
ABSTRACT

Efficiency of Pair-Wise and Multiple Alignment Algorithms in Computational

Biology

By

Man H. Vu

May 2010

DNA sequence alignment algorithms have revolutionized the way scientists study

classification of species as well as genetic mutation and diseases. Due to the

lengthy nature of genome sequences, which can be 2-3 billion base pairs, it is

unrealistic to manually compare two such sequences. In this paper, we present

various existing state-of-the-art alignment algorithms that have been applied to

this problem, in particular, the N -Tuple, dynamical programming, and dot-matrix

methods. The efficiency of each method to the DNA sequence alignment problem

will be summarized to provide insights to the next-generation sequence alignment

technology.
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CHAPTER 1

INTRODUCTION
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Deoxyribonucleic acid (DNA) is regarded as genetic fingerprints. Not only

does DNA serve as an individual marker, it also controls physical characteristics of

a living specimen. One DNA sequence contains various combinations of

nucleotides: Adenine (A), Guanine (G), Thymine (T), and Cytosine (C). These

sequences can range up to 2-3 billion base pairs [1]. With the advent of modern

computing machines, DNA sequence alignment analysis have become more feasible

and have proven useful in situations like a crime scene investigation. With certain

pieces of evidence, such as a blood stain or a strand of hair, a DNA sequence can

be recovered. This sequence will be used to search in a database and identify the

person who was involved in the crime. In other applications, DNA sequence

alignment analysis is helping to further the study of genetic mutations in

age-related diseases, such as cancer, and revolutionized the study of phylogeny [2].

However, most applications of DNA sequence alignment analysis requires searching

through an entire database for a match. The lengthy nature of DNA sequences

combined with the doubling of GenBank/EMBL/DDBJ every 15 months produced

a demand for a better, faster and a more robust DNA alignment method [3].

DNA research dated back to the late 1800’s. Today’s DNA sequence

alignment analysis was made possible by the development of the Sanger Method in

1977, which allows the extraction of a DNA sequence from a DNA sample [4].

Since then, the multiplying collection of DNA sequences called for a centralized

database which led to the development of GenBank in 1982 [1]. The vast database

required efficient search methods which led to today’s DNA sequence alignment

analysis. Modern DNA sequence alignment softwares such as FASTA and BLAST

made it possible to efficiently align and search through a database [1]. These

softwares rely on a combination of DNA sequencing methods such as the N -Tuple
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method, the Dynamical Programming method, and the Dot-Matrix method, which

will be discussed in Chapters 2, 3, and 4, respectively.

In this paper, several key definitions will be used. We start by formally

defining a DNA sequence in Definition 1.1.

Definition 1.1. A DNA sequence, {xi}mi=1, of length m is such that

X = {x1, x2, x3, ..., xm} with xi ∈ {A,G, T, C} for i = 1, 2, 3...,m.

Each sequence is comprised of element(s) or residue(s) as defined in Definition 1.2.

Definition 1.2. Let {xi}mi=1 be a DNA sequence, then any xk ∈ {xi}mi=1 for any

k ∈ {1, 2, 3, ...,m} is called an element or a residue.

In a database search, a reference sequence is one of many sequences in the

database while a query sequence is the sequence that is being compared to a

reference sequence. A DNA sequence can be broken up into different segments as

defined in Definition 1.3.

Definition 1.3. Let {xi}mi=1 be a DNA sequence. A segment, {xj}nj=k, of {xi}mi=1 is

a subsequence such that [k, n] ⊂ [i,m] where k ∈ {1, 2, ...,m}, k < n, and

i, j, k,m ∈ N.

Note that a segment is a subsequence in which the elements of the segment is in

the same order as that of the main sequence. For example, if we take any sequence

{A, T, T, C, G, G, C, A }, one possible segment is {T,T,C,G,G}. Since we are

interested in comparing sequences, we must start by comparing each individual

element of the sequences. In the comparison process, we categorize two elements

as a match or a mismatch according to Definition 1.4.

Definition 1.4. Let {xi}mi=1 and {yj}nj=1 be two DNA sequences. A match occurs

when xi = yj for some i = 1, 2, ...,m and j = 1, 2, ..., n. Otherwise the two elements

are considered to be a mismatch, that is xi 6= yj.
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For the remainder of this paper, we will discuss the three DNA alignment

techniques and give an assessment of their computational efficiency. First we will

discuss the most basic technique, the N -tuple method, also known as the Word

method. Second, the Dynamical Programming method will be presented along

with three parallel methods. Third, a specific use of the dot-matrix will be

discussed in regards to multiple alignments. We will test these three methods

using five different strands of the Influenza A virus. A discussion section will

follow to give an overall comparison of the methods presented. In the final chapter,

we will wrap up all the main ideas that are discussed in this paper.
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CHAPTER 2

THE WORD METHOD
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The N-Tuple method, also known as the Word method, searches for the

best alignment between two sequences that satisfies the threshold N , where N

represents the number of consecutive matches [5]. For example, given two

sequences Q = {ACTCGGT}, short for query, and S1 = {CTTCGGC} and

N = 4. If Q and S1 were to be aligned from their initial position, then we can

deduce that these two sequences are highly related since the four consecutive

matches, namely T,C,G and G, satisfy the given threshold criterion. However, the

threshold will not always be satisfied when we align the sequences one directly on

top of the other. To demonstrate, we take S2 = {ACATCGG} and align it

directly on top of Q. We see that the number of consecutive matches is two,

namely A and C, which does not satisfy the prescribed N . Intuitively, we can see

that Q and S2 are a match since the segment TCGG appears in both sequences.

Our alignment failed because an insertion of the element A in the third position of

S2 caused the remaining elements to shift one place to the right. Similarly, a

deletion of an element will cause all the subsequent elements to shift one place to

the left.

To find the best alignment position, we hold one sequence fixed while

shifting the other sequence along the lengths of the fixed sequence. This process

behaves like a filter, where at each position of the sequence, we get a score that

describes the similarity between the two sequences. This will allow us to see the

best number of consecutive matches at every position. The position in which they

best match might not be right on top of each other, as previously seen when

aligning Q and S2. We can represent this convolution with a similarity matrix

defined in Equation (2.1),

6



Si,j =

 1, xi = yj

0, xi 6= yj,
(2.1)

where {xi}mi=1 and {yi}ni=1 are two given sequences. The similarity matrix allows us

to see whether an insertion or deletion has occurred with a string of consecutive

ones off the main diagonal. Whereas, a direct alignment will be signaled by a

string of consecutive ones along the main diagonal.
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Method

In Figure 1(a) we illustrate the idea of convolving one sequence with

another. In this case, S2 is held fixed while Q is being shifted for the entire length

of S2. For discussion purposes, the main diagonal will be the diagonal zero, each

diagonal above the main diagonal will be numbered in increments of one, and

below the main diagonal will be numbered in decrements of negative one. In the

first position, we can only compare the last element, T , of Q, with the first element,

A, of S2. The comparison resulted in a mismatch which is denoted with a zero in

diagonal negative six in Figure 1(b). Similarly, in the second position we compare

the last two elements of Q with the first two elements of S2. The result is seen in

diagonal negative five. The direct alignment is seen in the main diagonal with only

the first two elements, A and C, of each sequence matching. Recall the insertion of

the element A in the third position of Q caused the remaining elements to shift to

the right. We see that an insertion has occurred since the best alignment, with

four consecutive matches, lies on diagonal one, off the main diagonal. In short,

given N , we can use the similarity matrix to find any diagonal in which N is

satisfied. If N is satisfied, we can conclude that the two sequences are related.

When comparing extremely lengthy sequences, which is often the case, N

will be set at a high value in order to say that the sequences are related. If, given

two sequences of 1000 elements, then an N value of 10 cannot be used alone to

indicate a strong relationship. On the other hand, setting N as an extremely high

value will cause method to fail. Take the previous sequence Q = ACTCGGT and

compare it with the sequence S4 = CCTTGGA. With N = 4, this method

concludes that the sequences are not related because there are no four consecutive

matches. However, we see that four out of the seven elements match at the exact

location, namely the segments CT and GG, but not consecutively. Therefore, N
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should be selected empirically and relative to the length of the sequence in

question, Q. Additionally, prior experimentation should give the users a better

idea on how to choose an appropriate N . There are situations like this where one

would want to classify these two sequences. Knuth [6] suggested to not only set a

threshold N , but also set the number of discontinuation. The discontinuation

separates two matched segments with a number of mismatches in between. Going

back to the example with Q and S4, the discontinuation occurs after the segment

CT then followed by the segment GG. With a discontinuation count of one, we see

that N = 4 is satisfied since CT gives two consecutive matches followed by one

discontinuation and two consecutive matches, GG. Because N is satisfied, we

conclude that the sequences are related. Therefore, with a prescribed

discontinuation condition and an N value, the method can execute more

accurately.
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A C A T C G G

A C T C G G T
...

...
...

...
...

...

A C T C G G T
...

...
...

...
...

...
...

...
...

...
...

...

A C T C G G T

A C T C G G T

...
...

