenko at University of Konstanz, ST;
http://www.inf.uni-
konstanz.de/cgip/lehre/na 08/Lab2/5 FaceRecognition/html/myFaceRecognition.html)
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A Possible Mathematical Approach

     

Classification in feature space 

Database in feature space 

 

(Adapted from Vladimir Bondarenko at University of Konstanz, ST;
http://www.inf.uni-
konstanz.de/cgip/lehre/na 08/Lab2/5 FaceRecognition/html/myFaceRecognition.html)
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−→ X = USV T

 

Singular value 
Right singular vectorLeft singular vector

 

 

V = [v1, . . . , vr , vr+1, . . . , vn] is orthogonal with vi ’s
eigenvectors of X T X .
S = diag(s1, . . . , sr ,0, . . . ,0) is diagonal with si ’s square
root of eigenvalues of X T X .
U = S−1XV is orthogonal with ui ’s eigenvectors of XX T .
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Bankruptcy prediction is the art of predicting bankruptcy and
various measures of financial distress of public firms. It is a vast
area of finance and accounting research. The importance of the
area is due in part to the relevance for creditors and investors in
evaluating the likelihood that a firm may go bankrupt1.

Form a feature vector for each firm where each entry in the
feature vector is a numerical value for a certain
characteristic, e.g., number of customers and annual profit.
This is a two-class (bankrupt or non-bankrupt)
classification problem.

1adapted from Wikipedia
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A Possible Mathematical Approach

Bad projection Good projection

Question: What are the characteristics of a good projection?
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A Possible Mathematical Approach

Bad projection Good projection

Question: What are the characteristics of a good projection?
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Two-Class LDA

m1 =
1
n1

∑
x∈D1

wT x , m2 =
1
n2

∑
y∈D2

wT y

Look for a projection w that
maximizes (inter-class) distance in the projected space,
and minimizes the (intra-class) distances in the projected
space.
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Two-Class LDA

Namely, we desire a w∗ such that

w∗ = arg max
w

(m1 −m2)2

S1 + S2
,

where S1 =
∑
x∈D1

(wT x −m1)2 and S2 =
∑
y∈D2

(wT y −m2)2.

Alternatively, (with scatter matrices)

w∗ = arg max
w

wT SBw
wT SW w

, (1)

with SW =
2∑

i=1

∑
x∈Di

(x −mi)(x −mi)
T ,

SB = (m2 −m1)(m2 −m1)T .
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LDA

The criterion in Equation (1) is commonly known as the
generalized Rayleigh quotient, whose solution can be
found via the generalized eigenvalue problem

SBw = λSW w .

Once we have the good projection w , we can predict
whether a given bank will go bankruptcy by projecting it
onto the real line using w .
Multi-class LDA follows similarly.
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Cocktail Party Problem

(adapted from André Mouraux)
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Cocktail Party Problem

(adapted from André Mouraux)
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Cocktail Party Problem

(adapted from André Mouraux)
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A Similar Problem: EEG

(adapted from André Mouraux)
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Commercial Applications

(http://computer.howstuffworks.com/brain-computer-interface1.htm)
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A Possible Mathematical Approach

Decompose observed data into its noise and signal
components:

x(µ) = s(µ) + n(µ),

or, in terms of data matrices,

X = S + N. (S = signal ,N = noise )

The optimal first basis vector, φ, is taken as a
superposition of the data, i.e.,

φ = ψ1x(1) + · · ·+ ψPx(P) = Xψ.

May decompose φ into signal and noise components

φ = φn + φs,

where φs = Sψ and φn = Nψ.
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MNF/BBS

The basis vector φ is said to have maximum noise fraction
(MNF) if the ratio

D(φ) =
φT

nφn

φTφ

is a maximum.
A steepest descent method yields the symmetric definite
generalized eigenproblem

NT Nψ = µ2X T Xψ.

