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Background: Data Matrix
An r-by-c gray scale digital image corresponds to an r-by-c matrix

where each entry enumerates one of the 256 possible gray levels of
the corresponding pixel.
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Background: Data Vector

Realize the data matrix by its columns and concatenate columns into a
single column vector.
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FACE RECOGNITION - PCA

Classification/Recognition Problem

: b \
1.5 Preprocessing

Geometric normalization,
7| Feature extraction, etc

1. Data collection 3. Classification
Database creation Assign label to probe
/ and assess accuracy

a.k.a. Gallery

A = —

\ 2. Present novel data
a.k.a. Probe
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Face Recognition Problem

True Positive
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False Positive

Probe
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FACE RECOGNITION - PCA

Architectures

Historically
@ single-to-single
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FACE RECOGNITION - PCA

Commercial Applications

2D Inputs 3D Shape 2D Texture
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FACE RECOGNITION - PCA

A Possible Mathematical Approach
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(Adopted from Vladimir Bondarenko at University of Konstanz, ST; http://www.inf.uni-
konstanz.de/cgip/lehre/na_08/Lab2/5_FaceRecognition/html/myFaceRecognition.html)
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FACE RECOGNITION - PCA

A Possible Mathematical Approach
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(Adopted from Vladimir Bondarenko at University of Konstanz, ST; http://www.inf.uni-
konstanz.de/cgip/lehre/na_08/Lab2/5_FaceRecognition/html/myFaceRecognition.html)
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o V=1[wv,...,V, Vri1,..., V| is orthogonal with v;’s eigenvectors of
XTX.

e S =diag(sy,...,Ssr,0,...,0) is diagonal with s;’s square root of

eigenvalues of X7 X.
e U = S XV is orthogonal with u;’s eigenvectors of XX7.
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BANKRUPTCY PREDICTION - LDA

Bankruptcy prediction is the art of predicting bankruptcy and various
measures of financial distress of public firms. It is a vast area of
finance and accounting research. The importance of the area is due in
part to the relevance for creditors and investors in evaluating the
likelihood that a firm may go bankrupt!.

@ Form a feature vector for each firm where each entry in the feature
vector is a numerical value for a certain characteristic, e.g.,
number of customers and annual profit.

@ This is a two-class (bankrupt or non-bankrupt) classification
problem.

" Adopted from Wikipedia
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BANKRUPTCY PREDICTION - LDA

A Possible Mathematical Approach

@.
@.

Bad projection Good projection
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BANKRUPTCY PREDICTION - LDA

A Possible Mathematical Approach

Q0.
QO 0.‘

Bad projection Good projection

Question: What are the characteristics of a good projection?
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BANKRUPTCY PREDICTION - LDA

Two-Class LDA

Look for a projection w that
@ maximizes (inter-class) distance in the projected space,
@ and minimizes the (intra-class) distances in the projected space.
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BANKRUPTCY PREDICTION - LDA

Two-Class LDA

Namely, we desire a w* such that

(my — my)?

w* =argmax —— ",
gw S+ S

where Sy = > (w/x—m)Pand S = > (wy — mp)2.
x€Dy yeD,
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BANKRUPTCY PREDICTION - LDA

Two-Class LDA

Namely, we desire a w* such that

* (my — mp)?
w* =argmax —— =",
gw S+ S
where Sy = > (w/x—m)Pand S = > (wy — mp)2.
x€Dy yeD,
Alternatively, (with scatter matrices)

w’ Sgw

w* = argmax ———
gW wTSyw’

2
with S =Y ") " (x = m))(x —my)7, Sg = (mz — my)(mz —my) 7.

i=1 xeD;
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BANKRUPTCY PREDICTION - LDA

LDA

@ The criterion in Equation (1) is commonly known as the
generalized Rayleigh quotient, whose solution can be found via
the generalized eigenvalue problem

Sgw = ASyyw.

@ Once we have the good projection w, we can predict whether a
given bank will go bankruptcy by projecting it onto the real line
using w.

@ Multi-class LDA follows similarly.
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KTAIL PARTY PROBLEM - BSS

Cocktail Party Problem

Three people are simultaneously talking in the same room.
Three microphones record their conversations.
Each recording is a linear mixture of each of the three conversations ...

(Adopted from André Mouraux)
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COCKTAIL PARTY PROBLEM - BSS

Cocktail Party Problem

5 x=h5 x
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COCKTAIL PARTY PROBLEM - BSS

Cocktail Party Problem

Find an 'unmixing matrix' allowing to recover the original source signals

5 x=A.s " u=Wx u

| W = unmixing matrix

(Adopted from André Mouraux)
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A Similar Problem: EEG

Blind Source Separation (BSS) applied to EEG

(Adopted from André Mouraux)
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COCKTAIL PARTY PROBLEM - BSS

Commercial Applications

How Brain-Computer Interfaces Work

©2007 HowStufforks
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COCKTAIL PARTY PROBLEM - BSS

A Possible Mathematical Approach

@ Decompose observed data into its noise and signal components:

x) = g() 4 pw)

or, in terms of data matrices,
X=8+N. (S=signal, N = noise)

@ The optimal first basis vector, ¢, is taken as a superposition of the
data, i.e.,
¢ = ixM . 4 ypx(P) = Xy

@ May decompose ¢ into signal and noise components
¢ = ¢n + d)Sa
where ¢s = Sy and ¢n = Nip.
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COCKTAIL PARTY PROBLEM - BSS

MNF/BBS

@ The basis vector ¢ is said to have maximum noise fraction (MNF)
if the ratio

}
D(s) = o

is a maximum.

@ A steepest descent method yields the symmetric definite
generalized eigenproblem

NTNy = 12XT X

This problem may be solved without actually forming the product
matrices N7 N and X7 X, using the generalized SVD (gsvd).