A C T C G G T

A C T C G G T

(a)

A C A T C G G

A 1 0 1 0 0 0 0

C 0 1 0 0 1 0 0

T 0 0 0 1 0 0 0

C 0 1 0 0 1 0 0

G 0 0 0 0 0 1 1

G 0 0 0 0 0 1 1

T 0 0 0 1 0 0 0

(b)

FIGURE 1: (a) S2 = {ACATCGG} held fixed while Q = {ACTCGGT} is shifted.
The optimal alignment is shown in bold with four consecutive matches. (b) Simi-
larity matrix of Q and S2 with Q listed along the side and S2 listed along the top.
The first column and row where the sequences are listed are only for the ease of
comparison of two sequences and are not a part of the similarity matrix.
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Computational Efficiency

The computer implementation of the N -tuple method is much less intricate

than many other DNA sequencing methods such as the Dynamical Programming

approach and the dot-matrix approach to be discussed. Computationally, this

method executes on the order of O(mn) where m and n are the lengths of the two

sequences. To quickly execute this method, the entire similarity matrix will not

need to be stored, we only need to check whether or not N is satisfied. Therefore,

mn operations will rarely be reached. On the other hand, this method generally

lacks accuracy because the alignment results from only one diagonal. The

inaccuracy can be seen in Figure 1(b) when aligning S2 and Q. Both sequences

contain the segment AC in the first and second element. However, the resulting

optimal alignment does not align AC because the most consecutive matches are on

diagonal one. This method is best used as a filtration method, filtering all the

database according to the set number N . The sequences that remains after the

filtration can be aligned with a more accurate method, for example, the Dynamical

Programming method to be discussed.
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CHAPTER 3

DYNAMICAL PROGRAMMING
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The Dynamical Programming approach to DNA sequence analysis was

motivated by the idea of finding the optimal alignment path between two

sequences. In the N-Tuple method, the optimal path lies along any one diagonal of

the similarity matrix. Unlike the N-Tuple method, the Dynamical Programming

method will allow an optimal path that does not have to lie entirely along any one

diagonal. First, we will discuss the construction of a scoring function that will be

necessary to trace the optimal path. Once the scoring function is established, we

will discuss the optimal alignment path with respect to two dynamical

programming approaches. They are the global alignment algorithm and the local

alignment algorithm.

Given any two sequences X = {xi}ni=1 and Y = {yj}mj=1, we can represent

the alignment with a matrix, A2×c, where c is defined as max(n,m) ≤ c ≤ n+m

[7].

Example 3.1. let X1 = {AATGCT} and Y1 = {AACT}. It follows that n = 6,

m = 4, and c = 6. Here are two possible alignments

A1(X1, Y1) =
A A T G C T

A A C T

A1′(X1, Y1) =
A A T G C T

A A C T

From Example 3.1, we can see that there are many ways to align two

sequences. However, we seek the optimal alignment with respect to a scoring

function. The scoring function acts as a guide, assigning a positive weight to a

match and a negative weight to a mismatch, insertion, and deletion. The

alignment with the highest score is the optimal choice. That is, for any xi ∈ X

there exists as a corresponding yi ∈ Y such that their weighted score is defined by

σ(xi, yi). Note that xi or yi can be gaps. As seen in the alignment A1 of

13



Example 3.1, x3 is aligned with a gap that occurs on y3 of the alignment A1. The

total score for the alignment can be found by summing up all the weights along

i = 1, 2, ..., c. Note that it is up to the user to define a specific numerical weight for

each match, mismatch, and insertion and deletion. In this paper, we will use the

scoring function as given in Equation (3.1).

σ(xi, yi) =


+1, for a match

0, for a mismatch

−1, for a gap

(3.1)

It follows that the score of the alignment A1 is two and the score of A1′ is one.

Sequence alignment via dynamical programming is categorized into the

global alignment method (GAM) and the local alignment method (LAM). Both of

these algorithms require an overall computational complexity of O(mn), where m

and n are the lengths of the respective sequences. The Needleman-Wunsch [8]

global alignment method is mainly used in cases where two sequences are of

similar lengths. If one sequence is significantly shorter than the other, the GAM

will add gaps into the shorter sequence so that both will result in the same length.

A further explanation of the Needleman-Wunsch global alignment algorithm is

presented in the following section.

Global Alignment

Given two sequences X = {xi}ni=1 and Y = {yj}mj=1 we want to construct a

similarity matrix G(n+1)×(m+1). The extra row and column are needed because we

are also taking into consideration an alignment with a gap. Thus, when calculating

G, each sequence will hold a gap before the actual sequence begins. This notion

will be further explored in the following paragraphs. To distinguish from the

N -Tuple Method, the similarity matrix pertaining to the Dynamical Programming

14



methods will be referred to as the weighted similarity matrix. Also, for any

matrix, M , mi,j will be used to represent the element in the ith row and the jth

column while Mi,j will be used to indicate the position (i, j) of the matrix.

Unlike the similarity matrix in the N-Tuple method, this weighted

similarity matrix, G, will contain the weighted value of each Gi,j using the scoring

function defined in Equation (3.1). The first values in the first row and the first

column are given by the equations

g1,j =

j∑
k=1

σ(−, yk) (3.2)

gi,1 =
i∑

k=1

σ(xk,−) (3.3)

where the hyphen (−) represents a gap. The summation of penalties along the first

column and the first row is due to the continuation of a gap. In other words, as we

move down the first column or across the first row from G1,1, the sequence is

adding on an insertion or deletion. The more consecutive insertions or deletions we

have the less likely that it will be the optimal path. Therefore, the summation

allows the negative weights to accumulate as we move to each extremes. The

remaining elements of G are determined using Equation (3.4).

gi,j = max


gi−1,j−1 + σ(xi−1, yj−1)

gi−1,j + σ(xi−1,−)

gi,j−1 + σ(−, yj−1)

(3.4)

where i = 2, 3, ..., n and j = 2, 3, ...,m.

Once the weighted similarity matrix is calculated, we wish to find the

optimal alignment. For any Gi,j, the optimal direction is dependent upon the

values gi−1,j−1, gi−1,j, and gi,j−1. Starting from Gi,j, there are three possible

movements to the next alignment position: up, left and diagonal. An upward

15



movement from Gi,j to Gi−1,j will signal xi−1 to be aligned with a gap, this means

yi−1 is a gap. Similarly, a left movement from Gi,j to Gi,j−1 is equivalent to

aligning yj−1 with a gap, which means xj−1 must be a gap. Finally, a diagonal

movement from Gi,j to Gi−1,j−1 translates to an alignment between xi−1 and yj−1.

In the case where there is a tie, the diagonal movement is favorable because

moving off the current diagonal will allow more gaps. To ensure the whole length

of both sequences are aligned, we must start at Gn+1,m+1 and end at G1,1. Note

that the two aligned sequences will hold the same number of elements counting the

gaps and that the shorter of the two sequence will hold more gap elements. We use

Example 3.2 to familiarize ourselves with the concepts previously discussed.

Example 3.2. In this example, we will use the Needleman-Wunsch global

alignment method to align X2 = {AACTC} and Y2 = {AATGCT}. Each value in

the weighted similarity matrix, except for the first row and first column, is

calculated using Equation (3.4). For example, with Equation (3.4), g2,2 will be

equal to the maximum of g1,1 + σ(x1, y1), g2,1 + σ(−, y1), and g1,2 − 1 + σ(x1,−).

g1,1, g2,1 and g1,2 are given as 0, −1, and −1 respectively. Using the Equation (3.1),

σ(x1, y1) is equal to one, since x1 and y1 are a match and anything paired with a

gap has a score of negative one. Then g2,2 is equal to the maximum of one,

negative two and negative two. This yields a one for g2,2. Similarly, g2,3 is the

maximum of g1,2 + 1, g2,2 − 1, and g1,3 − 1 which is equivalent to the maximum of

zero, zero, and negative three. Thus, g1,3 will be equal to zero. Using the same

process, g2,4 is the maximum of g1,3 + 0, g2,3 − 1, and g1,4 − 1. Here, g1,3 is added to

zero instead of one because x1 and y3 does not match. The resulting value of g2,4 is

negative one. The remaining values of the G is shown in Figure 2.

Next, we describe how to obtain the final alignment. Starting from the G6,7

position, we move in the left direction since the maximum of G5,6, G5,7 and G6,6 is
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G =

A A T G C T

0 -1 -2 -3 -4 -5 -6

A -1 1 0 -1 -2 -3 -4

A -2 0 2 1 0 -1 -2

C -3 -1 1 2 1 1 0

T -4 -2 0 2 2 1 2

C -5 -3 -1 1 2 3 2

A2(X2, Y2) =
A A C T C

A A T G C T

FIGURE 2: The weighted similarity matrix between X2 = {AACTC} and Y2 =
{AATGCT} in Example 3.4 with the optimal path shown in bold. The resulting
alignment is presented as A2.

G6,6 which is a three. Through the same process but now starting from G6,6, we

find that the maximum will lead us to a tie between the left and the diagonal

direction. To avoid additional gaps, we pick the diagonal direction. Since the

length of X2 is less than the length of Y2, the resulting alignment will add a gap in

X2 so that X2 and Y2 will be of the same length. The gap in X2 at x6 occurs from

a left movement which we previously saw going from G6,7 to G6,6. The resulting

alignment is shown in bold in Figure 2.

Local Alignment

Like the Needleman-Wunsch global alignment, the Smith-Waterman local

alignment uses the same scoring function, σ(xi, yi), and the weighted similarity

matrix idea [9]. The main use of this method is to align a short sequence to a much

longer sequence. However, instead of accumulating the gap penalties along the first
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row and the first column of the weighted similarity matrix, these values will be set

to zero. The remaining entries of the weighted similarity matrix can be calculated

using Equation (3.5) [9]. First, we will familiarize ourselves with sequence

alignment using the LAM, then we will further explore why the zero reset is used.

li,j = max



li−1,j−1 + σ(xi−1, yj−1)

li−1,j + σ(xi−1,−)

li,j−1 + σ(−, yj−1)

0

(3.5)

where i = 2, 3, ..., n and j = 2, 3, ...,m.

