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ABSTRACT

STRICT MULTISCALE FRANGI PREFILTERING FOR SEGMENTATION:

TOWARDS AN AUTOMATED PLACENTAL CHORIONIC SURFACE

VASCULAR NETWORK EXTRACTION

By

Lucas Allen Wukmer

May 2019

Recent statistical analysis has suggested that accurate measurements of certain features of

the placental chorionic surface vascular network (PCSVN) after birth may be useful in identifying

risks of certain neurodevelopmental disorders, including Autism Spectrum Disorder. These

features, taken from a single top-down photograph, can be extracted from a manual tracing of the

PCSVN, but the tracing procedure itself is very time and resource intensive. Automating this

tracing procedure would not only allow more data acquisition to study potential links between

placental development and neonatal health, but even perhaps provide a real-time diagnostic for

certain risk factors.

Much work has been to develop reliable vascular network segmentation methods for

well-known image domains (such as retinal MRA images) using Hessian-based filters, namely the

multiscale Frangi filter. It is desirable to extend these techniques to our image domain, but this

approach has been historically hindered by the comparative irregularity of the placental surface as

a whole, which introduces significant noise into filtered result. Here we provide an in-depth

mathematical background of the multiscale Frangi filter, touching upon topics in differential

geometry, linear scale space theory, multiscale methods, and morphological image processing.

Informed by this theory, we are able to identify stricter parameters that allow us to greatly improve

our result. We also reimplement the Frangi filter in frequency space (using a Fast Fourier

Transform), which allows a major speedup compared to previous efforts.

Compared to recent success in solving this problem using more modern techniques such as

neural networks, we demonstrate the continued viability of this classic image processing
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technique. Its comparative speed and simplicity make it suitable as a prefilter to more robust

techniques. We apply a large (twenty scales) multiscale Frangi filter on a subset of 201 placental

images from a private database provided by the National Children’s Study (NCS). We then

compare several approaches of merging the multiscale result into an approximation of the PCSVN

and compare them to manual tracings of the network. Finally, we develop the notion of the signed

Frangi filter, upon which we describe a straightforward segmentation method called

"trough-filling" which is rather suitable for this particular image domain.
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CHAPTER 1

INTRODUCTION

Recent statistical analysis has suggested a link between placental development and

incidence of Autism Spectrum Disorder (ASD) (Chang et al. 2017). There is some evidence

(Chang et al. 2015) of correlation between this risk and placental health factors. Most ASD cases

are not diagnosed until the child reaches three or four, so the benefit of an early detection

technique would be massive, as the brain may be more receptive to treatment at a young age. In

particular, it was shown that measurements of the placental chorionic surface vascular network

(PCSVN) may be useful in identifying such risk (Chang et al. 2015). Chang et al. (2017) has

provided a method of automatically calculating such features from an extracted vascular network,

but does so with manual tracing of the PCSVN in order to make these measurements. These

manual tracings are labor-intensive, requiring 4 to 8 hours of user intervention to generate each

trace. The present work follows several other efforts towards an automated extraction technique,

(Almoussa et al. 2011; Huynh 2013; Djima et al. 2017). Automating this procedure would not

only allow more data acquisition to study the potential connection between ASD and placental

health, but could even potentially serve as the basis of real-time diagnostic for neonatal risk factors

as well. We continue the work of developing a procedure to automate extraction of the PCSVN.

Our basic goal of “vascular network extraction” is a common one in image processing.

There are have been many techniques adapted to extracting vascular networks. However, the

placenta in particular poses as a particularly difficult image domain to work with. It is a surface

network with much irregularity: there are frequent gaps and crossings, and the "background" has a

great degree of variation in color intensity and structure itself, causing many naïve approaches at

segmentation to fail completely.

Reliable vascular extraction methods do exist for well-known image domains (such as

retinal MRA images) using Hessian-based filters, namely the (multiscale) Frangi filter. It is

desirable to extend this technique to study placental images, but this approach is greatly hindered

by the comparative irregularity of the placental surface as a whole, which introduces significant
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noise into the image domain. Previous attempts to implement the Frangi filter in this context

(Huynh 2013) dealt with this noise by passing the Frangi filtered result to a custom directional

filter bank as an additional local curvilinear filter, in an effort to retrieve a partial segmentation.

Other more recent efforts are very promising, but are considerably more resource-intensive

(Djima et al. 2017).

Here we provide an in-depth mathematical background of the Frangi filter and its

justification as an image-processing technique, as well as an introduction to the Gaussian scale

space theory common to many multiscale methods. A more throughout treatment of these

underlying theories allows us to choose parameters much more meaningfully than previous

efforts. In particular, a more thoughtful selection of the Frangi filter’s two parameters reduces

much of the noise previously encountered within this image domain. Finally, we discuss an

important advancement in implementation–scale space conversion for differentiation (i.e.

