
Multi-Scale Vessel Extraction Using Curvilinear Filter-Matching
Applied to Digital Photographs of Human Placentas

Marilyn Vazquez
Advisor: Dr. Jen-Mei Chang

Department of Mathematics and Statistics
California State University, Long Beach

Abstract

Current medical interest in the placenta has inspired the work of vascular network extraction on
placenta images. The focus of this research is to develop an automated program that detects vessels in
these images. The placenta’s irregular surface and variation in vessel coloration are some of the various
challenges to extract these vessels. The multi-scale filter, based on eigenvalues of second derivatives, has
been shown to be successful in identifying vessels of varying sizes on medical images. However, with the
multi-scale frame work, the placenta’s rough and irregular surface is also detected as part of the vessel
network; therefore, we propose a new filter, a special form of the Ridgelet filter, in combination with
the multi-scale filter to further enhance extraction results. This filtering process has been tried on a
181-by-181 placenta patch and a whole placenta image of size 1600-by-1200. The results on the whole
placenta image have been compared to tracings of the vessel structure for the same image, the results
of the multi-scale filter on its own, and the previous work on placenta images. These experiments show
that the proposed filtering process has improved the multi-scale filter results and the previous work done
in placentas.

1 Introduction

The placenta is a very important organ for the fetus since it provides nutrients and discards waste through

the mother’s blood [3]. Therefore, it is not a surprise that recent studies, such as [9], suggest that features of

the placenta influence the growth of the fetus which can then affect the weight of the newborns. This is of

special concern since low birth weight can lead to many difficulties for the child, such as high blood pressure

within the first ten years of life [11]. Also, in [3] it is reported that there is a significant relationship between

the shape of the placenta and two important health factors for newborns: the birth weight and gestational

age. These findings have raised interest in the exploitation of measurable placenta characteristics to better

understand diseases in newborns and possibly young adults.

Since placentas provide an inflow of nutrients and outflow of waste and in [3] it is explained that shape

influenced by uterine environment and vessel growth, an important characteristic to analyze is the perva-

siveness of the placental vascular network [10]. Since placenta research is still at its infancy, the only existing

work in placental vessel extraction was done with the neural network approach in 2010 [1]. This research

leads to very promising results, but it was done using a machine-learning technique that requires human

guidance to train the computer to recognize the vessels in the images making this a very time consuming

approach. In our study, we seek to develop an automated program that extracts vessel structures from digital

1

(a) (b) (c)

Figure 1: Placenta images. Each placenta varies in texture, color, and shape even within itself. Note the
variations in vessel color, which are circled, in placentas (a) and (c). Also note the smoother surface on the
left of placenta (b) compared to its right side.

photos of placental surfaces. The challenge faced when extracting any placental vessel network lies in the

varying texture, color, and shape of placentas, which can be seen in Figure 1. Note the differences from one

placenta to another and the variation in color and texture within the same placenta.

For implementation purposes, an image is defined in the following form: I = (R,G,B) : Z2 → R3,

where R,G,B : Z2 → R. Figure 2 illustrates how an image like Figure 2(a) can be decomposed into three

channels and how the intensity values can be treated as the z-coordinate value, seen in Figure 2(b)-(c).

Conventionally, R picks up the “red”, G picks up the “green”, and B picks up the “blue” of the image.

All our implementations use the green channel of the image, such as Figure 2(c), for better contrast since

placentas are red most of the time, and thus using the red channel does not highlight the vessels but the

placenta surface. Hence, from now on, I(x, y) will denote the green channel of the image function I and

x, y the pixel location. For example, from Figure 2(c) I(6, 2) = 217 meaning that the pixel located at the

position (6, 2) has a “green” intensity value of 217. When an image channel is represented in this form it

can be referred to as the intensity map of the image.

In our research, we used the linear filtering approach which is widely used in image processing due to its

effectiveness and efficiency. A linear filtering process uses a window that moves throughout the whole image

and assigns weighted values to each pixel in that window to describe the centered pixel. This process can

be viewed as a convolution of the image I(x, y) with a filter function f(x, y) and the moving window as a

convolution mask [8]. An example of a convolution mask centered at (i, j) is given in Figure 3. Notice how

the convolution mask moves with respect to its center.

2

(a) (b) (c)

Figure 2: (a) An image, (b) its three channel decomposition, (c) the green channel, which is the one used
for the implementations of this paper to create a better contrast, with some pixels labeled.

Figure 3: Convolution masks in light blue with red centers. These convolution masks move throughout the
image as illustrated here.

3

(a) (b) (c)

(d) (e) (f)

Figure 4: Gaussian filtering is a process that smoothes out images. The level of smoothing depends on the
size of the filter window. (a) Gaussian filter of 15 by 15. (b) An example. (c) Intensity map of (b). (d)-(f)
Image (a) convolved with the Gaussian filter of square window size 5, 15, and 35, respectively.

A concrete example of a filter is the Gaussian filter. For images, the 2D Gaussian filter function is defined

in the following way:

G(x, y) = e
− 1

2

(
x2

σ21
+ y2

σ22

)
, (1)

where σ1 and σ2 can be thought of as the “width” and “length” of the filter, respectively. For convenience, let

w = 1
σ1

and l = 1
σ2

. An example of this Gaussian filter is shown in Figure 4(a). If Figure 4(b) with intensity

map shown in Figure 4(c) is taken as the image function I(x, y), and then it is discretely convolved with

Gaussian filters of squared sizes 5, 15, and 35, then Figures 4(d), 4(e), and 4(f) will be returned, respectively.

This Gaussian filter function is essential in the construction of the Frangi and Ridgelet filters discussed later.

Another important component of our research is the ridgelet. The continuous ridgelet transform, as

discussed in [4] and [5], is a signal analysis approach designed to pick up the lines in images. To achieve

this, the line singularities are mapped to point singularities using the Randon transform, then the point

singularities can then be handled with the well known wavelets. Our developed ridgelet does not use the

signal analysis but has the same line detection and directional idea, and thus the name of the special form

of the ridgelet. Figure 5 shows different ridgelet examples, which can later be compared to our developed

4

Figure 5: Different Ridgelet examples.

filter.