Once the weighted similarity is calculated, the alignment path can be found

by starting from the maximum value of L that occurs on the last row or column.

The movement from one cell to the next is same as discussed in the GAM section.

To ensure the entire alignment of the shorter sequence onto the longer sequence,

the alignment path must start in the last row or column and end in the first row or

column, respectively. Note that the maximum li,j will occur on last row or column

depending on whether the user places the shorter sequence on the row or the

column.

Example 3.3. Using the sequence X3 = {TGTT} and Y3 = {AATGCTTCTG},

the calculated weighted similarity matrix using the LAM is as follows in Figure 3.

Figure 3 shows an alignment using the LAM method. The calculation of each li,j is

much like the ones calculated in Example 3.2, but instead we will use

Equation (3.5). For example, to calculate l2,2, we must find the maximum between

zero, l2,1 − 1, l1,2 − 1, and l1,1 − σ(x1, y1). This is equivalent to finding the

maximum between zero and negative one, which will yield l2,2 = 0. The alignment

path begins at the maximum value l5,7 and ends at l1,3. Notice that the maximums

occur on the last row because the shorter sequence is listed along the column. If
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L =

A A T G C T T C T G

0 0 0 0 0 0 0 0 0 0 0

T 0 0 0 1 0 0 1 1 0 1 0

G 0 0 0 0 2 1 0 1 1 0 2

T 0 0 0 1 1 2 2 1 1 2 1

T 0 0 0 1 1 1 3 3 2 2 2

A3(X3, Y3) =
T G T T

A A T G C T T C T G

FIGURE 3: The weighted similarity matrix between two sequences, X3 = {TGTT}
and Y3 = {AATGCTTCTG}, from Example 3.3 with the optimal patch shown in
bold. The resulting alignment is presented as A3.

the shorter sequence is listed along the rows then we can expect the maximums to

occur on the last column. All movements in the alignment path is in the diagonal

direction marked in bold and follows the exact procedure as the GAM. The

resulting alignment is given with A3.

Unlike the GAM, The LAM allows the score to reset to zero if the score is

negative. We must keep in mind that when using the LAM, two sequences that we

wish to align typically differ greatly in length. The inclusion of the zero in

Equation (3.5) will allow negative scores to reset to zero in order to keep the best

possible alignments positive. If we allow large negative values to accumulate in the

first row and first column, possible alignments that occur later on the longer

sequence will be impossible to detect. We will demonstrate this in Figure 4, using

both LAM and GAM. In Figure 4, two sequences of different lengths are being

compared. The sequence {AGCCTGTTGTAGCCT} was created with the
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intention of having the other sequence, {AGCCT}, match at the end.

Additionally, a lesser match was placed at the beginning.

In Figure 4(a) we see that the LAM was able to detect the optimal

alignment which occurred towards the right end of the weighted similarity matrix.

However, when looking at Figure 4(b), the GAM was unable to detect the optimal

alignment so it settled for the second best alignment. The GAM was unable to see

the optimal alignment that occurred towards the right end of the weighted

similarity matrix because of the large negative values that accumulated. Therefore,

we conclude that when comparing sequences that differ greatly in length the LAM

will be superior to the GAM.
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A G C C G G T T G T A G C C T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

G 0 0 2 1 0 1 1 0 0 1 0 0 2 1 0 0

C 0 0 1 3 2 1 1 1 0 0 1 0 1 3 2 1

C 0 0 0 2 4 3 2 1 1 0 0 1 0 2 4 3

T 0 0 0 1 3 4 3 3 2 1 1 0 1 1 3 5

(a) LAM

A G C C T G T T G T A G C C T

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15

A -1 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13

G -2 0 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11

C -3 -1 1 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

C -4 -2 0 2 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7

T -5 -3 -1 1 3 4 3 3 2 1 0 -1 -2 -3 -4 -5

(b) GAM

FIGURE 4: (a) The weighted similarity matrix in the LAM. (b) The weighted
similarity matrix in the GAM. Optimal alignments are shown in bold. For the same
two sequences, The LAM picked up an optimal alignment with a score of five while
the GAM picked an optimal alignment with a score of four.
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Parallel Implementations

As stated before, the GAM and the LAM carries a computational

complexity of O(mn). When dealing with sequences in the billions, computational

complexity grows exceedingly large. To reduce the computational time, parallel

approaches were developed. These parallel algorithms aim at distributing the

calculation of the weighted similarity matrix over many processors. Three parallel

approaches will be discussed in this section.

Let the weighted similarity matrix in the LAM or GAM be denoted by

Um+1×n+1. Further, let Vm×n be the submatrix of U which excludes u1,n+1 and

um+1,1 as shown in Figure 5. This is equivalent to setting vi,j equal to ui+1,j+1,

where i = 1, 2, 3, ...,m, j = 1, 2, 3, ..., n. For simplicity, sometimes V will be used

instead of U .

_ A G T T C C G A A T A T A C G C C A
_
T
C
C
G
A
T
T
A

18

8

FIGURE 5: A U9×19 matrix with the first column and row shaded in gray. The
unshaded portion represents the matrix V8×18. The data dependency for the value
? is shown with bold lining.
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Wozniak Approach

Recall the construction of the weighted similarity matrix from the previous

section. From Figure 5, we notice that once u2,2 is found, two other values, u2,3

and u3,2 can be calculated simultaneously. Note that u2,2 is equivalent to v1,1.

Wozniak [10] used this data dependency pattern to distribute the computation

amongst different processors and assigned one processor to each diagonal.

As in the Figure 6, the first processor, P1, starts at the v1,1 position. Once

this value is found, the information will be passed to the second processor, P2.

With this updated information, P2 can calculate v1,2 and then v2,1. Instead of

waiting for P2 to complete the assigned diagonal, the value of v1,2 can be passed to

a third processor, P3, immediately after it is calculated. This allows the

calculation of both, v1,3 and v2,1 to occur simultaneously on separate processors P3

and P2, respectively. Once one processor completes the assigned diagonal, it will

be directed to the next diagonal that has not yet been calculated. It is important

to note that when calculating values like v3,3, which is on the diagonal assigned to

P3, P3 is required to get information from two other processors, namely P2 and

P1. Similarly, calculating the rest of the entries in V will require two data

transfers from two other processors.

This implementation was tested on the Sun Ultra Sparc using 12 processors

each running at 167MHz. The results yield a speedup of over two folds compared

to the original method running on a single processor of the same machine [10].

Though the results showed an total time improvement, the dependency of two

data transfers from two separate processors delayed the overall process, because

data transfer also require time.
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_ A G T T C C G A A T A T A C G C C A
_
T
C
C
G
A
T
T
A

P1 P2 P3 P4 P5 P1 P2 P3 P4

P2

P3

P3

P4

P4

P4

FIGURE 6: A matrix, U9×19 or V8×18, with P1-P5 representing the different pro-
cessors. The arrows shows the subsequent pattern in which one computer will start
right after the other in a diagonal fashion.

Rognes and Seeberg Approach

Another improvement to the previous method was presented by Rognes and

Seeberg [11] using a similar approach. Each processor will be assigned a column

instead of a diagonal. In Figure 7, P1 is assigned to the first column of V .

Immediately after P1 calculates v1,1, the information is passed to P2. This allows

the simultaneous calculation of v2,1 and v1,2 by processors P1 and P2, respectively.

The same pattern will continue for the remaining elements. Notice this method

only requires one data transfer from another processor per matrix entry as

compared to the two data transfers in the previous method. The decrease in data

transfers allows this method to out perform the previous method. This algorithm

ran on eight 8-bit Intel Pentium III processors running at 500Mhz and resulted in

a six-fold speedup over the most up-to-date implementation running on the same

hardware [11].
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_ A G T T C C G A A T A T A C G C C A
_
T
C
C
G
A
T
T
A

P1 P2 P3 P4 P5

FIGURE 7: The downward arrows show the subsequent pattern in which proces-
sors, P1-P5, will start right after the other. P1 will calculate v1,1 then pass the
information to P2. This allows simultaneous calculation of v2,1 and v1,2 by P1 and
P2, respectively. This pattern is continued with P3, P4, and P5.

Striped Smith-Waterman

The Striped Smith-Waterman [12] algorithm is the latest and fastest known

implementation of the Dynamical Programming method. The algorithm requires

splitting the processors evenly along any one row or column. Given a matrix,

Vm×n, with Pi processors, for i = 1, 2, ..., k, split along the rows. The resulting

division assigns Pi to elements vm,(n
k
)∗(i−1)+1 to vm,(n

k
)∗i. Once the first row is

finished, the processors will proceed to the second row. In effect, the matrix is

being divided into evenly sized sub-matrices, with size m× n
k
, and are assigned a

specific processor.

The advantage of this method is that it reduces the number of data

transfers per entry calculation. However, recall that the calculation of ui,j requires

ui−1,j, ui,j−1, and ui−1,j−1. To make the division of processors along any one row or

column possible, the algorithm forces the calculation of ui,j to be dependent upon

ui−1,j−1 and ui−1,j only. This will allow errors in the calculations with a two-third
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_ A G T T C C G A A T A T A C G C C A
_
T
C
C
G
A
T
T
A

P1 P2 P3P1

FIGURE 8: A matrix, U9×16 or V8×15, with P1-P3 representing the different proces-
sors. The arrows shows the how the striped algorithm [12] is processed. The gray
bolded lining represents the different submatrices and the dotted encircling shows
the error-prone areas.

chance of getting the calculation right. In the case that the calculation is wrong,

several processors will be assigned to correct these errors only after ui,j−1 is

obtained. These processors will only check areas that are prone to errors, namely

the entries um,(n
k
)∗i, where i = 2, 3, ..., k − 1. The checking process continues from

um,(n
k
)∗i until a set threshold of consecutive correct values are encountered. Note

that at each error-prone area, the probability of getting the value wrong is

one-third. The probability of getting consecutive wrong values is decreased

exponentially. Therefore, it is rarely the case that the correction process will have

to correct the entire segment that the processors have been assigned.