Gaussian blur) via Fast Fourier Transform, which offers a significant speedup. This allows us

faster calculation of the eigenvalues of the Hessian, from which we calculate the Frangi filter, a

vesselness measure. We briefly discuss an alternate version of the Frangi filter which is not based

on the Hessian, but instead Weingarten map, which seems to yield promising results.

We demonstrate the effectiveness of our sped-up implementation of the Frangi filter by

performing a large-scale multiscale Frangi filter on a set of 201 placental images from a private

database provided by the National Children’s Study (NCS). We then demonstrate the usefulness of

this filter by then demonstrating several approaches to segmentation of the PCSVN from our

filtered result. These approaches include simple thresholding, scalewise percentile filtering, and

finally a custom Frangi-based method we call “trough-filling.” We compare each of these

segmentation results to the ground truth manual tracings of the network for each of these 201

samples, quantifying the success of various segmentation methods using Matthew’s correlation

constant (MCC) and precision scoring. Finally, we discuss ways to extend our ideas to solve the

network connection problem.
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CHAPTER 2

DIFFERENTIAL GEOMETRY AND SURFACE CURVATURE

Our goal is establish a resource efficient method of finding curvilinear content in 2D

grayscale digital images using concepts of differential geometry. We proceed by (i) establishing a

standard method of viewing these images as 2D surfaces, (ii) developing a minimal yet rigorous

distillation of differential geometry to obtain suitiable quantifiers for the study of curvilinear

structure in 3D surfaces, (iii) establishing a filter based on these quantifiers, and finally

(iv) developing methods necessary for efficient computation of the filter.

2.1. Problem Setup in Image Processing

A digital 2D grayscale image is given by a M ×N array of pixels, whose intensity is given

by an integer value between 0 and 255. For simplicity, we will rescale this intensity to be a real

number between 0 and 1.

Definition 2.1 : The image can be given as the pixel matrix

I ∈ NM×N with 0 ≤ Ii j ≤ 1

For theoretical purposes, we wish to consider any such picture to ultimately be a sampling

of a 2D continuous surface. We also require that this surface is sufficiently continuous as to admit

the existence of second partial derivatives.

Definition 2.2 : The image can be given as the interpolated surface

h : R2→ R with h ∈ C2
(
R2

)
, where h(i, j) = Ii j ∀(i, j) ∈ {0, ...,M} × {0, ...,N} ⊂ N2

That is, the function h is identical to the pixel matrix I at all integer inputs, and simply a

“smooth enough” interpolation of those points for all other values.

It is of course necessary to admit that I is not really a perfect representation of the

underlying “content” within the picture. Not only is information lost when I is stored as an
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integer, there are also elements of noise and anomalies of lighting that would constitute noise to

the original signal. There are multiple treatments of image processing that do address this

discrepancy in a pragmatic way (Gonzalez and Woods 2002), especially when the goal is noise

reduction. However, we will be content to simply represent the pixels of I as the ultimate “cause”

of the surface h in Definition 2.2, and worry not about how faithfully that sampling corresponds to

the real world. Moreover, though our samples in the image domain have been carefully prepared

(as outlined in Section 7.1), there are numerous shortcomings therein, and improvements to the

veracity of our original signal could be made from many angles. Though we shall draw upon the

notion of the pixel matrix I as a sampling again to motivate our development of scale space theory

in Chapter 4, we ultimately use these techniques because we find them successful to our problem.

A view of an inset of an image sample as a three dimensional graph, as shown in Fig. 1, supports

our decision to link our images of concern with this three dimensional interpretation. We mention

here, whereas Fig. 1 shows these dark curvilinear structures, i.e. “valleys” within the surface

containing local minima, other image domains may be more concerned with bright curvilinear

structures, i.e. “ridges” within the surface. Although our images of interest in this thesis are

indeed dark curvilinear structures, we shall occassionally refer to surfaces where bright

curvilinear structures are the concern, especially in Section 2.2.4 and Chapter 3. We do so only

for ease of visualization. We will discuss the differences between these two structures in

Chapter 3 and provide a way to distinguish between them.

2.2. Differential Geometry

We wish to describe the structure of an image as a surface. To do this, we develop the

notion of curvature of a surface in R3 in a standard way (Kühnel and Hunt 2006).

2.2.1. Preliminaries of Differential Geometry

Given an open subset U ⊂ R2 and a twice differentiable function h : U→ R (as in

Definition 2.2) we define the graph, f , of h in the following definition.
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FIGURE 1. Grayscale image (inset) as an interpolated surface.

Definition 2.3 : The surface f is a graph (of the function h) when

f : U→ R3 by f (u1,u2) =
(
u1,u2,h(u1,u2)

)
, u = (u1,u2) ∈ U ⊂ R2

Since the graph f is clearly one-to-one (into R3) by definition, we may readily associate

any input u ∈ U with its corresponding output p ∈ f [U], i.e.

p = f (u) = f (u1,u2) =
(
u1,u2,h(u1,u2)

)
, depending on whether we wish to focus on a point of a

graph in terms of its input or in terms of the structure of the graph itself.