The following section describes the method of our research, which include the multi-scale method referred

to as the Frangi approach in our discussion, the proposed filter, and how these two were combined. Section

3 then gives empirical results, and finally section 4 concludes our findings. Acknowledgements are given in

section 5, and section 6 includes the MATLAB codes used for the implementation of this research.

2 The Method

2.1 The Frangi Filter

The following discussion briefly describes the Frangi method as presented in [7]. In this article, the authors

explain that vessels occupy a small area of the total area being analyzed in the images and either are lighter

than their background or darker than their background. This last characteristic allowed the authors to

develop a function that finds the likelihood that a pixel is part of a vessel because this contrast of intensity

values is depicted in I(x, y) as valleys or peaks. An example of such is seen in the yellow highlighted region

in Figure 6(b), which corresponds to the vessel circled in Figure 6(a).

Recall that the intensity values of the image I(x, y) can be thought as a discrete function. Thus, the

Hessian, a 2-by-2 matrix containing the second partial derivatives of a function, can be calculated at each

pixel as follows:

H(x, y) =

 ∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

 (2)

Note that the Hessian contains all the second order information of the image needed for each pixel. This

also means that just like the image, the Hessian is also a discrete function. The Hessian can be approximated

5

(a) (b)

Figure 6: Placentas vary in coloring, which appear as valleys and peaks in the intensity map. (a) A placenta
patch, and its (b) intensity map rotated to magnify intensity values. Notice that a vessel, highlighted in
yellow, and noise, highlighted in red, cannot be distinguished easily.

to a continuous function using the Gaussian filter and the differentiation property of convolution in the

following manner:

H(x, y) ≈ G ?

 ∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

 =

 ∂2G
∂x2

∂2G
∂x∂y

∂2G
∂y∂x

∂2G
∂y2

 ? I(x, y), (3)

where ? is the usual convolution.

In order to extract information from the Hessian matrix about contrast and direction, its eigenvalues

are calculated. For simplicity, let |λ1| ≤ |λ2| denote the two eigenvalues of the Hessian matrix and u1,u2

the corresponding eigenvectors. Since λ1 is the eigenvalue of smallest magnitude, it corresponds to the

eigenvector, u1, pointing in direction of smallest curvature, and λ2 corresponds to the eigenvector, u2,

pointing in direction of the largest curvature. For vessel pixels this means that u1 points towards the

direction that the vessel is going, λ1 ≈ 0, u2 points towards the edge of the vessel, and λ2 is large in

magnitude. In Figure 7(b), u1 for each pixel in a small region of the placenta is shown, and in Figure 7(c) u2

for the same region is shown. The red lines in each figure are for reference since they outline the approximate

location of the vessel. Also notice from Figure 7(a) how the noisy background of the placenta affects the

eigenvectors in Figure 7(b)-(c) since these are numerically approximated.

With this in mind, two measures were defined to measure the anisotropy and contrast of the pixel. They

are defined as follows:

A =
|λ1|
|λ2|

, and C =
√
λ21 + λ22.

Note that A will be low for vessel pixels so that the lower A is the more likely it is a vessel pixel. C will

6

(a) (b) (c)

Figure 7: (a) Vessel in placenta image. (b)-(c) Eigenvectors corresponding to the smallest magnitude and
larger magnitude, respectively. Note that the direction of the eigenvector u1 in (b) is the same as the vessel
path and the direction for the eigenvector u2 in (c) points towards the side of the vessel.

be low if both the eigenvalues are small for the lack of contrast so that the larger C is the more likely it is a

vessel.

For images where the vessels are darker than their background, meaning that the vessels are valleys, the

curvature will be negative so λ2 < 0. Hence, the developed likelihood function, or “vesselness equation,” is:

F (·) =


0 ifλ2 > 0,

e−
A2

2α2

(
1− e

C2

2β2

)
otherwise,

(4)

where α and β are parameters to adjust A and C, respectively. If there is a high probability that the pixel

being analyzed is part of a vessel, then a high output value, also called response value, is assigned to that

pixel. This process is repeated for every pixel and the response values are the output.

The drawback of applying this filter on placenta images is that it detects background noise as part of the

vessel structure because of the non-uniform texture of the placenta. Figure 6(b) shows the intensity values

of the placenta patch in Figure 6(a). Note how the region highlighted in yellow corresponds to a vessel, and

the region highlighted in red is not a vessel; however, when Frangi method is applied to Figure 6(a), the

Frangi response is about the same for some non-vessel pixels and some vessel pixels because they are both

“valley” structures. This is seen in Table 2.1 where actual Frangi reponse values are shown. From these

values it is clear that some vessel pixels cannot be differentiated from non-vessel pixels.

7

Table 1: Actual Frangi response values
x y I(x, y) vessel/nonvessel Frangi response

115 128 22 vessel 0
159 161 13 non-vessel 0.03983
334 319 15 non-vessel 0.1477
147 395 20 vessel 0.0228
303 428 32 vessel 0

2.2 The Special Form of the Ridgelet

Since the Frangi method on its own is not enough to identify only the vessel pixels in the images, we propose

a new filtering process. The first step in the filtering process is to enlarge the original image to three times

its original size using a bi-cubic interpolation E by a factor of r. This will further approximate the discrete

image function I to a continuous function and will also give us a larger data with which we can work. Loosely

speaking, if we call the process of calculating F a Frangi filtering process, then F is applied to the re-sized

image and only pixels that have a response value higher than zero, meaning that they are possible vessel

pixels, are considered. That is, a pixel (X,Y) is a vessel pixel if F{Er (I(X,Y))} > 0. To simplify notations,

let us define a binary response:

B(X,Y) =


1 if F{Er (I(X,Y))} > 0,

0 otherwise.