Figure 8 shows the schematics of the weighted similarity matrix according

to the Striped Smith-Waterman method [12]. The figure presents a U9×16, or

V8×15, matrix with the first row of V split amongst three processors, P1-P3. On

the first row of V , P1 calculates elements v1,1 through v1,5, P2 calculates elements

v1,6 through v1,10, and P3 calculates elements v1,11 through v1,15. The elements v1,6
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and v1,11 are calculated using only v0,6 and v0,11, or more properly, u1,7 and u1,12.

These elements will be checked once v1,5 and v1,10 are available. If the elements v1,6

and v1,11 are correct, the checking process terminates and waits to check the next

row. If v1,6 and v1,11 are incorrect, the wrong value will be replaced and several

more values after that will be checked, i.e. v1,7, v1,8 and similarly v1,12, v1,13. This

division allows P1-P3 to only calculate the assigned submatrix, which results in

less data transfers. The only data transfers that are needed occur around the

error-prone areas.

The decrease in amount the of data transfers resulted in a faster algorithm

than the previous algorithms. The Striped method was implemented using 16 8-bit

Intel Xeon Core 2 Duo processors running at 2.0 GHz. The algorithm showed two

to eight times improvement over the most updated parallel methods [12].
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CHAPTER 4

DOT-MATRIX METHOD
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Biologically, DNA can undergo mutations as time progresses due to

exposure to harmful chemicals or old age. Our goal is to find the segment(s) in

which the mutation occurs. For example, take a patient diagnosed with cancer, if

three sequences of pre-mutation and one sequence of post-mutation are given, we

can align all four simultaneously in order to determine the similarities and the

differences. In this case, the similarities will represent the normal genes and the

differences will represent the cancerous genes. To execute such alignments, we will

use a multiple sequence alignment method via similarity matrices, also known as

dot-matrices. In this chapter, we will discuss a method by Vingron and Argos [13]

which provides a method for filtering a series of similarity matrices.

Method

Given N sequences, we will denote the dot-matrix between s and t by Rs,t.

To start the filtering process, a family of dot-matrices, defined in Definition 4.1,

will be constructed.

Definition 4.1. Given N sequences, a family of dot-matrices contains all possible

pairwise combination of similarity matrices and is given by,

<N = {R1,2, R1,3, ..., R1,N , R2,3, R2,4, ..., R2,N , RN−1,N}, containing a total of N(N−1)
2

elements.

This construction avoids the possibility of creating a dot-matrix of one sequence to

itself, Rs,s. Additionally, if we have Rs,t, we can also avoid creating Rt,s since Rt,s

is equal to the transpose of Rs,t. For example, if four sequences are given we can

expect the family of dot-matrices to contain R1,2, R1,3, R1,4, R2,3, R2,4, and R3,4 for

a total of six elements.

Using these dot-matrices, we can confirm the match at any (Rs,t)i,j with a

product of two other dot-matrices, such as Rs,u •Ru,t.

Definition 4.2. Let Rs,u and Ru,t be dot-matrices of sequences s, t, and u each

29



with lengths l, m, and n. The product of two dot-matrices, Rs,u •Ru,t, is given by

(Rs,u •Ru,t)i,j =
m∨

k=1

((Rs,u)i,k ∧ (Ru,t)k,j) where i = 1, 2, ..., l and j = 1, 2, ...,m.

Here, ∧ and ∨ represent the and and the or operator, respectively. All possible

combinations using are as follows: (1 ∧ 1) = 1, (1 ∧ 0) = 0, (0 ∧ 0) = 0, (1 ∨ 1) = 1,

(1 ∨ 0) = 1, and (0 ∨ 0) = 0.

In particular, if (Rs,t)i,j = (Rs,u •Ru,t)i,j with u 6= s, t, then the match at the

(i, j)th position is confirmed. Note that Definition 4.2 is much like the usual matrix

multiplication but with multiplication replaced by an and (∧) operator and

addition replaced by an or (∨) operator.

Example 4.3. Let S1 = {ATTCG}, S2 = {ATCCG}, and S3 = {ATTCA}, we

want to find the corresponding family of dot-matrices which contain three

elements, namely, <3 = {R1,2, R1,3, R2,3}. The family is shown in Figure 9. The

product of R1,2 and R2,3 is then calculated using Definition 4.2. For example, take

the second row of R1,2 and multiply (∧) that by the second column of R2,3 to yield

(R1,2 •R2,3)2,2. That is, (0 1 0 0 0)∧(0 1 0 0 0)T will yield

(0 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 0). After simplifying, we get

(0 ∨ 1 ∨ 0 ∨ 0 ∨ 0), which will result in (R1,2 •R2,3)2,2 = 1. The resulting product is

used to confirm the matches that exist in R1,3 with that of R1,2 •R2,3. In this case,

all matches are confirmed.

An inconsistency occurs when a match is present in (Rs,t)i,j but is not

present in (Rs,u •Ru,t)i,j. In other words, the ith residue of s and t agree but it is

different from that in u. On the other hand, if a match is present in both (Rs,t)i,j

and (Rs,u •Ru,t)i,j then Rs,t is said to be consistent. To enforce consistency, we

require the family of dot-matrices to satisfy Equation (4.1).

Rs,t ⊆ Rs,u •Ru,t ∀u 6= s, t (4.1)
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R1,2 =

A T C C G

A 1 0 0 0 0

T 0 1 0 0 0

T 0 1 0 0 0

C 0 0 1 1 0

G 0 0 0 0 1

R1,3 =

A T T C A

A 1 0 0 0 1

T 0 1 1 0 0

T 0 1 1 0 0

C 0 0 0 1 0

G 0 0 0 0 0

R2,3 =

A T T C A

A 1 0 0 0 1

T 0 1 1 0 0

C 0 0 0 1 0

C 0 0 0 1 0

G 0 0 0 0 0

R1,2 •R2,3 =

1 0 0 0 1

0 1 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 0

FIGURE 9: The family of dot-matrices for Example 4.3 and a matrix multiplication
is presented.

Note that when calculating subsets, we are only concerned with the matches, the

ones, not the zeros. That is, given (1 1 0 1) and (1 0 0 1), we can say that (1 0 0

1) is a subset of (1 1 0 1). Next, A consistent family of dot-matrices can be

obtained through a filtering of all inconsistencies via Equation (4.2).

R
(n+1)
s,t = R

(n)
s,t ∩

⋂
∀u6=s,t

(R(n)
s,u •R

(n)
u,t ) (4.2)

Much like the notion of subsets, the intersection operates on the ones, not the
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zeros. That is, if we intersect (1 1 0 1) with (1 0 0 1) then the solution will be (1 0

0 1).

The filtering process according to Equation (4.2) allows very little

flexibility. That is, given five sequences, at the ith position, all five sequences must

agree. Due to different mutations such as insertions and deletions, it is rare that

all sequences will agree at the same residue. To fix this problem, the filtration

process will follow Equation (4.3).

(R
(n+1)
s,t )i,j = 1⇔ C ≤ (R

(n)
s,t )i,j + (

∑
∀u6=s,t

R(n)
s,u •R

(n)
u,t )i,j, (4.3)

where C is a threshold set by the user. For example, given five sequences, if three

out of the five sequences match at the same residue then we can accept this

position as match. Therefore, in this case, C should be set to three.

The iterative filtering process will update all Rs,t in the family to ensure all

inconsistencies are removed, this is demonstrated in Example 4.4. The iterative

process will eventually converge to a consistent family. That is, <(n)
N will equal

<(n+1)
N if and only if <(n)

N is consistent [13].

Example 4.4. Given four sequences, {S1, S2, S3, S4}. A family,

<(1)
4 = {R(1)

1,2, R
(1)
1,3, R

(1)
1,4, R

(1)
2,3, R

(1)
2,4, R

(1)
3,4}, is constructed. Following Equation (4.2),

the next update will be R
(2)
1,2 = R

(1)
1,2 ∩ (

⋂
{R(1)

1,3 •R
(1)
3,2, R

(1)
1,4 •R

(1)
4,2}) and, similarly,

R
(2)
1,3 = R

(1)
1,3 ∩ (

⋂
{R(1)

1,2 •R
(1)
2,3, R

(1)
1,4 •R

(1)
4,3}). The same process is conducted for the

remaining elements to find R
(2)
1,4, R

(2)
2,3, R

(2)
2,4, and R

(2)
3,4. Once all R

(2)
s,t are found, the

new family will be denoted, <(2)
4 . The iterations will proceed until <(n)

4 = <(n+1)
4 .

Once a consistent family is established, we can recover an alignment of all

the similarities using a method presented by Vingron and Argos in 1989 [14]. We

start the alignment process by choosing a subset from the consistent family such

that all sequences are used. That is, the subset must be ordered as in
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Equation (4.4).

{R(n)
1,2 , R

(n)
2,3 , R

(n)
3,4 , ..., R

(n)
N−1,N} (4.4)

Using the sequences from Example 4.4, the subset of the family as described in

Equation (4.4) will be {R(n)
1,2 , R

(n)
2,3 , R

(n)
3,4}, where n is the iteration in which

consistency is reached.