Our development of curvature ultimately will hinge upon a careful consideration of the

tangent plane of f at a point p, for we will require a concrete definition of both the tangent space

within the domain and image of f , as well as the differential" of f ,

Definition 2.4 : The tangent space of U at u is given as

TuU = {u} ×R2

Definition 2.5 : The tangent space of R3 at p is given as

TpR
3 = {p} ×R3

5



It is immediately clear that TuU and TpR
3 are isomorphic to R2 and R3, respectively, and

we can easily visualize elements of TuU are tangent vectors in R2 “originating” at the point u, and

elements of TpR
3 are tangent vectors “originating” at the point p.

Definition 2.6 : The differential of f at a point u, D f |u, is the map from TuU into R3

given by

D f |u : TuU→ T f (u)R
3 by w 7→ J f (u)w

where J f (u) is the Jacobian of f evaluated at some fixed point u ∈ U, i.e. the matrix

J f (u) =
[
∂ fi
∂u j

����
u

]
i,j

We could also just identify the differential Definition 2.6 with a mapping U→ R3 by the

obvious isomorphism inherent in Definition 2.4. In this case, the differential of f at x is simply a

linear transformation between the tangent spaces TuU and TpR
3 where the matrix of the

transformation is given by the Jacobian. We can define such a differential at any point u in the

domain.

With these three definitions, we are equipped to give a formal definition of Tu f , the

tangent plane of f at an input u.

Definition 2.7 : The tangent plane of a graph is

Tu f := D f |u (TuU) ⊂ T f (u)R
3 = TpR

3

The vectors in this plane can thus be identified as tangent vectors from TuU that have been

passed through the differential mapping D f |u. We shall denote a generic tangent vector X ∈ Tu f

at point p. We may expand any such vector X in terms of the basis
{
∂ f
∂ui

}
i=1,2

; that is,

span
{
∂ f
∂u1
,
∂ f
∂u2

}
= Tu f . Each of these basis vectors are the columns of the Jacobian matrix and are

parametric derivatives of f for the input u.

Given the level of abstraction above, it may be refreshing to explicitly show the linear
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independence of this set in the case of an arbitrary graph f .

Lemma 2.1 : When f is a graph, for all points u ∈ U,
{
∂ f
∂u1
,
∂ f
∂u2

}
is in fact a basis for the

tangent plane Tu f .

Proof: Given the definition of a graph f as in Definition 2.3, we can directly calculate the

parametric derivatives of f at a point u.

fu1 = (1,0,hu1(u)) and fu2 = (0,1,hu2(u))

which are obviously linearly independent. Then D f |u(1,0) = fu1, and D f |u(0,1) = fu2 , which

shows
{
∂ f
∂u1
,
∂ f
∂u2

}
∈ Tu f . Thus

{
∂ f
∂u1
,
∂ f
∂u2

}
is a linearly independent subset of Tu f , and can serve as

its basis.

Quite obviously, we’re assuming (1,0),(0,1) ∈ U. If this is not the case, we pick some α

small enough so that (α,0) and (0,α) are contained and this scaled version would serve as a basis

instead.

The parametric derivatives of f are not, in general, orthogonal at any point u, unless it

happens that hu1 or hu2 is zero.

We now concern ourselves with developing the notion of curvature on a surface. First, we

need to consider an arbitrary regular curve (i.e. differentiable, one-to-one, non-zero derivative)

contained within the image of f .

2.2.2. Curvature of a Surface and its Calculation

In the context of a regular arc-length parametrized curve c : I→ R3 parametrized along

some closed interval I ∈ R (that is, a differentiable, one-to-one curve where c′(s) = 1 ∀s ∈ I),

curvature at a point s ∈ I is defined simply as the magnitude of the curve’s acceleration:

κ(s) := ‖c′′(s)‖.

To extend the notion of curvature of a surface f , we can consider the curvature of such an

arbitrary curve embedded within the surface.
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Definition 2.8 : Given a closed interval I ⊂ R, we call the regular curve c : I→ R3 a

surface curve in the event that image(c) ⊂ image( f ) entirely. The one-to-one-ness of the graph f

ensures that we can define (for the given curve) an intermediary parametrization θ so that

c = f ◦ θ. That is,

θ : I→U by θ(t) =
(
θ1(t),θ2(t)

)
so that c(t) = f (θc(t)) ∀t ∈ I, and c[I] = f [θc[I]].