A pixel (X,Y) inside of B−1{1} has a high likelihood to be a vessel pixel, but because Frangi identifies

some background noise as vessel pixels, further considerations are needed. On the images, vessels are locally

linear and have long structures. Hence, we developed a filter that (1) highlights the linear structures, (2)

penalizes surrounding pixels, and (3) weights the importance of the surrounding pixels for implementation

purposes according to how close they are to the one being analyzed. In other words if the pixel (X,Y) ∈

B−1{1} is part of a linear structure of width 2w, then there are two orthogonal vectors u, v ∈ R2 with

||u|| = w and ||v||>w such that:

(1) R = {ru + tv + (X,Y) | −1 < r, t < 1} ⊆ B−1{1}

(2) S = {ru + tv + (X,Y) | −1 < t < 1, 1 < |r| < 2} ⊆ B−1{0}

(3) points in R ∪ S are inversely weighed based on their distances to pixel (X,Y)

Figure 8(a) provides a visualization of the conditions. Note that our proposed filter is a special form of

8

(a) (b)

Figure 8: Our proposed filter works by detecting the linear structures and penalizing the surrounding non-
vessel pixels. (a) A diagram of the elements of the criteria that our filter tries to satisfy. The (X,Y) is
the pixel being analyzed, R is the vessel region, and w is the width of the filter. Since (X,Y) is inside R,
applying the Ridgelet filter will return a high response value. (b) The Ridgelet filter.

(a) (b) (c)

Figure 9: (a) Squared Gaussian filter of size 50, (b) the first partial derivative of the filter, and (c) negative
of the second partial derivative of the filter.

the Ridgelet because of criterion (1). Figure 8(b) shows a filter that satisfies all 3 criteria, which clearly

resembles the Ridgelet mentioned earlier.

To meet the first two criterion, it is possible to use a filter approach that rewards pixels in R and penalizes

those in S. Because the second derivative of the Gaussian filter has a structure with a centered peak, valleys

in the side, and a leveling out effect in the further away pixels, all seen in Figure 9(c), it can be used to meet

the criteria. Figure 9(a) shows the Gaussian filter and Figure 9(b) the first derivative of the Gaussian for

completeness.

The actual function for the second derivative of the 2D Gaussian is:

−∂
2G

∂x2
=
(
1− w2x2

)
exp

(
−1

2
(w2x2 + l2y2)

)
(5)

With Equation (5), a large weight will be given to surrounding pixels, a negative weight will be given

9

to pixels in region S, and pixels that are too far away will be dismissed by giving them a weight of zero.

However, for the distribution to be smooth and the width of consideration to be 2w, the term w2x2 in

Equation (5) is replaced with 3
4−w2x2 . This way, as wx → ±2, e

(
− 1

2 (
3

4−w2x2
+l2y2)

)
→ 0 and we have a

smooth distribution. Hence, our proposed Ridgelet function is:

Ψ(x, y) =


1−w2x2

4−w2x2 e

(
− 1

2 (
3

4−w2x2
+l2y2)

)
if |x|<2w

0 if |x| ≥ 2w

(6)

The filter can be seen in Figure 8(b).

Notice how our Ridgelet is a heuristic filter since it does not include direction information and vessels

can point at different angles. To incorporate direction information in our filter equation, consider a certain

direction, u, a rotation function, Tu, that maps u to (||u||, 0), and the Ridgelet template W (x, y) = Ψ ◦

Tu(x, y). In order to take account for many different directions, we created a library of templates Wk

corresponding to the collection of n orientations π
n radians apart from each other: {uk = (cos θk, sin θk)|θk =

kπ
n }

n
k=1. We then end up with Wk(x, y) = Ψ ◦ Tk(x, y), where

Tk(x, y) =

cos θk − sin θk

sin θk cos θk


x
y

 .
From these, define the response values Vk := Wk ? B(x, y) at different k values, which will give us a set

of k different response outputs. With this function, the following are achieved:

(1) Pixels in region R will return a positive Vk

(2) Pixels in S return negative Vk

(3) Pixels close to the one being analyzed are given a higher weight in the Ψ(x, y) function

In addition, we also have achieved: (4) only pixels that Frangi identified as vessel pixels are considered,

since Vk = 0 otherwise, and (5) different vessel directions are considered using the Wk function. This shows

that we have achieved all our goals. Figure 10 summarizes this section. The first step was to construct the

Ridgelet filter with the Ψ function, such as in Figure 11(a), then rotations were added with the Tk templates

and hence we get a directory of filters Wk such as Figure 11(a)-(d). Finally, these filters were applied to the

Frangi response, as shown in Figure 11(e)-(h).

10

Figure 10: Summary of the development of the Ridgelet filtering process. First the filter function Ψ was
found, then rotation templates were incorporated, and then this was applied to the Frangi output.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: The Ridgelet filters and their response when applied to the Frangi output. Notice that the Ψ
function simply gives a filter such as in (a), and when the templates Tk are put in place, the filter directory
Wk is assembled with filters of different angles such as (a)-(d). Finally, when these filters are applied to the
Frangi output, the responses Vk are such as in (e)-(h).

11

True ID
True False

Labeled ID
True True Positive False Positive
False False Negative True Negative

2.3 Combining Both Filters and Thresholding

Now that the Ridgelet has helped us locate the most linear regions from the Frangi filter, the next step

is to combine the results from these two filters. Recall that after applying Wk(x, y) on B(x, y), there is a

collection of responses per pixel, that is {Vk}nk=1. With this information, each pixel is given the highest

response value from the Ridgelet filter so that

V (x, y) = max
1≤k≤n

Vk.

Figure 12(a)-(d) illustrate this for n = 12 and k = 3, 6, 9, 12. The next step is to divide the Frangi output

into components Bi; that is, if neighboring pixels were identified as vessel pixels, they will belong to the same

component, or to the same Bi. An example of the Frangi output and its corresponding connected components

is given in Figure 12(e) and (f), respectively. In Figure 12(f), each color represent a different component, or

Bi. For implementation purposes, we then assign the maximum value of V (x, y) for all (x, y) ∈ Bi to every

pixel in the component Bi and call this new V (x, y) function V ′(x, y). To further improve the enhancement,

we choose a threshold µ and use it to discard pixels with the new V (x, y) response value below the threshold.

Examples of threshold values and their effects in an image are shown in Figures 12(g)-(h). The resulting

filtering process identifies pixels as vessel pixels by Vµ = ∪iZi, where Zi = {Bi|V ′(x, y)>µ}. A diagram

illustrating the combination process is presented in Figure 13.