Next, a tree-like organization will be created starting from all the matches

in the first element, R1,2, of the subset and ending with the last element, RN−1,N ,

of the subset. That is, for a match occurring at (R1,2)i,j. This corresponds to

aligning the ith residue of Sequence 1 with the jth residue of Sequence 2.

Subsequently, with a corresponding match at (R2,3)j,k, the jth residue of Sequence

2 will be matched to the kth residue of Sequence 3. The indexes, i, j, k, and so on,

will be stored in a vector which will be called a fragment and each element of the

fragment will be called a node.

In Figure 10, using the dot-matrices R1,2 and R2,3, the positions of the

matches with respect to Sequence 1 is listed, they are 1, 3, and 6. The matches

occurring at 1, 3, and 6 on Sequence 1 corresponds to residue number 1, 5, and 6

on Sequence 2, respectively. Now using R2,3 and residues 1, 5, and 6 of Sequence 2,

this corresponds to residues 1, 5, and 6 on Sequence 3. From this tree we can list

all possible fragments from left to right: (1, 1, 1), (3, 1, 1), (3, 5, 5), and (6, 6, 6).

Not all fragments will be used in the alignment process. To choose which

fragments to use, we proceed from left to right and attach a higher score to each

node that continues the same residue position; from node 1 in Sequence 1 to node

1 in Sequence 2. A lower score will be assigned to a node that changes to another

residue position; node 3 of Sequence 1 to node 5 of Sequence 2. For example, if a

score of one will be assigned to a continuation and zero will be assigned to a
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Seq 1

Seq 2

Seq 2

Seq 3

1

1

3

6

5 6

1

1

5
6

5 6

1 3 6 Seq 1

Seq 2651

1 5 6 Seq 3

FIGURE 10: The dot matrices, R1,2 and R2,3, are given on the right. A tree is
constructed according to Equation (4.4) starting from Sequence 1 and ending with
Sequence 3. The first dot matrix gives rise to the first and second set of nodes on
the tree labeled Seq 1 and Seq 2, respectively. The second matrix will give rise to
the third set of nodes on the tree labeled Seq 3. The dotted line connecting node
6 of sequence 1 to node 1 of sequence 2 is not derived from the two dot matrices.
This line is used to show the case that there is an extreme cross-over, the user can
eliminate this path.

change, then (1, 1, 1) will have a score of two while (3, 5, 5) will have a score of 1.

Once a residue position is used, it cannot be used again. For example, (1, 1, 1)

and (3, 1, 1) cannot be chosen together because residue 1 in Sequence 1 is already

aligned to residue 1 in Sequence 2. Using this process, the chosen fragments will

be (1, 1, 1), (3, 5, 5), and (6, 6, 6). Note that in some cases, the links might cross
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over like in the dotted link connecting node 6 and node 1 in Figure 10. In this

case, we can set a limit to bound the distance between each element in the

fragment, this limit is called a window.

The fragments chosen will signify all the similarities of one sequence to

another. The remaining elements in between the fragments will be called an

intermediate sequence as shown in Example 4.5. If our goal is to find the

similarities and differences, then it is complete. However, if we wish to fully align

the sequences along with the fragments, then the remaining intermediate

sequences can be aligned using the GAM [14].

Example 4.5. Using S4 = {AAGCG}, S5 = {ATCTG}. If the chosen fragments

are (1, 1) and (5, 5). Then the intermediate sequence belonging to S4 is {AGC}

and, similarly, the intermediate sequence for S5 is {TCT}.

Summary

In summary, this algorithm presented a way to simultaneously align

multiple sequences to seek out the similarities and differences. The process begins

with populating the family of dot-matrices using Equation (4.1). The elements of

this family are filtered and updated using Equation (4.2). Once a consistent family

is established, a subset of the consistent family is chosen according to

Equation (4.4) so that all N sequences are used. Using this subset, we can start

from the first element of the subset, then the second, then the third, etcetera. This

process will create a tree structure showing all the possible fragments like in

Figure 10. However, not all fragments will be used. We choose the proper

fragments by attaching a higher score to nodes that lead to the same numbered

nodes and a lower score to nodes that lead to a different numbered node. The

fragments are chosen from left to right and once a node is used, it cannot be used

again in another fragment. The resulting fragments yield all the aligned
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similarities. If necessary, the remaining intermediate sequences will be aligned

using the GAM. This algorithm executes with an overall computational complexity

of O(L3N4), where L is the maximum length of all N sequences [13].
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CHAPTER 5

IMPLEMENTATIONS AND RESULTS
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In this section, we will implement the N -Tuple method, the Dynamical

Programming method, specifically the GAM, and the Dot-Matrix method. All

methods are tested using MATLAB version 7.0 running on a 3.2 GHz dual-core

Intel Pentium D processor 935 with 3.3 MB of RAM. The MATLAB codes for the

corresponding methods are listed in Appendix A and are listed in the order in

which they are used in this section. The testing will be done on five different

TABLE 1: This table gives the corresponding five sequences used to benchmark
the MATLAB implementation of the N -Tuple, Global Alignment and Dot-Matrix
methods

Sequence Common Name/Location Symbol Length

H1N1 Mexico City Q 2293

H1N1 Beijing R1 2280

H5N1 Bird Flu R2 2214

H3N2 Hong Kong Flu R3 2284

H1N2 N/A R4 2337

DNA sequences of the influenza A virus taken from GenBank [3]. All sequences

that will be used here are listed on GenBank as segment 1 of 5 and are

approximately the same lengths shown in Table 1. The first sequence is the H1N1

virus strand found in Mexico City. This strand will serve as the query sequence,

Q, and will be used to match against four reference sequences, all of which are
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different forms of the influenza A virus. The first reference sequence, R1, will be

another H1N1 virus but extracted from an alternate location, Beijing. The second

reference sequence, R2, is more commonly known as the bird flu, H5N1. The third

reference sequence, R3, was responsible for the 1968 flu pandemic in Hong Kong,

scientifically named H3N2 and commonly dubbed the Hong Kong Flu. The fourth

reference sequence, R4, has no particular significance and is scientifically named

H1N2. We avoided using the same H1N1 sequence as both the query sequence and

the reference sequence because the result will be an obvious match. Since both

H1N1 sequences that will be used are extracted from different locations, we can

expect them to slightly differ from one another. Intuitively, when aligning Q with

the reference sequences, we can expect the highest similarity to come from the

alignment with R1 without any prior knowledge.

N -Tuple

The first implementation will be the N -Tuple method. Recall that N is the

number of consecutive matches along any one diagonal. Before starting the

N -Tuple algorithm, we will search for the highest N ’s when comparing Q with the

references. Under normal circumstances, N will be empirically chosen using

knowledge from prior experimentations. The list of the maximal N ’s is shown in

Table 2. In searching for the maximal N , we see that our intuition is correct. That

is, when comparing Q and R1 there is a high number of matches compared to the

other reference sequences.

To begin the actual N -Tuple algorithm, we must note the results in Table 2

so that a proper N can be chosen. The N -Tuple algorithm will be executed with

four different N values: 25, 50, 75, and 100. The results of each run is shown in

Table 3 with time units in seconds. There are three points worth mentioning. First

of all, as N increases the algorithm begins to filter out the sequences that do not
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TABLE 2: A list of the maximal N when comparing the Query sequence, Q, versus
each reference sequence

Sequences Compared Maximal N

Q & R1 1167

Q & R2 33

Q & R3 57

Q & R4 81

satisfy N . When N = 100, only Q matches R1. In real cases, it is highly unlikely

that the N -Tuple method will yield an exclusive match because the database will

contain many more sequences than just four. Second of all, the algorithm spent

approximately 99% of the time calculating the similarity matrix. However, as

mentioned in Chapter 2.2, it is not necessary to calculate the entire similarity

matrix. If we neglect the time spent calculating the similarity matrix, we see that

the time spent in executing the method is only a fraction of a second. Lastly, as N

increases in each case, the time it takes to execute the algorithm also increases.

Recall that the algorithm will terminate once N is reached. If the number of

matches is still below N the algorithm will continue to search until N is satisfied.

Because of this, as N increases we can expect to see the execution time increase as

well.

To further justify our results, we will examine the dot plots of Q versus

each reference sequence, as shown in Figure 11. These figures are image

representations of the similarity matrix with zero corresponding to white and one
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TABLE 3: A list of results using the N -Tuple method, with N equals 25, 50, 75, and
100, the respective execution time which is the time spent calculating the similarity
matrix and classification, and the total time in seconds

Q & R1 Q & R2 Q & R3 Q & R4 Total Time

Sim. Mat. Time 93.985 91.291 93.896 96.611 375.783

N = 25
Match(Y/N) Y Y Y Y

Execution Time 94.216 91.401 94.177 96.767 376.561

N = 50
Match(Y/N) Y N Y Y

Execution Time 94.365 91.606 94.255 96.795 377.021

N = 75
Match(Y/N) Y N N Y

Execution Time 94.371 91.619 94.561 96.801 377.352

N = 100
Match(Y/N) Y N N N

Execution Time 94.412 91.614 94.569 96.892 377.487

corresponding to black. In each dot plot, we can see a distinct diagonal line. The

diagonal line shows the consecutive matches. If the diagonal line is more solid then

the two sequences are more closely related. On the other hand, if the line is broken

then the two sequences are less similar. It is difficult to determine whether or not

the diagonal line is broken because of the length of the sequences. For this reason,

we consider Figure 12 which is a zoomed version of Figure 11. Looking at

Figure 12, we observe a seemingly solid line in Figure 12(a) and (d) and a more
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Reference Sequence 2: Influenza A virus (Bird Flu)
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Reference Sequence 3: Influenza A virus (Hong Kong Flu)
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Reference Sequence 4: Influenza A virus (H1N2)
Q

u
e

ry
 S

e
q

u
e

n
c
e

: 
In

fl
u

e
n

z
a

 A
 v

ir
u

s
 (

M
e

x
ic

o
 C

it
y
)

0 500 1000 1500 20000

500

1000

1500

2000

(c) (d)

FIGURE 11: A dot plot of Q versus all the reference sequences in the database; (a)
Q versus R1. (b) Q versus R2. (c) Q versus R3. (d) Q versus R4. The circled areas
show some of the visible parts on the diagonal where there is a discontinuity.
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Reference Sequence 4: Influenza A virus (H1N2)
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FIGURE 12: A zoomed in version of the dot plot in Figure 11. (a) Q versus R1.
(b) Q versus R2. (c) Q versus R3. (d) Q versus R4. The circled areas show the
parts in the diagonal where there is a discontinuity.

broken line in Figure 12(b) and (c). From these dot plots we suspect that Q is

more closely related to R1 and R4 than to R2 and R3, which agrees with our

results in Table 3.
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Global Alignment

The second implementation will be the Dynamical Programming method.