Note as well that the velocity of this particular curve lies within Tu f . This can be seen by

an elementary application of chain rule:

dc
dt
=

d
dt

[
f (θc(t))

]
=

d
dt

[
f (θ1(t),θ2(t))

]
= θ′1(t)

(
∂ f
∂u1

)
+ θ′2(t)

(
∂ f
∂u2

)
∈ Tu f . (2.1)

Considering the parameter p ∈ I and its associated point u = θc(p), we wish to compare the

curvatures of all (regular) surface curves passing through the point u at some particular velocity.

We now present a main result that provides a notion of curvature of a surface.

Theorem 2.2 (Theorem of Meusnier): Given a point u ∈ U and a tangent direction

X ∈ Tu f , any regular curve on the surface c : I→ image( f ) with p ∈ I : θc(p) = u where c′(p) = X

will have the same curvature.

In other words, any two curves on the surface with a common velocity at a given point on

the surface will have the same curvature. To prove this, we require one final definition.

Definition 2.9 (The Gauss Map): The Gauss map at a point u is the unit normal to the

tangent plane

ν : U→ R3 by ν(u) :=
∂ f
∂u1
×

∂ f
∂u2

‖
∂ f
∂u1
×

∂ f
∂u2
‖

8



Each partial above understood to be evaluated at the input u ∈ U; that is, we calculate
∂ f
∂ui

���
u
. The existence of the cross product in its definition makes it clear that ν ⊥ ∂ f

∂ui
each i = 1,2.

A simple dimensionality argument of R3 implies that these must exist in Tu f . However, we can

also show it directly: To show that
{
∂ν
∂u1
, ∂ν∂u2

}
∈ Tu f , first note that at any particular u ∈ U,

〈ν,ν〉 = 1 =⇒ ∂
∂ui
〈ν,ν〉 = 0, and so by chain rule 2〈 ∂ν∂ui

,ν〉 = 0 =⇒ ∂ν
∂ui
⊥ ν. Since ν ⊥ span

{
∂ f
∂ui

}
as well (since ν its outer product), in R3, this implies span

{
∂ν
∂ui

}
= span

{
∂ f
∂ui

}
.

Thus, we have span
{
∂ν
∂u1
, ∂ν∂u2

}
⊂ Tu f as well and we can also use it as a basis. The Gauss

map is intrinsic to the surface and irrespective of any particular curve through it.

We are finally ready to prove Theorem 2.2, the Theorem of Meusnier.

Proof: Let X ∈ Tu f be given and consider some curve where c′(p) = X . We wish to

decompose the curve’s acceleration along the orthogonal vectors X and the Gauss map

ν = ν(u1,u2) =
∂ f
∂u1
×
∂ f
∂u2

‖
∂ f
∂u1
×
∂ f
∂u2
‖
as in Definition 2.9. Note that X and ν are indeed orthogonal, as

X ∈ span
{
∂ f
∂ui

}
= Tu f , and ν ⊥ Tu f ). We then have (at this fixed point u = θ(p))

c′′ = 〈c′′,X〉X + 〈c′′,ν〉ν (2.2)

Because c is a regular curve, we either have c′′ = 0, or c′ ⊥ c′′, since ‖c′‖ = 1 implies

0 = d
dt 〈c

′,c′〉 = 2〈c′′,c′〉. Thus

〈c′′,X〉 = 〈c′′,c′〉 = 0

and we can rewrite the second coefficient of Eq. (2.2) using the chain rule:

〈c′′,ν〉 =
∂

∂t
[〈c′,ν〉]− 〈c′,

∂ν

∂t
〉

=
∂

∂t
[〈X,ν〉]− 〈c′,

∂ν

∂t
〉

= 0− 〈X,
∂ν

∂t
〉

(2.3)
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Thus, we can express the curvature at this point on our selected curve as

‖c′′‖ = ‖〈c′′,X〉X + 〈c′′,ν〉ν‖ = ‖0+ 〈c′′,ν〉ν‖

= |−〈X,
∂ν

∂t
〉|‖ν‖

= |−〈X,
∂ν

∂t
〉|

= |〈X,−
∂ν

∂t
〉| (2.4)

We may compute the quantity − ∂ν∂t that appears in Eq. (2.4) via chain rule:

−
dν
dt
= −

d
dt

[
ν(u1,u2)

]
= −

d
dt

[
ν(θ1(t),θ2(t))

]
= θ′1(t)

(
−
∂ν

∂u1

)
+ θ′2(t)

(
−
∂ν

∂u2

)
(2.5)

Since span
{
− ∂ν
∂ui

}
i=1,2

as a subset of Tu f , we can identify a linear transformation which maps the

basis
{
∂ f
∂ui

}
i=1,2

to this basis. We call this map which the Weingarten map L.

Definition 2.10 : The Weingarten map is the map

L : Tu f → Tu f given by the composition L = Dν ◦ (D f )−1.