3 Empirical Results

To test the effectiveness of the filtering process, we used the confusion matrix to compare our results to

the hand tracings of the placenta images done by pathologist. The confusion matrix, also known as the

contingency matrix, is a 2 × 2 matrix used to display the four possible outcomes: true positives (correct

classification of vessel pixels), true negatives (correct classification of non-vessel pixels), false negatives

(classification of vessel pixels as non-vessel pixels), and false positives (classification of non-vessel pixels

as vessel pixels) [6]. The confusion matrix can be constructed in the following form:

By convention, we will refer to the true positive, false positive, false negative, and true negative as

12

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12: Maximum responses for angles (a) π
4 , (b) π

2 , (c) 3π
4 , and (d) π. (e) Frangi response, (f) Frangi

separated into components, and thresholds of (g) 20 and (h) 40 applied to the combined result.

Figure 13: Summary of the combination process. Once the Frangi output is divided into components and
V (x, y) is calculated, the maximum V (x, y) value in the each component is assigned to every pixel in that
component and then a threshold is placed.

13

TP, FP, FN, and TN , respectively.

The MCC metric was used to measure how well our Frangi-Ridgelet detects vessel pixels because, unlike

other measures, it utilizes all the parts of the confusion matrix giving a more balanced value. The only

problem with this metric comes when there are very few false positives and true positives [2]. Our algorithm

returns a very high number of true positives, so this should not be a problem. Another reason why the MCC

metric was used is to have comparable data to the Neural Networks approach [1], in which the MCC was

also used to measure the effectiveness of the method. The MCC metric is defined in the following manner:

mcc(x, y) =
TP × TN − FP × FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)

The MCC metric is a correlation measure with values between -1 and 1 that for our case will be measuring

how related the Frangi-Ridgelet identification of the vessels are to the actual vessel locations. In our case,

a MCC value of 0 means that the identification did no better than a random identification of pixels, and

anything higher than 0 represents a much better identification of pixels than a random one.

Since the MCC gives an idea of how well the filtering process identified the vessels for the given parameters,

it can be plotted against different threshold values to compare the overall accuracy of the Frangi-Ridgelet

filtering process. Then, the area under the MCC curve can be calculated to have a single value to compare

results. Since a zero value can be thought as random identification and one as perfect identification, the area

under a curve of random identification would be zero and area under a curve of perfect identification would

be simply the number of threshold values. Since the Neural Networks research returned threshold values go

up to 1.01, the x-axis of the MCC curve for our results were scaled down to 1.01 for fair comparison.

After running several tests on the placenta image in Figure 14(a), we concluded that the parameters

that give the best overall results, meaning that it returns the MCC curve with the largest area under the

curve, are: resizing scale = 3, Frangi scale = 5, Ridgelet width = 28, Ridgelet length = 36, and number of

Ridgelet filters = 12. This set of parameters will be later referred as experiment 1, and Figure 14(e) shows

the result of using these parameters. However, we found that a higher MCC value was achieved with the

parameters: resizing scale = 2, Frangi scale = 6, Ridgelet width = 14, Ridgelet length = 35, and number of

Ridgelet filters = 10. This new set of parameters will be later referred as experiment 2, and the result for

these parameters are shown in Figure 14(f).

The Frangi-Ridgelet process in Figures 14(e)-(f) was able to get rid of much of the noise that Frangi

picked up and has a much cleaner display. Another visual advantage of our proposed filter is that it picked

up some vessels that the Neural Networks did not and the vessels are better connected as shown in the

14

Table 2: Results
Method Highest MCC value Area Under the MCC curve

Neural Networks 0.345 0.22
Frangi 0.2552 0.1216

Experiment 1 0.3539 0.25
Experiment 2 0.3676 0.2328

circled portions of Figure 14(f).

For more objective results, one can look at the area under the MCC curve and from these values it is

clear that the process improved the Frangi results and those from the Neural Networks. From the scaled

MCC curve, shown in Figure 15(a), the area under it was calculated to be 0.25 and 0.2328 for experiment 1

and experiment 2, respectively. The highest MCC value for experiment 1 was 0.3539 at a threshold value of

148 and for experiment 2 it was 0.3676 at a threshold value of 77. As shown in [1], the highest area under the

curve for their results was 0.22 and the highest reported MCC value was 0.345 as indicated in Figure 15(b).

For the same image resized to 3 times its original size and Frangi with a scale of 5 applied on this image, the

area under its MCC curved with an x-axis scaled down to 1.01 is 0.073 and its highest MCC value 0.1754

at a threshold of 6. If instead the image is resized to 2 times its original size and Frangi with a scale of 6 is

applied on it, the area under its MCC curved with an x-axis scaled down to 1.01 is 0.1216 and the highest

MCC value is 0.2552 at a threshold of 12. The summary of these numbers can be seen in Table 2.

The disadvantage of the proposed method can be seen visually when its results are compared with the

ones from Frangi and Neural Networks, shown in Figure 14(c) and (d) respectively. Notice that our proposed

filtering process losses some information. For example, in Figure 14(c), the highlighted vessels that Frangi

identified were not identified in Neural Networks or our Frangi-Ridgelet process. Also, in Figure 14(d), the

yellow vessels were not detected with our proposed filter. However, as seen from the area under the MCC

curve, we know that the overall result is better than the one from Frangi and Neural Networks.

From these results we see that our proposed filter has improved results from the other methods tried on

placenta images. On top of that, the proposed Frangi-Ridgelet is able to run in about 2 minutes on a 1600 ×

1200 placenta image, providing us with a new method for general vessel extraction of medical images. The

results where obtained using MATLAB in a 64-bit laptop with Intel Core i7 at 1.73 GHz CPU and 6 GB

RAM, and the computational time was measured in CPU time.

15

(a) (b)

(c) (d)

(e) (f)

Figure 14: (a) Original image, (b) hand tracing, (c) Frangi results with a threshold of 0, (d) Neural Networks
results, (e) Frangi-Ridgelet with resizing = 3, Frangi scale = 5, Ridgelet width = 14, length = 36, number
of filters = 12, and (f) Frangi-Ridgelet with resizing = 2, Frangi scale = 6, Ridgelet width = 7, length = 35,
number of filters = 10.

16

(a) (b)

Figure 15: (a) The MCC curves for experiment 1, experiment 2, and Frangi experiments. (b) The Neural
Networks results found in [1].