For this method, we will implement the GAM since we are dealing with sequences

of relatively similar lengths. The results are noted in Table 4. The optimal

alignment score coincides with the results we previously saw with the N -Tuple

method in Table 3. That is, Q is most closely related to R1 and R4 than to R2

and R3. The resulting alignments are shown in Figure 13(b) with the original

TABLE 4: A list of results of the Needleman-Wunsch Global Alignment [8] docu-
menting the optimal alignment score, gm+1,n+1, and the overall execution time

Sequences Compared Score Execution Time (seconds)

Q vs. R1 2223 164.624

Q vs. R2 1791 153.590

Q vs. R3 1908 165.794

Q vs. R4 2127 181.641

sequences shown in Figure 13(a). Since the sequences are quite lengthy, we only

show the first 100 elements in the alignments. The alignment with the highest

score, Q with R1, is almost a direct match with the exception of some gaps in

between elements 1 though 18. After the 18th element, the elements line up with a

long string of consecutive matches. The alignment with the lowest score, Q with

R2, is also very gappy in the beginning. Unlike the alignment of Q with R1, the
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areas in which the elements are aligned show many mismatches. In every

alignment, we can observe many more gaps inserted into the shorter of the two

sequences, as discussed in Chapter 3.1.

Q : T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G G C C A T A A T C A A A

R1 : C G T T C A T A T T C A T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G

R2 : A T G T C A C A G T C C C G C A C T C G C G A G A T A C T A A C A A A A A C C A C T G T G G A C C A T A T G G C C A T A A T C A A G A A A T A C A C A T C A G G A A G A C A A G A G A A G A A C C

R3 : A T G G A A A G A A T A A A A G A A C T A C G G A A T C T G A T G T C G C A G T C T C G C A C T C G C G A G A T A C T G A C A A A A A C C A C A G T G G A C C A T A T G G C C A T A A T T A A G A

R4 : A G C G A A A G C A G G T C A A A T A T A T T C A A T A T G G A G A G A A T A A A A G A A C T A A G A G A T C T A A T G T C A C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A

Q: : T - - A - - T G G - - - - - - - - A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G

R1 : C G T T C A T A T T C A T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G

Q: : T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G G C C A T A A T C A A A

R2 : A - T G T C A - C A - - - - - - G T - - - - - - - - - - C C C G - - C - - - - - - - - - - - A C T C G C G A G A T A C T A A C A A A A A C C A C T G T G G A C C A T A T G G C C A T A A T C A A G

Q: : T A T G G A G A G A A T A A A A G A A C T G A G A G A - T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G G C C A T A A T C A A

R3 : A - T G G A A A G A A T A A A A G A A C T A C G G - A A T C T G A T G T C G C A G T C T C G C A C T C G C G A G A T A C T G A C A A A A A C C A C A G T G G A C C A T A T G G C C A T A A T T A A

a

Q: : T A T G G - - - - - - - - - - - - - - - - - - - - - - - - - - A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A

R4 : A G C G A A A G C A G G T C A A A T A T A T T C A A T A T G G A G A G A A T A A A A G A A C T A A G A G A T C T A A T G T C A C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A

(a)

Q : T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G G C C A T A A T C A A A
R1 : C G T T C A T A T T C A T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G
R2 : A T G T C A C A G T C C C G C A C T C G C G A G A T A C T A A C A A A A A C C A C T G T G G A C C A T A T G G C C A T A A T C A A G A A A T A C A C A T C A G G A A G A C A A G A G A A G A A C C
R3 : A T G G A A A G A A T A A A A G A A C T A C G G A A T C T G A T G T C G C A G T C T C G C A C T C G C G A G A T A C T G A C A A A A A C C A C A G T G G A C C A T A T G G C C A T A A T T A A G A
R4 : A G C G A A A G C A G G T C A A A T A T A T T C A A T A T G G A G A G A A T A A A A G A A C T A A G A G A T C T A A T G T C A C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A

Q: : T - - A - - T G G - - - - - - - - A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G
R1 : C G T T C A T A T T C A T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G

Q: : T A T G G A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G G C C A T A A T C A A A
R2 : A - T G T C A - C A - - - - - - G T - - - - - - - - - - C C C G - - C - - - - - - - - - - - A C T C G C G A G A T A C T A A C A A A A A C C A C T G T G G A C C A T A T G G C C A T A A T C A A G

Q: : T A T G G A G A G A A T A A A A G A A C T G A G A G A - T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A C T G T G G A C C A T A T G G C C A T A A T C A A
R3 : A - T G G A A A G A A T A A A A G A A C T A C G G - A A T C T G A T G T C G C A G T C T C G C A C T C G C G A G A T A C T G A C A A A A A C C A C A G T G G A C C A T A T G G C C A T A A T T A A

Q: : T A T G G - - - - - - - - - - - - - - - - - - - - - - - - - - A G A G A A T A A A A G A A C T G A G A G A T C T A A T G T C G C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A
R4 : A G C G A A A G C A G G T C A A A T A T A T T C A A T A T G G A G A G A A T A A A A G A A C T A A G A G A T C T A A T G T C A C A G T C C C G C A C T C G C G A G A T A C T C A C T A A G A C C A

(b)

FIGURE 13: (a) The first 100 elements of the original five sequences. (b) The global
alignment of each reference sequence with Q.

We will conclude implementation of the N -Tuple and GAM with two

remarks. First, as discussed in Chapter 2.2, when using the N -Tuple method, we

are not interested in the resulting alignment because it can yield many

inaccuracies. Instead, we are only interested in using it to filter a vast database

according to a specified N . The sequences that remain after the filtration is

carefully aligned with a dynamical programming method. Consider this filtering

process with N = 75. The N -Tuple algorithm will search all four reference

sequences with a total time of 377.352 seconds. Then it will align the sequences
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that are left, R1 and R4, with the GAM which will take an additional 346.265

seconds. The overall time for this process amounts to 723.617 seconds, which is

approximately 12 minutes. Meanwhile, if we only use the GAM on all four

comparisons, then the total time would be 665.649 seconds, this is approximately

11 minutes. This brings us to the second point; the filtering method is supposed to

speed up the overall classification process but took 723.617 seconds while the

GAM took 665.649 seconds. This is largely because we only have four sequences in

the database. If we took a database of 100 sequences with an average N -Tuple

time of 95 seconds per comparison, an average GAM time of 165 seconds, and 25

remaining sequences after the filtration. Then we will see that the total filtering

process will take 13,625 seconds while searching only with the GAM takes 16,500

seconds. Therefore, we can conclude that in a large scale database search, which is

often the case, it would be more beneficial to use the N -Tuple as a preprocessing

followed by a dynamical method.

Dot-Matrix

Next, we will look at an implementation and result of the Dot-Matrix

method. This algorithm was tested using the filtration method described in

Equation (4.3) on the five sequences described before. The threshold, C, will be

set to three and a score of one will be given to a node that leads to the same

residue position. Otherwise the score will be 0. Additionally, a window of three

will be set to limit the amount of crossing paths. In this implementation, if the

distance between two residue exceeds the window then the total score is

automatically -1. This will allow the algorithm to easily detect fragments that are

not allowed. Some of the resulting fragments are listed in Table 5. Each element in

the fragment will correspond to a certain residue on the corresponding sequence.