That is, L( ∂ f
∂ui
) = − ∂ν

∂ui
for i = 1,2. This allows us to rewrite the time derivative of the Gauss map
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Eq. (2.5) as

−
dν
dt
= θ′1(t)

(
−
∂ν

∂u1

)
+ θ′2(t)

(
−
∂ν

∂u2

)
= θ′1(t)

(
L
(
∂ f
∂u1

))
+ θ′2(t)

(
L
(
∂ f
∂u2

))
= L

[
θ′1(t)

(
∂ f
∂u1

)
+ θ′2(t)

(
∂ f
∂u2

)]
= L

(
d
dt
[ f (θ(t))]

)
= L

(
d
dt
[c(t)]

)
= L (X) (2.6)

With this, we can re-express the curvature of our curve from Eq. (2.4) as the much simplified

‖c′′‖ = |〈X,−
∂ν

∂t
〉| = |〈X,L(X)〉| (2.7)

The linear transformation L from Definition 2.10, and thereby the computation of

curvature given in Eq. (2.7), depends only on the point u and the selected direction X , not on the

particular curve c at all. To recap, given a point u on the surface and an arbitrary vector X in the

tangent plane, we can calculate the curvature of any surface curve with velocity X there. In fact,

we refer to this intrinsic quantity as the normal curvature of the surface.

Definition 2.11 : The normal curvature of a surface, denoted κν at point u in the direction

X is given by

κν := 〈X,L(X)〉

In fact, Theorem 2.2 shows that the normal curvature is an intrinsic property of the

surface–it depends only on the surface at a point, and no reference to any particular curve on the

surface is necessary or implied.

The map L introduced in the proof above is known as the Weingarten map and is implicitly

defined at each u ∈ U. We wish to make its existence rigorous as well as find a matrix

representation for it, using the standard motivation that L( ∂ f
∂ui
) = − ∂ν

∂ui
.

That is, we may trace any X ∈ Tu f which has been expanded in terms of the basis
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{
∂ f
∂u1
,
∂ f
∂u2

}
and map it to the basis

{
− ∂ν
∂u1
,− ∂ν

∂u2

}
.

The Weingarten map can be formally shown to be well-defined, invariant under coordinate

transformation in the general case (that is, for surfaces f that are not graphs). We refer to (Kühnel

and Hunt 2006) for the general proof. Our present situation is much less delicate, as we’re only

concerned for cases when f is a graph. In this case, the linear transformation may be simply

constructed, and we proceed by simply calculating its matrix representation.

Lemma 2.3 : The Weingarten map as in Definition 2.10 is well-defined for graphs.

To find a matrix representation for L (which we will denote L̂ ∈ R2×2), we simply wish to

find a linear transformation such that L̂ ∂ f
∂ui

���
Tu f
= − ∂ν

∂ui

���
Tu f

for i = 1,2 where − X |Tu f denotes that

X ∈ Tu f is being represented in local coordinates for Tu f (Strictly speaking, of course Tu f ⊂ R3

and thus ∂ f
∂ui
∈ R3. Thus when we say ∂ f

∂ui

���
Tu f

we are referring to this 3-vector expanded with

respect to the two-dimensional basis for Tu f ). In matrix form, we describe this situation as

[
L̂

] 
��

∂ f
∂u1

����
Tu f��

��
∂ f
∂u2

����
Tu f��


=


L̂

��
∂ f
∂u1

����
Tu f�� L̂

��
∂ f
∂u2

����
Tu f��


(2.8)

=


��

−
∂ν

∂u1

����
Tu f��

��
−
∂ν

∂u2

����
Tu f��


(2.9)

Now, representing each vector in Tu f with respect to the basis
{
∂ f
∂ui

}
, we have

[
L̂

] 
��

∂ f
∂u1

����
Tu f��

��
∂ f
∂u2

����
Tu f��


=

[
L̂

] 
−
∂ f
∂u1
−

−
∂ f
∂u2
−




��
∂ f
∂u1��

��
∂ f
∂u2��

 =

−
∂ f
∂u1
−

−
∂ f
∂u2
−




��
−
∂ν

∂u1��
��

−
∂ν

∂u2��
 (2.10)

(2.11)
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We can simplify this greatly by defining

gi j := 〈
∂ f
∂ui

,
∂ f
∂u j
〉 and hi j := 〈

∂ f
∂ui

,−
∂ν

∂u j
〉 (2.12)

so that [
L̂

] 
g11 g12

g21 g22

 =

h11 h12

h21 h22

 (2.13)

Then we rearrange to solve for L̂ as

L̂ =


h11 h12

h21 h22



g11 g12

g21 g22


−1

(2.14)

where
[
gi j

]
is clearly invertible, as the set

{
∂ f
∂u j

}
is linearly independent.

It should be noted that this matrix representation is accurate not only for the surface of a

graph, but for any generalized surface f : U→ R3 with u 7→ (x(u),y(u),z(u)) as well. We shall

later show that this calculation simplifies (somewhat) in the case that our surface is a graph.