4 Summary

The Frangi-Ridgelet filtering process seeks to identify the vessels on placenta images. The process starts

resizing the image and then applying the Frangi filter. Then, this output is enhanced through the application

of a Ridgelet function to extract the most linear structures. These two results are then combined and

thresholded for better identification. The results were measured in accuracy using the MCC metric. Our

experiments show that our proposed filtering process improved the results of the well known multi-scale

vessel enhancement and the previous work done in placenta images, the Neural Networks. These are very

exciting results taking into account that placenta images are extremely difficult to segment due to their

texture.

5 Acknowledgements

I would like to thank my collaborator, Nen Huynh, for all his contribution and patient mentoring, and Dr.

Carolyn Salafia from Placental Analytics, LLC for providing the digital photographs of placenta surfaces.

17

6 Appendix

1 function [frangiwhale,frangi,whale,whaleDir] = FrangiWhaleEff(grayImg,...

2 resizeScale,frangiScale,isdarklight,...

3 whaleWidth,whaleLength,whaleNumber,...

4 verbose)

5 %FrangiWhaleEff returns a much cleaner version of the Frangi Filter output.

6 %First, Frangi Filter is applied on an image to identify vessels and a

7 %result is returned. Then using convolve2, a function made by David Young,

8 %the Ridgelet filter is applied on the Frangi output and the most linear

9 %parts of the vessels as identified with Frangi are given higher intensity

10 %values, which is depicted by red and orange colors, and the less linear

11 %parts are given lower intensity values, depicted by yellow, green, and

12 %blue colors. The high intensity parts of the vessels and anything

13 %connected to them are marked and anything else is discarded returning the

14 %cleaner version of the Frangi output.

15 %

16 %INPUTS:

17 % grayImg − the green channel of the original image

18 % resizeScale − the enlargement parameter. For example, a 2 will

19 % output twice the original image.

20 % frangiScale − the "size" of the vessels to be identified.

21 % isdarklight − whether the vessels are darker compared to the

22 % background or viceversa. (true for our experiments)

23 % whaleWidth − half the width of the ridgelet filter

24 % whaleLength − half the length of the ridgelet filter

25 % whaleNumber − the number of filter directions to be checked.

26 % verbose − gives information on what process is running and how long

27 % it takes.

28 %OUTPUTS:

29 % frangiwhale − the result of our filtering process

30 % frangi − the response value of the Frangi filter

31 % whale − the response value of the whale filter

32 % whaleDir − the number of the whale filter corresponding to the

33 % highest response value.

34 %

35 %Example: Experiment 1

36 % 1)Input your image in MATLAB and grab the green channel:

18

37 % I = imread('filename.ext');

38 % I = double(I(:,:,2));

39 % 2)Ready to go! The following code will give you the output for experiment

40 % 1 before thresholding.

41 % [frangiwhale,frangi,whale,whaleDir] = FrangiWhaleEff(I,3,5,true,14,...

42 % 36,12,verbose)

43

44 % Resizing the image and setting up the paramenters for Frangi

45 grayImg = imresize(grayImg,resizeScale);

46 options = struct('FrangiScaleRange', [frangiScale frangiScale],...

47 'FrangiScaleRatio', 1, 'FrangiBetaOne', 0.5,'FrangiBetaTwo', 15,...

48 'verbose',verbose,'BlackWhite',isdarklight);

49

50 %Starting timer for Frangi

51 if verbose

52 tic;

53 end

54

55 %Applying Frangi on the image

56 frangi = FrangiFilter2D(grayImg,options);

57

58 %Displaying timer

59 if verbose

60 disp(['Frangi took: ' num2str(toc)]);

61 end

62

63 %Segmenting the Frangi respose and applying the whale filters on this

64 %response

65 bw = frangi > 0;

66 [whale,whaleDir] = WhaleFilterEff(bw,whaleWidth,whaleLength,whaleNumber,...

67 verbose);

68 [label,numComp] = bwlabel(bw,4);

69

70 %Starting timer for ridgelet

71 if verbose

72 tic;

73 end

74

75 %Finding the maximum ridgelet response for each component

19

76 maxCompValues = zeros(numComp,1);

77 for i = 1 : size(label,1)

78 for j = 1 : size(label,2)

79 if label(i,j) > 0 && maxCompValues(label(i,j)) < whale(i,j)

80 maxCompValues(label(i,j)) = whale(i,j);

81 end

82 end

83 end

84

85 %Substitutes each value to the maximum value

86 frangiwhale = zeros(size(bw));

87 for i = 1 : size(bw,1)

88 for j = 1 : size(bw,2)

89 if label(i,j) > 0

90 frangiwhale(i,j) = maxCompValues(label(i,j));

91 end

92 end

93 end

94

95 %Displaying timer

96 if verbose

97 disp(['Getting the components took ' num2str(toc)]);

98 end

99

100 end

1 function [outIm,whatScale,Direction] = FrangiFilter2D(I, options)

2 % This function FRANGIFILTER2D uses the eigenvectors of the Hessian to

3 % compute the likeliness of an image region to vessels, according

4 % to the method described by Frangi:2001 (Chapter 2).

5 %

6 % [J,Scale,Direction] = FrangiFilter2D(I, Options)

7 %

8 % INPUTS

9 % I : The input image (vessel image)

10 % Options : Struct with input options,

11 % .FrangiScaleRange : The range of sigmas used, default [1 8]

12 % .FrangiScaleRatio : Step size between sigmas, default 2

20

13 % .FrangiBetaOne : Frangi correction constant, default 0.5

14 % .FrangiBetaTwo : Frangi correction constant, default 15

15 % .BlackWhite : Detect black ridges (default) set to true, for

16 % white ridges set to false.

17 % .verbose : Show debug information, default true

18 %

19 % OUTPUTS

20 % J : The vessel enhanced image (pixel is the maximum found in all scales)

21 % Scale : Matrix with the scales on which the maximum intensity

22 % of every pixel is found

23 % Direction : Matrix with directions (angles) of pixels (from minor eigenvector)

24 %

25 % Example,

26 % I=double(imread ('vessel.png'));

27 % Ivessel=FrangiFilter2D(I);

28 % figure,

29 % subplot(1,2,1), imshow(I,[]);

30 % subplot(1,2,2), imshow(Ivessel,[0 0.25]);

31 %

32 % Written by Marc Schrijver, 2/11/2001

33 % Re−Written by D.Kroon University of Twente (May 2009)

34

35 defaultoptions = struct('FrangiScaleRange', [1 10], 'FrangiScaleRatio', 2, ...