For example, f1 will align the 3rd residue in sequence Q with the 3rd residue in
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TABLE 5: A list of all the fragments after the filtering process along with the score

f1 f2 f3 f4 f5

Q 3 6 8 14 17

R1 3 6 8 14 17

R2 4 6 8 16 19

R3 4 6 7 16 19

R4 4 6 7 16 19

Score 3 4 3 3 3

Q : T A T G G A G A G A A T A A A A G A A C T G A G

R1 : C G T T C A T A T T C A T A T G G A G A G A A T

R2 : A T G T C A C A G T C C C G C A C T C G C G A G

R3 : A T G G A A A G A A T A A A A G A A C T A C G G

R4 : A G C G A A A G C A G G T C A A A T A T A T T C

Q : T A - T G G A G A G A A T A - - A A A - - - G A A C T G A G

R1 : C G - T T C A T A T T C A T - - A T G - - - G A G A G A A T

R2 : A T G T C - A C A G T C C C G C A C T C G C G A G - - - - -

R3 : A T G G A - A - A G A A T A A A A G A A C - T A C G G - - -

R4 : A G C G A - A - A G C A G G T C A A A T A - T A T T C - - -

(a)

Q : T A T G G A G A G A A T A A A A G A A C T G A G

R1 : C G T T C A T A T T C A T A T G G A G A G A A T

R2 : A T G T C A C A G T C C C G C A C T C G C G A G

R3 : A T G G A A A G A A T A A A A G A A C T A C G G

R4 : A G C G A A A G C A G G T C A A A T A T A T T C

Q : T A - T G G A G A G A A T A - - A A A - - - G A A C T G A G

R1 : C G - T T C A T A T T C A T - - A T G - - - G A G A G A A T

R2 : A T G T C - A C A G T C C C G C A C T C G C G A G - - - - -

R3 : A T G G A - A - A G A A T A A A A G A A C - T A C G G - - -

R4 : A G C G A - A - A G C A G G T C A A A T A - T A T T C - - -

(b)

FIGURE 14: (a) The first 24 elements of the original sequences. (b) The sequences
are shifted accordingly in order to align the fragments, underlined and bolded. The
hyphens in this case represent a place holder instead of a gap.
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sequence R1 with the 4th residue in sequence R2 and so on. Figure 14(b) shows all

the alignment of the fragments. The remaining intermediate sequences can be

aligned using GAM with a scoring profile [14].

Summary

In this chapter we have implemented and presented the results of each

method discussed in this paper, namely the N -Tuple, a dynamical programming

method, and the Dot-Matrix method. In a database search simulation, our results

showed that using the N -Tuple method as a filter prior to using a dynamical

method will yield a longer time than using the dynamical approach alone.

However, our database only contained four reference sequences. In a large

database search, we can expect the the filtering approach to reduce the search

time. Additionally, the results showed that the N -Tuple method is faster than the

Dynamical Programming method, more specifically the GAM, by almost two folds.

Using N = 100, the N -Tuple was able to filter all the other sequences and yield an

exclusive match, however, we cannot expect an exclusive match for a large

database search. Therefore, it is necessary to use a dynamical programming

method on the sequences that remain after the filtration. The result of using both

alignment methods will increase speed and accuracy. The last implementation was

using the dot-matrix to yield the fragments. Each one of these fragments were

aligned to show areas of high similarities within five sequences. The Dot-Matrix

method is not typically used in a database search, therefore it was not implemented

in the same context as the N -Tuple and the Dynamical Programming method.
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CHAPTER 6

CONCLUSION
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To conclude, we will briefly reiterate all the main points we discussed in

this paper. We first explored the N -Tuple method. This method creates a

similarity matrix using the two sequences given. With this similarity matrix and a

given threshold, N , a search is made along every single diagonal in order to find a

consecutive number of matches that satisfies the threshold. Once N is satisfied, we

can conclude that the two sequences are related. Next, we discussed the dynamical

method. This method is categorized into two different algorithms, the GAM and

the LAM. The GAM is used for sequences of relatively similar lengths and the

LAM is used when the two sequences differ greatly in length. Both methods

depend on the calculation of a weighted similarity matrix. Once the weighted

similarity matrix is computed, the alignment path is chosen depending on the

method used. These two dynamical programming methods allow an alignment

path that will move from one diagonal to another where as the N -Tuple method

only allows the alignment path to be on any one diagonal. Because of this, the

Dynamical Method is much more accurate in detecting biological variations.

However, the dynamical approach is more involved and takes almost twice the time

as the N -Tuple to execute an alignment. The lack of execution speed led us to

explore three different parallel computing schemes that enhanced the performance

of the dynamical method, namely the methods proposed by Wozniak [10], Rognes

and Seeberg [11], and Farrar [12]. The discussion of the dynamical methods was

followed by a multiple alignment method using the dot-matrix method. Given n

sequences, this method will create a family of (n
2 ) dot-matrices. A filtration process

will follow and remove all inconsistencies to create a consistent family of dot-plots.

At the end, this method will yield highest scoring fragments which will be used in

the alignment process. Since our goal was to find the segments of high similarity,

then we are done. However, if one wishes to align the intermediate sequences in
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between the fragments then this can be done using the GAM in conjunction with a

scoring profile which is discussed in Vingron [14].

As a future study, we can focus on improving the multiple sequence

alignment using the dot-matrices. Instead of using the filtration process discussed

in Chapter 4.1, we can concatenate the family of dot-matrices into vectors. Using

these vectors, we hope to be able to find a projection matrix that when applied to

an incoming vector, it will yield all the matches between the vector and the family.
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APPENDIX A
MATLAB CODES
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Code #1 This function creates a similarity matrix based on two input sequences,
X and Y. The value at position (i, j) of the matrix, is based upon the comparison
of the ith element of sequence X and the jth element of sequence Y. If there is a
match between these two elements then the (i, j) position is one, otherwise it is
zero.

function [SimMat]=Simi(X,Y)

for i=1:length(X)

for j=1:length(Y)

if X(i)==Y(j)

SimMat(i,j)=1;

else

SimMat(i,j)=0;

end

end

end

Code #2 The purpose of this code is to find the maximum number of consecutive
matches in any one diagonal of the similarity matrix.

function [MaxCount]=SearchCount(X,Y)

SimMat=Simi(X,Y); [a b]=size(SimMat); count2=0;

MaxDiag=b-1; MinDiag=-a+1;count=0;

for i=MinDiag:MaxDiag

%setting diagonals of SimMat into Diagonal

Diagonal=diag(SimMat,i);

%counting repeated ones

for j=1:length(Diagonal)

if Diagonal(j)==1

count=count+1;

if count2<count

count2=count;

end

else

count=0;

end

end

MaxCount(a+i)=count2;

count2=0;

count=0;

end
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Code #3 This is the implementation of the N -Tuple method. The user will input
sequences, X and Y, and a threshold N. The algorithm will search through the
diagonals of the similarity matrix to yield a match or no match depending on
whether or not N is satisfied. The search will be terminated once N is satisfied or
there are no more diagonals left.

function []=N_Tuple(N,X,Y)

SimMat=Simi(X,Y); [a b]=size(SimMat);

MaxDiag=b-N; MinDiag=-a+N; count=0;

for i=MinDiag:MaxDiag

%setting diagonals of SimMat into Diagonal

Diagonal=diag(SimMat,i);

%counting repeated ones

for j=1:length(Diagonal)

if Diagonal(j)==1

count=count+1;

else

count=0;

end

if count>=N;

break;

end

end

if count>=N;

break;

end

end

if count>=N

sprintf(’Sequences are a match.’)

else

sprintf(’Sequences are not a match.’)

end

Code #4 This function creates the weighted similarity matrix of either the GAM
or the LAM. The user will input sequences, X and Y, and a flag. If the flag is one,
then the algorithm will calculate the weighted similarity matrix according to the
LAM. If the flag is any other number, the algorithm will calculate the weighted
similarity matrix according to the LAM.

function [G]=GlobaLocal(X,Y,flag)

n=length(X); m=length(Y); Score=Simi(X,Y);
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if flag==1

G=zeros(n+1,m+1);

Choice(4)=0;

for i=2:n+1

for j=2:m+1

Choice(1)=G(i-1,j)-1;

Choice(2)=G(i,j-1)-1;

Choice(3)=G(i-1,j-1)+Score(i-1,j-1);

G(i,j)=max(Choice);

end

end

else

G=zeros(n,m);

Column=-1*[1:n];

Row=[0:-1:-m];

G=horzcat(Column’,G);

G=vertcat(Row,G);

for i=2:n+1

for j=2:m+1

Choice(1)=G(i-1,j)-1;

Choice(2)=G(i,j-1)-1;

Choice(3)=G(i-1,j-1)+Score(i-1,j-1);

G(i,j)=max(Choice);

end

end

end

Code #5 This function aligns two sequences according to the GAM. This is used
when two sequences are of similar lengths. The input will be two sequences and
the output will be two aligned sequences. The resulting alignment may contain
hyphens, which signals a gap.

function [newX, newY]=GlobalPath(X,Y)

G=GlobaLocal(X,Y,2); match=G(end,end);

[m, n]=size(G); row=m; col=n; gap=’-’;

Length=1; newY=’’; newX=’’;

while (row~=1)&(col~=1)

Choice=[G(row,col-1), G(row-1,col-1),G(row-1,col)];

Index=find(Choice==max(Choice));

if length(Index)==1
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%left movement

if Index==1

newX=strcat(gap,newX);

newY=strcat(Y(col-1),newY);

col=col-1;

end

%diagonal movement

if Index==2

newX=strcat(X(row-1),newX);

newY=strcat(Y(col-1),newY);

row=row-1; col=col-1;

end

%upward movement

if Index==3

newX=strcat(X(row-1),newX);

newY=strcat(gap,newY);

row=row-1;

end

else

newX=strcat(X(row-1),newX);

newY=strcat(Y(col-1),newY);

row=row-1; col=col-1;

end

end

Code #6 This function aligns two sequences according to the LAM. This is used
when two sequences differ greatly in lengths. The input will be two sequences and
the output will be two aligned sequences. The resulting alignment may contain
hyphens, which signals a gap.

function [newX, newY]=LocalPath(X,Y)

M=GlobaLocal(X,Y,1);

[m, n]=size(M); gap=’-’; row=m; dummy=M(m,:);

newY=’’; newX=’’; col=find(dummy==max(dummy));

%ensures single value

col=col(1); C=col;

%align only area of interest

while (row~=1)

Choice=[M(row,col-1), M(row-1,col-1),M(row-1,col)];

Index=find(Choice==max(Choice));

if length(Index)==1
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%left movement

switch Index

case 1

newX=strcat(gap,newX);

newY=strcat(Y(col-1),newY);

col=col-1;