@ Note that the same orthonormal basis vector ¢ optimizes the
signal-to-noise ratio. And this technique is called Blind Source
Separation (BSS).
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SPEECH RECOGNITION - DFT

Audio
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(Adopted from AT&T Lab Inc. - http://www.research.att.com/viewProject.cfm?prjiD=49)
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SPEECH RECOGNITION - DFT

Audio-Visual

Akusticky . Kombinace informace
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(Adopted from Project MUSSLAP -
http://musslap.zcu.cz/img/audiovizualni-zpracovani-reci/schema.jpg)
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SPEECH RECOGNITION - DFT

Commercial Applications

JEN-MEI CHANG (CSU, LONG BEACH) PATTERN RECOGNITION MARCH 3, 2010 26/47



A Possible Mathematical Approach
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Discrete Fourier Transform (DFT)

@ Fourier analysis is applied to speech waveform in order to
discover what frequencies are present at any given moment in the
speech signal with time on the horizontal axis and frequency on
the vertical.

@ The speech recognizer has a database of several thousand such
graphs (called a codebook) that identify different types of sounds
the human voice can make.

@ The sound is “identified” by matching it to its closest entry in the
codebook.
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Handwritten Digits



HANDWRITTEN DIGIT CLASSIFICATION - TANGENT

Handwritten Digit Classification

How do we tell whether a new digitis a 4 or a 97
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HANDWRITTEN DIGIT CLASSIFICATION - TANGENT

Commercial Applications

Santa thought to himself, “only if these mails can go to the right place
according to their zip code”.

JEN-MEI CHANG (CSU, LONG BEACH) PATTERN RECOGNITION MARCH 3, 2010 31747



HANDWRITTEN DIGIT CLASSIFICATION - TANGENT

A Possible Mathematical Approach

Imagine a high-D surface (red curve) where all 4’s live on and a high-D
surface (blue curve) where all 9’s live on.
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HANDWRITTEN DIGIT CLASSIFICATION - TANGENT

Manifold Learning

Create a Tangent Space of the 4’s at F and create a Tangent Space of
the 9's at N.
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HANDWRITTEN DIGIT CLASSIFICATION - TANGENT

Which Distance?
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HANDWRITTEN DIGIT CLASSIFICATION - TANGENT

Classification

So, isita 4 ora9?
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TRAVELING SALESMAN PROBLEM - UNSUPERVISED CLUSTERING

TSP

Given a list of cities and their pairwise distances, the goal is to find a
shortest route that visits each city exactly once.

(Adopted from Wikipedia: http://en.wikipedia.org/wiki/Travelling_salesman_problem)
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TRAVELING SALESMAN PROBLEM - UNSUPERVISED CLUSTERING

A Possible Mathematical Approach

The SOFM (Kohonen’s Self-Organizing Feature Map) Algorithm

Given a data set X = {x(")},
@ Initialize a set of center vectors {c;}, i € Z.
@ Present x(*) to the network.
© Determine the winning center vector c;..
© Update all the center vectors using

ot = ¢ + ch(d(i, 1)) (x* - c).

© Repeat
d(i, ") is a (topological) metric on the indices. Typically, h(x) is taken to
be a Gaussian, i.e., h(x) = exp(—x2/r?).
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TRAVELING SALESMAN PROBLEM - UNSUPERVISED CLUSTERING

SOFM Result on 150 Cities
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IMAGE COMPRESSION - SVD AND DWT

High-Resolution Image

The objective of image compression is to reduce redundancy of the

image data in order to be able to store or transmit data in an efficient
form.

100 1600 20 )
Compression Raia = 10198733

e
1600 20 T

JEN-MEI CHANG (CSU, LONG BEACH)

PATTERN RECOGNITION MARCH 3, 2010 391747



Low-Resolution Image
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IMAGE COMPRESSION - SVD AND DWT

Compression with SVD

If we know the correct rank of A, e.g., by inspecting the singular
values, then we can remove the noise and compress the data by
approximating A by a matrix of the correct rank. One way to do this is
to truncate the singular value expansion:

Theorem
(Approximation Theorem) If

then

Ax :ran{(r(\g)l:kHA— Bll, and Ax= = Lnln |A—Bl|g.
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IMAGE COMPRESSION - SVD AND DWT

Compression with SVD

The error term of rank k approximation is given by the (k + 1)’[h
singular value o, 1.

(a) rank 480)

(c) rank 50, rel. err. = 0.0305 (d) rank 170, rel. err. = 0.0126
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IMAGE COMPRESSION - SVD AND DWT

Compression with DWT
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SMOOTHING AND SHARPENING - CONVOLUTION AND FILTERING

Convolution as Filters
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SMOOTHING AND SHARPENING - CONVOLUTION AND FILTERING

Smoothing with Low-pass Filters

1
Filtering with k x k low-pass filters P
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SMOOTHING AND SHARPENING - CONVOLUTION AND FILTERING

Smoothing with Median Filter

rd\ \\ ;s
: \\
!'L\‘\

M

(b)

Figure: (a) X-ray image of circuit board corrupted by salt-and-pepper noise.
(b) Noise reduction with a 3 x 3 averaging filter. (c) Noise reduction of a 3 x 3
median filter.
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SMOOTHING AND SHARPENING - CONVOLUTION AND FILTERING

Sharpening with High-pass Filters

@ The simplest isotropic filter (direction independent) derivative
operator is the discrete Laplacian of two variables:

VEf(x,y) = f(x +1,y) + f(x = 1,y) + f(x,y + 1) + f(x,y — 1) — 4f(x, y).

@ This equation can be implemented using the filter mask

(x,y —1) 0 1 0
(X_17y) (Xay) (X+17y) — |1 -4 1
X,y +1) 01 0
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