'FrangiBetaOne', 0.5, 'FrangiBetaTwo', 15, 'verbose',true,'BlackWhite',true);

36

37 % Process inputs

38 if(¬exist('options','var')),

39 options=defaultoptions;

40 else

41 tags = fieldnames(defaultoptions);

42 for i=1:length(tags)

43 if(¬isfield(options,tags{i})), options.(tags{i})=defaultoptions.(tags{i}); end

44 end

45 if(length(tags)6=length(fieldnames(options))),

46 warning('FrangiFilter2D:unknownoption','unknown options found');

47 end

48 end

49

50 sigmas=options.FrangiScaleRange(1):options.FrangiScaleRatio:options.FrangiScaleRange(2);

21

51 sigmas = sort(sigmas, 'ascend');

52

53 beta = 2*options.FrangiBetaOneˆ2;

54 c = 2*options.FrangiBetaTwoˆ2;

55

56 % Make matrices to store all filterd images

57 ALLfiltered=zeros([size(I) length(sigmas)]);

58 ALLangles=zeros([size(I) length(sigmas)]);

59

60 % Frangi filter for all sigmas

61 for i = 1:length(sigmas),

62 % Show progress

63 if(options.verbose)

64 disp(['Current Frangi Filter Sigma: ' num2str(sigmas(i))]);

65 end

66

67 % Make 2D hessian

68 [Dxx,Dxy,Dyy] = Hessian2D(I,sigmas(i));

69

70 % Correct for scale

71 Dxx = (sigmas(i)ˆ2)*Dxx;

72 Dxy = (sigmas(i)ˆ2)*Dxy;

73 Dyy = (sigmas(i)ˆ2)*Dyy;

74

75 % Calculate (abs sorted) eigenvalues and vectors

76 [Lambda2,Lambda1,Ix,Iy]=eig2image(Dxx,Dxy,Dyy);

77

78 % Compute the direction of the minor eigenvector

79 angles = atan2(Ix,Iy);

80

81 % Compute some similarity measures

82 Lambda1(Lambda1==0) = eps;

83 Rb = (Lambda2./Lambda1).ˆ2;

84 S2 = Lambda1.ˆ2 + Lambda2.ˆ2;

85

86 % Compute the output image

87 Ifiltered = exp(−Rb/beta) .*(ones(size(I))−exp(−S2/c));

88

89 % see pp. 45

22

90 if(options.BlackWhite)

91 Ifiltered(Lambda1<0)=0;

92 else

93 Ifiltered(Lambda1>0)=0;

94 end

95 % store the results in 3D matrices

96 ALLfiltered(:,:,i) = Ifiltered;

97 ALLangles(:,:,i) = angles;

98 end

99

100 % Return for every pixel the value of the scale(sigma) with the maximum

101 % output pixel value

102 if length(sigmas) > 1,

103 [outIm,whatScale] = max(ALLfiltered,[],3);

104 outIm = reshape(outIm,size(I));

105 if(nargout>1)

106 whatScale = reshape(whatScale,size(I));

107 end

108 if(nargout>2)

109 Direction = reshape(ALLangles((1:numel(I))'+(whatScale(:)−1)*numel(I)),size(I));

110 end

111 else

112 outIm = reshape(ALLfiltered,size(I));

113 if(nargout>1)

114 whatScale = ones(size(I));

115 end

116 if(nargout>2)

117 Direction = reshape(ALLangles,size(I));

118 end

119 end

1 function [whale,whaleDir] = WhaleFilterEff(bw,whaleWidth,whaleLength,...

2 whaleNumbers,verbose)

3 % WhaleFilter uses the function convolve2, made by Daving Young, to create

4 % linear filters of different angles and when applied in an image, response

5 % values and the corresponding directions are returned.

6 %

7 %INPUTS:

23

8 % bw − matrix of logicals

9 % whaleWidth − half the width of the ridgelet filter

10 % whaleLength − half the length of the ridgelet filter

11 % whaleNumbers − the number of filters to be produced

12 % verbose − gives information on what process is running and how long

13 % it takes

14 %OUTPUTS:

15 % whale − the maximum response value of the ridgelet filter applied

16 % on bw

17 % whaleDir − the number of the filter corresponding to the maximum

18 % response value of the whale filter on bw

19

20 %Setting up

21 bw = double(bw);

22 Values = zeros(size(bw,1),size(bw,2),2);

23 whaleDir = zeros(size(bw,1),size(bw,2));

24

25 if verbose

26 disp(['Applying ' num2str(whaleNumbers) ' whale filters']);

27 end

28

29 %Makes and applies the filters

30 for k = 1 : whaleNumbers

31 if verbose

32 tic;

33 end

34

35 Filter = MakeWhaleFilter(whaleWidth,whaleLength,k*pi/whaleNumbers);

36 Values(:,:,2) = convolve2(bw,Filter,'same',10ˆ(−7));

37 [Values(:,:,1),Temp] = max(Values,[],3);

38 whaleDir(Temp>1) = k;

39

40 if verbose

41 disp(['Whale filter ' num2str(k) ' took ' num2str(toc) ' secs']);

42 end

43 end

44

45 whale = Values(:,:,1);

46 end

24

1 function [Filter] = MakeWhaleFilter(whaleWidth,whaleLength,angle)

2 % MakeWhaleFilter creates the ridgelet filters.

3 %

4 % INPUTS:

5 % whaleWidth − half the width of the ridgelet filter

6 % whaleLength − half the length of the ridgelet filter

7 % angle − The angle of rotation

8 % OUTPUT:

9 % Filter − the filter with the specified parameters

10

11 % Setting up

12 n = 2*max([whaleWidth whaleLength]);

13

14 % Make Coordinate

15 [x,y] = meshgrid(−n:n,−n:n);

16

17 % Rotate

18 X = x.*cos(angle)−y.*sin(angle);

19 Y = x.*sin(angle)+y.*cos(angle);

20

21 % The filter

22 Filter = (abs(X) < 2*whaleWidth).*(1−(X/whaleWidth).ˆ2)./...

23 (4−(X/whaleWidth).ˆ2).*exp(−1/2*((3./(4−(X/whaleWidth).ˆ2))+...