Our final goal is to characterize such normal curvatures. Namely, we wish to establish a

method of determining in which directions an extremal normal curvature occurs.

2.2.3. Principal Curvatures and Principal Directions

To do so, we shall consider the relationship between the direction X and the normal

curvature κν Definition 2.11 in that direction at some specified u.

First, we need the following lemma:

Lemma 2.4 : If A ∈ Rn×n is a symmetric real matrix, v ∈ Rn and given the dot product 〈·, ·〉,

we have ∇v 〈v,Av〉 = 2Av. In particular, when A = I the identity matrix, we have ∇v 〈v,v〉 = 2v.

Proof: The result is uninterestingly obtained by tracking each component of ∇v 〈v,Av〉:
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(
∇v 〈v,Av〉

)
i
=

∂

∂vi

[
〈v,Av〉

]
=

∂

∂vi


n∑

j=1
v j(Av) j

 (2.15)

=
∂

∂vi


n∑

j=1
v j

n∑
k=1

a j kvk

 (2.16)

=
∂

∂vi

[
aiiv

2
i + vi

∑
k,i

aikvk + vi

∑
j,i

a jiv j +
∑
j,i

∑
k,i

v ja j kvk

]
(2.17)

= 2aiivi +
∑
k,i

aikvk +
∑
j,i

a jiv j +0 (2.18)

= 2aiivi +2
∑
k,i

aikvk = 2
n∑

k=1
aikvk = 2

(
Av

)
i (2.19)

=⇒ ∇v 〈v,Av〉 = 2Av. (2.20)

We are now ready for the major result of this section, which ties the Weingarten map to the

notion of normal curvatures.

Theorem 2.5 (Theorem of Olinde Rodrigues): Fixing a point u ∈ U, a direction X ∈ Tu f

minimizes the normal curvature κν = 〈LX,X〉 subject to 〈X,X〉 = 1 iff X is a (normalized)

eigenvector of the Weingarten map L.

Proof: In the following, we will assume that X ∈ Tu f is expanded, in local coordinates, i.e.

along a two dimensional basis (such as
{
∂ f
∂ui

}
i=1,2

) and thus can refer to L freely as the 2×2 matrix

L̂. Using the method of Lagrange multipliers, we define the Lagrangian:

L (X;λ) := 〈̂LX,X〉 −λ
(
〈X,X〉 −1

)
(2.21)

Extremal values occur when ∇X,λL (X;λ) = 0, which results in the two equations
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∇X 〈̂LX,X〉 −λ∇X (〈X,X〉 −1) = 0

〈X,X〉 −1 = 0
(2.22)

The second requirement is simply the constraint that X is normalized. Using the previous

lemma, we can simplify the first result as follows:

∇X 〈̂LX,X〉 −λ∇X (〈X,X〉 −1) = 0

2̂LX −λ (2X) = 0

=⇒ L̂X −λX = 0

=⇒ L̂X = λX (2.23)

which implies that X is an eigenvector of L̂ with corresponding eigenvalue λ (X , 0 from the

second equation of Eq. (2.22)). Thus the two hypotheses are exactly equivalent when X is

normalized. It is also worth remarking that the corresponding eigenvalue λ is the Lagrangian

multiplier itself.

Thus, to find the directions of greatest and least curvature of a surface at a point u ∈ U, we

simply must calculate the Weingarten map and its eigenvectors. We refer to these directions as

follows.

Definition 2.12 : The extremal values of normal curvature of a surface at a point u ∈U are

referred to as principal curvatures. The corresponding directions at which normal curvature

attains an extremal value are referred to as principal directions.

Our final goal is to explicitly determine a (hopefully simplified) version of the Weingarten

map in the case of a graph f (u1,u2) = (u1,u2,h(u1,u2)) and calculate the principal directions and

curvatures in a simple example.

Theorem 2.6 (Weingarten Map of a Graph): Given the graph f : U→ R3 where
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(x,y) 7→ (x,y,h(x,y)), the matrix representation of its Weingarten map is given by

L̂ = Hess(h)G̃ , where G̃ :=
1(

1+ h2
x + h2

y

)3/2


1+ h2

y −hx hy

−hx hy 1+ h2
x

 (2.24)

In particular, given a point u = (x,y) ∈ U ⊂ R2 where hx ≈ hy ≈ 0, we have G̃ ≈ Id, and

thus L̂ ≈ Hess(h).

Proof: We begin from Eq. (2.14). First, consider each component from Eq. (2.12) and

rewrite via chain rule:

hi j = 〈
∂ f
∂ui

,−
∂ν

∂u j
〉 = 〈

∂2 f
∂ui∂u j

,ν〉

Now, given our particular surface f , we can calculate each of these components directly.