This problem may be solved without actually forming the
product matrices NT N and X T X , using the generalized
SVD (gsvd).
Note that the same orthonormal basis vector φ optimizes
the signal-to-noise ratio. And this technique is called Blind
Source Separation (BSS).
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Audio

(adapted from AT&T Lab Inc. -
http://www.research.att.com/viewProject.cfm?prjID=49)
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Audio-Visual

(adapted from Project MUSSLAP -
http://musslap.zcu.cz/img/audiovizualni-zpracovani-reci/schema.jpg)
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Commercial Applications
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A Possible Mathematical Approach

Continuous F (ω) =

∫ ∞
−∞

f (t)eiωt dt

Discrete f (ω) =
∑
k∈Z

ckeikω
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Discrete Fourier Transform (DFT)

Fourier analysis is applied to speech waveform in order to
discover what frequencies are present at any given
moment in the speech signal with time on the horizontal
axis and frequency on the vertical.
The speech recognizer has a database of several
thousand such graphs (called a codebook) that identify
different types of sounds the human voice can make.
The sound is “identified” by matching it to its closest entry
in the codebook.
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Handwritten Digits
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Handwritten Digit Classification

How do we tell whether a new digit is a 4 or a 9?
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Commercial Applications

Santa thought to himself, “only if these mails can go to the right
place according to their zip code”.
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A Possible Mathematical Approach

Imagine a high-D surface (red curve) where all 4’s live on and a
high-D surface (blue curve) where all 9’s live on.
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Manifold Learning

Create a Tangent Space of the 4’s at F and create a Tangent
Space of the 9’s at N.
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Which Distance?
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Classification

So, is it a 4 or a 9?
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High-Resolution Image

The objective of image compression is to reduce redundancy of
the image data in order to be able to store or transmit data in an
efficient form.
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Low-Resolution Image
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Compression with SVD

If we know the correct rank of A, e.g., by inspecting the singular
values, then we can remove the noise and compress the
data by approximating A by a matrix of the correct rank. One
way to do this is to truncate the singular value expansion:

Theorem
(Approximation Theorem) If

Ak =
k∑

i=1

σiuivT
i (1 ≤ k ≤ r)

then

Ak = min
rank(B)=k

‖A− B‖2 and Ak = min
rank(B)=k

‖A− B‖F .
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Compression with SVD

The error term of rank k approximation is given by the (k + 1)th

singular value σk+1.

(a) full rank (rank 480) (b) rank 10, rel. err. = 0.0551

(c) rank 50, rel. err. = 0.0305 (d) rank 170, rel. err. = 0.0126
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Compression with DWT

X (b,a) =
1√
|a|

∫ ∞
−∞

x(t)Ψ∗
(

t − b
a

)
dt

Approximation coef. at level 1

Decomposition at level 1

Image Selection

dwt

idwt
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Convolution as Filters

f (x , y) ? s(x , y) =
a∑

m=−a

b∑
n=−b

s(m,n)f (x −m, y − n)

s f

0 0 0 0 0 1 2 3

0 0 0 0 0 4 5 6

0 0 1 0 0 7 8 9

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 9 8 7 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6 5 4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 2 1 0 0 1 2 3 0 0

0 0 0 0 0 0 0 0 0 0 0 4 5 6 0 0

Convolution 0 0 0 0 1 0 0 0 0 0 0 7 8 9 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

zero-padded s rotated f cropped result
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Smoothing with Low-pass Filters

Filtering with k × k low-pass filters
1
k2

1 · · · 1
...

. . .
...

1 · · · 1

.

(a) original (b) 3× 3 (c) 5× 5

(d) 9× 9 (e) 15× 15 (f) 35× 35
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Smoothing with Median Filter

(a) (b) (c)

Figure: (a) X-ray image of circuit board corrupted by salt-and-pepper
noise. (b) Noise reduction with a 3× 3 averaging filter. (c) Noise
reduction of a 3× 3 median filter.
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Sharpening with High-pass Filters

The simplest isotropic filter (direction independent)
derivative operator is the discrete Laplacian of two
variables:

∇2f (x , y) = f (x + 1, y) + f (x − 1, y) + f (x , y + 1) + f (x , y − 1)− 4f (x , y).

This equation can be implemented using the filter mask (x , y − 1)
(x − 1, y) (x , y) (x + 1, y)

(x , y + 1)

 −→
0 1 0

1 −4 1
0 1 0

 .
Blurred image Filter mask 1 Laplacian enhanced image
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