24 (Y/whaleLength).ˆ2));

25 Filter(isnan(Filter)) = 0;

26

27 end

1 function y = convolve2(x, m, shape, tol)

2 %CONVOLVE2 Two dimensional convolution.

3 % Y = CONVOLVE2(X, M) performs the 2−D convolution of matrices X and

4 % M. If [mx,nx] = size(X) and [mm,nm] = size(M), then size(Y) =

5 % [mx+mm−1,nx+nm−1]. Values near the boundaries of the output array are

6 % calculated as if X was surrounded by a border of zero values.

7 %

8 % Y = CONVOLVE2(X, M, SHAPE) where SHAPE is a string returns a

9 % subsection of the 2−D convolution with size specified by SHAPE:

25

10 %

11 % 'full' − (default) returns the full 2−D convolution,

12 % 'same' − returns the central part of the convolution

13 % that is the same size as X (using zero padding),

14 % 'valid' − returns only those parts of the convolution

15 % that are computed without the zero−padded

16 % edges, size(Y) = [mx−mm+1,nx−nm+1] when

17 % size(X) > size(M),

18 % 'wrap' − as for 'same' except that instead of using

19 % zero−padding the input X is taken to wrap round as

20 % on a toroid.

21 % 'reflect' − as for 'same' except that instead of using

22 % zero−padding the input X is taken to be reflected

23 % at its boundaries.

24 %

25 % CONVOLVE2 is fastest when mx > mm and nx > nm − i.e. the first

26 % argument is the input and the second is the mask.

27 %

28 % If the rank of the mask M is low, CONVOLVE2 will decompose it into a

29 % sum of outer product masks, each of which is applied efficiently as

30 % convolution with a row vector and a column vector, by calling CONV2.

31 % The function will often be faster than CONV2 or FILTER2 (in some

32 % cases much faster) and will produce the same results as CONV2 to

33 % within a small tolerance.

34 %

35 % Y = CONVOLVE2(... , TOL) where TOL is a number in the range 0.0 to

36 % 1.0 computes the convolution using a reduced−rank approximation to

37 % M, provided this will speed up the computation. TOL limits the

38 % relative sum−squared error in the effective mask; that is, if the

39 % effective mask is E, the error is controlled such that

40 %

41 % sum(sum((M−E) .* (M−E)))

42 % −−−−−−−−−−−−−−−−−−−−−−−−−− ≤ TOL

43 % sum(sum(M .* M))

44 %

45 % See also CONV2, FILTER2.

46

47 % Copyright David Young, Feb 2002, revised Jan 2005, Jan 2009, Apr 2011

48

26

49 % Deal with optional arguments

50 error(nargchk(2,4,nargin));

51 if nargin < 3

52 shape = 'full'; % shape default as for CONV2

53 tol = 0;

54 elseif nargin < 4

55 if isnumeric(shape)

56 tol = shape;

57 shape = 'full';

58 else

59 tol = 0;

60 end

61 end;

62

63 % Set up to do the wrap & reflect operations, not handled by conv2

64 if ismember(shape, {'wrap' 'reflect'})

65 x = extendarr(x, m, shape);

66 shape = 'valid';

67 end

68

69 % do the convolution itself

70 y = doconv(x, m, shape, tol);

71 end

72

73 %−−−

74

75 function y = doconv(x, m, shape, tol)

76 % Carry out convolution

77 [mx, nx] = size(x);

78 [mm, nm] = size(m);

79

80 % If the mask is bigger than the input, or it is 1−D already,

81 % just let CONV2 handle it.

82 if mm > mx | | nm > nx | | mm == 1 | | nm == 1

83 y = conv2(x, m, shape);

84 else

85 % Get svd of mask

86 if mm < nm; m = m'; end % svd(..,0) wants m > n

87 [u,s,v] = svd(m, 0);

27

88 s = diag(s);

89 rank = trank(m, s, tol);

90 if rank*(mm+nm) < mm*nm % take advantage of low rank

91 if mm < nm; t = u; u = v; v = t; end % reverse earlier transpose

92 vp = v';

93 % For some reason, CONV2(H,C,X) is very slow, so use the normal call

94 y = conv2(conv2(x, u(:,1)*s(1), shape), vp(1,:), shape);

95 for r = 2:rank

96 y = y + conv2(conv2(x, u(:,r)*s(r), shape), vp(r,:), shape);

97 end

98 else

99 if mm < nm; m = m'; end % reverse earlier transpose

100 y = conv2(x, m, shape);

101 end

102 end

103 end

104

105 %−−−

106

107 function r = trank(m, s, tol)

108 % Approximate rank function − returns rank of matrix that fits given

109 % matrix to within given relative rms error. Expects original matrix

110 % and vector of singular values.

111 if tol < 0 | | tol > 1

112 error('Tolerance must be in range 0 to 1');

113 end

114 if tol == 0 % return estimate of actual rank

115 tol = length(m) * max(s) * eps;

116 r = sum(s > tol);

117 else

118 ss = s .* s;

119 t = (1 − tol) * sum(ss);

120 r = 0;

121 sm = 0;

122 while sm < t

123 r = r + 1;

124 sm = sm + ss(r);

125 end

126 end

28

127 end

128

129 %−−−

130

131 function y = extendarr(x, m, shape)

132 % Extend x so as to wrap around on both axes, sufficient to allow a

133 % "valid" convolution with m to return the cyclical convolution.

134 % We assume mask origin near centre of mask for compatibility with

135 % "same" option.

136

137 [mx, nx] = size(x);

138 [mm, nm] = size(m);

139

140 mo = floor((1+mm)/2); no = floor((1+nm)/2); % reflected mask origin

141 ml = mo−1; nl = no−1; % mask left/above origin

142 mr = mm−mo; nr = nm−no; % mask right/below origin

143

144 if strcmp(shape, 'wrap')

145 y = exindex(x, 1−ml:mx+mr, 1−nl:nx+nr, 'circular');

146 else

147 y = exindex(x, 1−ml:mx+mr, 1−nl:nx+nr, 'symmetric');

148 end

149

150 end

1 function [CM] = InnerCMc(M,T,experiment)

2 % InnerCMc returns the confusion matrix for the placenta pixels only for

3 % the given ground truth, mask, and experiment. That is, only the pixels

4 % inside of the placenta are counted to construct the confusion matrix.