We have:
fx = (1,0,hx), fy = (0,1,hy)

fxx = (0,0,hxx), fxy = (0,0,hxy) = fyx, fyy = (0,0,hyy)

(2.25)

and we have the unit normal vector (Gauss map)

ν(u1,u2) =

∂ f
∂x ×

∂ f
∂y

‖
∂ f
∂x ×

∂ f
∂y ‖

(2.26)

=
(1,0,hx)× (0,1,hy)

‖(1,0,hx)× (0,1,hy)‖
(2.27)

=

(
−hx,−hy,1

)√
h2

x + h2
y +1

(2.28)
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We then calculate each hi j as

h11 = 〈
∂2 f
∂x2 ,ν〉 =

hxx√
1+ h2

x + h2
y

h12 = 〈
∂2 f
∂x∂y

,ν〉 =
hxy√

1+ h2
x + h2

y

= h21

h22 = 〈
∂2 f
∂y2 ,ν〉 =

hyy√
1+ h2

x + h2
y

(2.29)

and thus the first matrix in Eq. (2.14) is given by

[hi j] =
1√

1+ h2
x + h2

y

Hess(h) (2.30)

To calcuate the second, we use

gi j = 〈
∂ f
∂ui

,
∂ f
∂u j
〉

g11 = 〈 fx, fx〉 = 1+ h2
x

g12 = 〈 fx, fy〉 = hx hy = g21

g22 = 〈 fy, fy〉 = 1+ h2
y

(2.31)

and thus

[gi j]
−1 =


1+ h2

x hx hy

hx hy 1+ h2
y


−1

=
1

1+ h2
x + h2

y


1+ h2

y −hx hy

−hx hy 1+ h2
x

 (2.32)

Combining [hi j] and [gi j]
−1 from Eq. (2.32) and Eq. (2.30) we arrive at our result, Eq. (2.24).

We stress that this map L is defined for each point u ∈ U. In the particular case that u ∈ U

is a critical point, where ∇h(u) = (hx(u),hy(u)) = 0, then it is clear from the previous theorem that

L̂ is exactly the Hessian matrix Hess(h). Of course this implies that L̂ and Hess(h) have the same

eigenvalues and eigenvectors at any such point.

To make the Weingarten map and its relationship to the Hessian more explicit, we will
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FIGURE 2. The graph of a cylindrical ridge of radius r .

calculate the Weingarten map for a relatively simple graph.

2.2.4. The Weingarten Map and Principal Curvatures of a Cylindrical Ridge

Let f be the graph given by

f : R2→ R3 by f (x,y) = (x,y,h(x,y)), with h(x,y) =


√

r2− x2 −r < x < r

0 else
(2.33)

The graph f is depicted in Fig. 2. We calculate the necessary partial derivatives of h(x,y)

and apply them to Eq. (2.24).
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hx =
−x

√
r2− x2

, hxx =
−r2(

r2− x2)3/2

hy = 0 , hyy = 0 , hxy = 0

L̂ = Hess(h)G̃ =
1(

1+ x2

r2−x2

)3/2


r2

(r2−x2)
3/2 0

0 0


=

1(
r2

r2−x2

)3/2


r2

(r2−x2)
3/2 0

0 0

 = · · · =

−1
r 0

0 0


The matrix of the Weingarten map and its eigenvalues (in local coordinates) and vectors

are then

L̂ =


−1

r 0

0 0

 u2 = (1,0) , u1 = (0,1) λ2 =
−1
r
, λ1 = 0 (2.34)

The Theorem of Olinde Rodriguez then suggests that u2 points in the direction of

maximum curvature of the surface, −1
r , which is predictably in the direction directly

perpendicular to the trough, whereas the direction of least curvature is along the trough and the

curvature there is 0. The Theorem of Meusnier, Theorem 2.2, suggests that the normal curvature

κ2 = −
1
r is reasonable–any curve on the trough perpendicular to the ridge should have the

curvature of a circle, and the negative simply indicates that we are on the “outside” of the surface.

Finally, we note that at the ridge of the trough is exactly where ∇ f = 0, and the Weingarten map is

exactly the Hessian matrix there.

For arbitrary points −r < x < r , the Hessian takes the general form

Hess(h) =


−r2

(r2−x2)
3/2 0

0 0

 (2.35)
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Its two eigenvectors are the same as in Eq. (2.34),and its eigenvalues are λ2 =
−r2

(r2−x2)
3/2 and

λ1 = 0 and Fig. 2. Note that the leading eigenvalue is now a function of x.
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CHAPTER 3

THE UNISCALE FRANGI FILTER

We now seek to harness the ideas introduced in Chapter 2 to the task at hand: identifying

curvilinear content within images.