%diagonal movement

case 2

newX=strcat(X(row-1),newX);

newY=strcat(Y(col-1),newY);

row=row-1; col=col-1;

%upward movement

case 3

newX=strcat(X(row-1),newX);

newY=strcat(gap,newY);

row=row-1;

end

else

newX=strcat(X(row-1),newX);

newY=strcat(Y(col-1),newY);

row=row-1; col=col-1;

end

end

%attach remaining of sequence

switch col&C

case {col~=1 & C~=length(Y)}

newY=strcat(Y(1:col),newY);

newY=strcat(newY,Y(C:end));

for i=1:col

newX=strcat(’*’,newX);

end

for i=C:length(newY)-1

newX=strcat(newX,’*’);

end

case {col==1 & C~=length(Y)}

newY=strcat(newY,Y(C:end));

for i=C:length(newY)

newX=strcat(newX,’*’);

end

case {col~=1 & C==length(Y)}

newY=strcat(Y(1:C,newY));
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for i=1:col

newX=strcat(’*’,newX);

end

end

Code #7 This function is used in the dot-matrix method in order to create a
family of dot-matrices given n sequences. The input will be n sequences put into a
matrix R. The number of rows of R will be n and the number of columns will
depend on the maximum length of all the the sequences. For the shorter
sequences, the user can fill remaining columns with arbitrary elements that does
not match up with the other. That is, if there are three sequences the longest
sequence will fill all the columns of R so no arbitrary elements will be needed. For
the other two sequences, which are shorter than the maximum length, they will be
filled with elements like “11111” and the other will be “22222” until the maximum
length is reached. The arbitrary elements can be any element other than ones that
already exist in the sequence, more specifically, A, T, C, or G. The output will be
all possible dot-matrices stored in Fam. The Position matrix will contain as many
rows as there are elements in the family and two columns. The two columns will
represent the two sequences that are being compared via similarity matrix. The ith

row will represent the ith element in the family.

function [Fam,Position]=Family(R)

[N m]=size(R);

k=1;

for i=1:N-1

%Simi of 1,2; 1,3 etc. no need for 1,1 so j=1.

for j=i+1:N

Fam(:,:,k)=Simi(R(i,:),R(j,:));

Position(k,:)=[i j]’;

k=k+1;

end

end

Code #8 This function executes a boolean multiplication of two matrices, given
that their sizes are appropriate for matrix multiplication. Multiplication will be
replaced with “and” and addition will be replaced with “or”. For simplification, if
the dot product between row i and column j is zero, then element (i, j) is zero,
otherwise it is one.

function [Product]=BMult(A,B)
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[c d]= size(A);

[e f]= size(B);

%creating the product matrix of size c x f.

for i=1:c

for j=1:f

if dot(A(i,:),B(:,j))==0

Product(i,j)=0;

else

Product(i,j)=1;

end

end

end

Code #9 This function will search for two appropriate dot matrices based upon
sequences s, t and i. In this case, i cannot be equal to s or t. The search process
will look through the entire Position matrix to find a row that matches a specific
row of Index. If the ith row matches the third row of Index during the jth iteration,
then in the matrix multiplication process, the transpose of the jth element of Fam
will be the matrix on the left. The result will yield two suitable matrices and their
appropriate positioning, left or right, during the matrix multiplication process.

function [FirstMult,SecMult]=iSearch(Position,Fam,s,t,i)

[a b]=size(Position);

Index(1,:)=[s i];

Index(2,:)=[i t];

Index(3,:)=[i s];

Index(4,:)=[t i];

for j=1:a

if Position(j,:)==Index(1,:)

FirstMult=Fam(:,:,j);

end

if Position(j,:)==Index(2,:)

SecMult=Fam(:,:,j);

end

if Position(j,:)==Index(3,:)

FirstMult=Fam(:,:,j)’;

end

if Position(j,:)==Index(4,:)

SecMult=Fam(:,:,j)’;

end

end
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Code #10 This function is the filtering process in the dot-matrix method
specifically, according to Equation (4.3) in the Chapter 4.1. A threshold, Thresh,
will be set by the user so that if Thresh amount of dot-matrices agree on the
match of position (i, j) then position (i, j) will be kept as a match, one, instead of
being reset to zero.

function [newFam]=FILSUM(Position,Fam,N,Thresh)

[x y z]=size(Fam);

max=100; summing=zeros(x,y); oldFam=Fam;

%counter for Prod

z=1;

for l=1:max

%end of position matrix

for k=1:(N*(N-1))/2

%b=[s t]

b=Position(k,:);

for u=1:N

%e.g 1,u * u,2 u cannot be 1 and 2

if (u~=b(1))&(u~=b(2))

[FirstMult SecMult]=iSearch(Position,oldFam,b(1),b(2),u);

Prod(:,:,z)=BMult(FirstMult,SecMult);

z=z+1;

end

end

%Adding the current mat being filt to Prod

Prod(:,:,z)=Fam(:,:,k);

for i=1:z

summing=summing+Prod(:,:,i);

end

z=1;

for i=1:x

for j=1:y

if summing(i,j)>=Thresh

newFam(i,j,k)=1;

else

newFam(i,j,k)=0;

end

end

end

tally(:,:,k)=summing;

summing=zeros(x,y);
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end

%convergence criteria

if (newFam-oldFam)==0

break;

end

%update oldFam and newFam

oldFam=newFam;

end

Code #11 This function requires the input of the matrix R. R will contain all
sequences that are being compared in rows. If the sequences are of different
lengths then arbitrary elements can be added like described in Code #7. The
algorithm will create a family of dot-matrices using Code #7 and the filtering
process proceed according to Equation (4.3). The output will be a matrix of the
chosen fragments and their respective scores.

function [chosenfrag]=FragSearch(R)

N=5;

[Fam,Position]=Family(R);

[newFam]=FILSUM(Position,Fam,N,3);

%creates index for back to back fam 12,23,34,45,..,N(N-1)

for i=1:N-1

Arrange(i,1)=i;

Arrange(i,2)=i+1;

end

k=1;

%looks for back to back fam

for i=1:N-1

%end of position matrix

for j=1:(N*(N-1))/2

if norm(Arrange(i,:)-Position(j,:))==0

FamMem(k)=j;

k=k+1;

end

end

end

%Picks out back to back eles from newFam

for i=1:length(FamMem)

FamArrange(:,:,i)=newFam(:,:,FamMem(i));

end
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frag=[];

[a, b, c]=size(FamArrange);

%find all tree paths, i.e fragments

for i=1:a

%find nonzero eles

Ind1=find(FamArrange(i,:,1));

if length(Ind1)>=1

for j=1:length(Ind1)

Ind2=find(FamArrange(i,:,2));

for k=1:length(Ind2)

Ind3=find(FamArrange(i,:,3));

for l=1:length(Ind3)

Ind4=find(FamArrange(i,:,4));

if (length(Ind1)&length(Ind2)...

&length(Ind3)&length(Ind1))~=0

for m=1:length(Ind4)

temp(m,:)=[i,Ind1(j),...

Ind2(k),Ind3(l),Ind4(m)];

end

frag=[frag;temp];

end

end

end

end

end

end

%creats a 6th column to store score

[a,b]=size(frag); vect=zeros(a,1);

frag=horzcat(frag,vect); score=0; window=3;

%scoring all fragments

for i=1:a

%check window size

V=[abs(frag(i,1)-frag(i,2)),abs(frag(i,1)-frag(i,3)),...

abs(frag(i,1)-frag(i,4)),abs(frag(i,1)-frag(i,5)),...

abs(frag(i,1)-frag(i,2)),abs(frag(i,2)-frag(i,3)),...

abs(frag(i,2)-frag(i,4)),abs(frag(i,2)-frag(i,5)),...

abs(frag(i,3)-frag(i,4)),abs(frag(i,3)-frag(i,5)),...

abs(frag(i,4)-frag(i,5))];

for k=1:length(V)
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if V(k)>window

score=-1;

break;

end

end

if score~=-1;

for j=1:b-1

compare1=frag(i,j);

compare2=frag(i,j+1);

%score +1 if elements are not branching

if compare1==compare2

score=score+1;

end

end

end

frag(i,b+1)=score;

score=0;

end

i=1;

%deletes any row in fragment with a score of -1

while i<=a

if frag(i,b+1)==-1

frag(i,:)=[];

i=i-1;

a=a-1;

end

i=i+1;

end

[a b]=size(frag);

frag=sortrows(frag);temp=[]; chosenfrag=[]; maxscore=0; k=1;

%find all fragments with the highest score, 4

for i=1:a

if frag(i,b)==4

optimalfrag(k,:)=frag(i,:);

k=k+1;

end

end

64



for i=1:a-1

compare1=frag(i,1);

compare2=frag(i+1,1);

%to account for the first row in fragment

if (compare1~=compare2) & (i==1)

chosenfrag=[chosenfrag;frag(1,:)];

end

%Compares scores for each branch with the same node

if compare1==compare2

compscore1=frag(i,b);

compscore2=frag(i+1,b);

if ((compscore1-compscore2)>=0) &...

((compscore1-compscore2)>maxscore)

maxscore=compscore1-compscore2;

temp=frag(i,:);

end

else

chosenfrag=[chosenfrag;temp];

maxscore=0;

end

end

[a,b]=size(chosenfrag);

% replace row of chosenfrag with row optimal frag if

% the first node is the same

for i=1:a

c=find(optimalfrag(:,1)==chosenfrag(i,1));

if length(c)>0

chosenfrag(i,:)=optimalfrag(c,:)

end

end
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