5 % The confusion matrix is in the following form:

6 %

7 % True ID

8 % T F

9 %Labeled T TP FP

10 % ID F FN TN

11 %

12 %INPUT: M − A mask of the placenta.

13 % truth − The ground truth of the vessel location.

29

14 % experiment − The algorithm's output.

15 %OUTPUT: CM − The confusion matrix.

16

17 % Loading algorithm's output and putting it in the right form

18 E = double(imread(experiment));

19 % E = BaW(E);

20

21 % Findind the location of the inner pixels

22 [¬,I] = BoundInnerc(M);

23

24 % Setting the stage

25 [m,n] = size(T);

26 CM = zeros(2,2);

27

28 % Getting the confusion matrix

29 for i=1:m

30 for j =1:n

31 % Check point is inside the placenta

32 if I(i,j)==1

33 % Checking what kind of pixel E(i,j) is and putting it in the

34 % right place of the confusion matrix

35 [x,y] = checkP(T(i,j),E(i,j));

36 CM(x,y) = CM(x,y)+1;

37 end

38 end

39 end

1 function [B,M] = BoundInnerc(mask)

2 % BoundInner returns the boundary given a mask of the placenta and a matrix

3 % with the pixels inside the boundary marked.

4

5 %INPUT: % mask − A mask of the placenta.

6 %OUTPUT: % B − A (0,1)−matrix with ones only in the boundary.

7 % M − A (0,1)−matrix with ones only in the interior of the

8 % boundary.

9

10 %EXAMPLE:

11 % mask =[B = [M=[

30

12 % 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0

13 % 0 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0

14 % 0 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0

15 % 0 0 1 1 0 0] 0 0 1 1 0 0] 0 0 0 0 0 0]

16

17

18 % Get the boundary given a mask of the placenta (This part of the code was

19 % kindly provided by Amy Mulgrew.)

20 se = strel('disk',5); %set to 1 for 1pixeled boundary

21 Me = imerode(mask,se);

22 B = mask−Me;

23 B = double(B);

24 B = BaW(B);

25

26 % Get the inside

27 M = mask − B;

1 function [x,y]= checkP(t,e)

2

3 %checkP returns the position in the confusion matrix that a pixel belongs

4 %given the truth and experiment.

5

6 % INPUT: t − If the pixel is a vessel pixel, t=1. Else t=0.

7 % e − If the pixel was identified as a vessel pixel, e=1. Else e=0.

8 % OUTPUT: x − The row position where the pixel belogs.

9 % y − The column position where the pixel belogs.

10

11 % Example: The pixel was found to be a "false negative," then x=2, y=1.

12

13 % CONFUSION MATRIX:

14 %

15 % Ground Truth

16 % T F

17 %Test T TP FP

18 % F FN TN

19

20 %True Positive

21 if t == 1 && e==1

31

22 x = 1;

23 y = 1;

24 %False Negative

25 elseif t==1 && e==0

26 x = 2;

27 y = 1;

28 %True Negative

29 elseif t==0 && e == 0

30 x = 2;

31 y = 2;

32 %False Positive

33 else

34 x = 1;

35 y = 2;

36 end

1 function [B] = BaW(A)

2 % BaW returns a (0,1)−matrix by mapping the positive entries to 1 and

3 % everything else to 0.

4

5 % INPUT: A − Any matrix

6 % OUTPUT: B − A (0,1)−matrix

7

8 % Example:

9 % A = [−5.0 1.0 0.2; B = [0 1 1;

10 % 3.9 0.5 2.0; 1 1 1;

11 % 1.0 4.1 −1.0] 1 1 0]

12

13 [m,n] = size(A);

14 B = zeros(m,n);

15 for i=1:m

16 for j=1:n

17 if A(i,j) > 0

18 B(i,j) = 1;

19 else

20 B(i,j) = 0;

21 end

22 end

32

23 end

24 B = double(B);

33

References

[1] N. Almoussa, B. Dutra, B. Lampe, P. Getreuer, T. Wittman, C. Salafia, and L. Vese. Automated

vasculature extraction from placenta images. Proceedings of SPIE Medical Imaging Conference, 7962,

2011.

[2] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and Henrik Nielsen. Assessing the accuracy of

prediction algorithms for classification: an overview. Bioinformatics, 16(5):412–424, 2000.

[3] J.-M. Chang, A. Mulgrew, and C. Salafia. Characterizing placental surface shape with a high-

dimensional shape descriptor. Applied Mathematics, 3(9):954–968, 2012.

[4] M. N. Do and M. Vetterli. The finite ridgelet transform for image representation. IEEE Trans. Image

Process., 12(1):16–28, 2003.

[5] J.M. Fadili and J.-L. Starck. Curvelets and rigdelets. Encyplopedia of Complexity and Systems Science,

3:1718–1738, 2009.

[6] T. Fawcett. Roc graphs: Notes and practical considerations for researchers. Machine Learning, 31:1–38,

2004.

[7] A. Frangi, W. Niessen, K. Vincken, and M. Viergever. Multiscale vessel enhancement filtering. In LNCS,

volume 1496, pages 130–137, Germany, 1998. Springer-Verlag.

[8] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision, chapter 4, pages 112–139. McGraw-Hill, Inc.,

New York, NY, USA, 1995.

[9] S. Pathak, F. Jessop, L. Hook, N. Sebire, and C. Lees. Placental weight, digitally derived placental

dimensions at term and their relationship to birth weight. Journal Of Maternal-Fetal and Neonatal

Medicine, 23(10):1176–1182, 2010.

[10] C. Salafia, D. Misra, M. Yampolsky, A. Charles, and R. Miller. Allometric metabolic scaling and fetal

and placental weght. Placenta, 30:355–360, 2009.

[11] M. Strufaldi, E. Silva, M. Franco, and R. Puccini. Blood pressure levels in childhood: Probing the

relative importance of birth weight and current size. European Journal Of Pediatrics, 168(5):619–624,

2009.

34