The Frangi filter, first described by Alejandro Frangi et al. (1998) is a widely used

Hessian-based filter within image processing. Hessian-based filters make use of the logical

“proximity” of the Hessian to notions of curvature of surfaces. Frangi’s filter was orignally

developed for vascular segmentation in images such as MRIs and it excels in that context . Several

alternatively formulated Hessian-based filters exist (Sato et al. 1998; Lorenz et al. 1997;

Olabarriaga, Breeuwer, and Niessen 2003). These filters use information about the principal

curvatures, approximated as eigenvalues of the Hessian, at each point in the image to identify

regions of significant curvature within an image.

We point out here that our image is of course a discrete structure and not a continuous

surface, which was the object of concern in Chapter 2. In Chapter 4, we will develop the notions

of scale space, which will help us bridge the gap between continuous surfaces and discrete

images. Using that approach, we shall consider the Frangi filter in its standard multiscale setting.

For the time being, we continue to consider our images as continuous graphs, as the theory of the

Frangi filter in its basic sense does not require the extra machinery of scale space theory.

The procedure for a continuous 2D image is as follows: Let λ1,λ2 be the two eigenvalues

of the Hessian of the image at point (x,y), ordered such that |λ1 | ≤ |λ2 |, and define the Frangi

vesselness measure for identifying bright curvilinear structures as

V(x,y) =


0 if λ2 > 0

exp
{
− A2

2β2

} (
1− exp

(
− S2

2c2

))
otherwise

(3.1)

where

A :=
����λ1
λ2

���� and S :=
√
λ2

1 +λ
2
2 (3.2)
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FIGURE 3. The principal eigenvectors at a ridge-like structure.

and β and c are tuning parameters. A and S are known as the anisotropy measure and

structureness measure, respectively. Similarly, we shall refer to the two factors in Eq. (3.1) as the

anisotropy factor and structureness factor. We will also refer to λ2 and λ1 as the leading and

trailing eigenvalues of the Hessian, respectively. Before we discuss appropriate values for β and c,

we first seek to highlight the significance of the two measures in Eq. (3.2).

3.1. Anisotropy Measure

The anisotropy (or directionality) measure A is simply the ratio of magnitudes of λ1 and

λ2. Since at a ridge point of a tubular structure, we should have λ1 ≈ 0 and |λ2 | � |λ1 |, a very

small value of A would be present at a ridge of a tubular structure. In Fig. 3, this situation is

demonstrated. Here, u1 and u2 form the orthogonal set of Hessian eigenvectors with

corresponding eigenvalues λ1 and λ2. At such a ridgelike structure, we could predict the largest

change in curvature to be straight down the ridge (in the direction of u2), and the direction of least

curvature to be directly along the ridge (in the direction of u1). The leading eigenvalue λ2 should

be large and negative, and λ1 should be approximately zero.

Of course, if the the ridge is perfectly circular along its cross section, as in Section 2.2.4,
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we note that the leading λ1 would likewise be 0 at any such point. One could also imagine a

similar situation in which the dropoff from crest to bottom gets increasingly steep. In such a case,

λ2 as a function of transverse position would in fact be largest nearest to the bottom. This thought

experiment should dispel a naïve misunderstanding of the power of a Frangi filter: a high

anisotropy measure (and a large structureness measure ) will not in general identify the crests of a

ridge-like structure–it only will highlight that such a pixel is on a ridge-like structure at all. In

fact, the particular leading eigenvalue calculated in Section 2.2.4 actually increases as x moves

farther away from the crest. In general, the anisotropy measure will not necessarily be at a

maximum at the crest of the ridge, but instead, somewhere along it.

Similiarly, the vessel we we wish to identify can not be reasonably expected to behave as

perfectly as our toy example. There will likely be small aberrations in a ridgelike structure, such

as small divots or depressions in an overall ridge-like structure. Of importance in our data set later

(Section 7.1), there will be points where we seem to "lose" our ridgelike structure, but this is

simply due to an error in the sample.

Importantly, this formulation does not require λ1 to be approximately zero, just that the

curvature in the downward direction is much more significant than in the transverse direction.

Also the crest could be really flat (“hangar shaped”), in which case both are around zero.

At the crest of the ridge, we would actually expect both u1 and u2 to be around 0, whereas a point

somewhere between the crest and the “foot” of the ridge to contain the maximum u2. We will fix

this issue specifically by casting this as a multiscale problem in Chapter 5.

Two other ideas that could fix some other discrepancies mentioned above is to identify

these ridges on their own, or also where the “feet” are. We will discuss these ideas in Chapter 9.

3.2. Structureness Measure

There is another concern with using the pure ratio A := |λ1/λ2 | as an identifying feature of

ridgelike structures apart from the ones listed above. We could have |λ2 | � |λ1 | in a relative sense,

but still have λ2 ≈ 0. As a rather extreme example, we should certainly wish to differentiate a point

on the surface where λ2 ≈ 10−5 and λ1 ≈ 10−10 from another point where λ2 ≈ 10000 and λ2 = 0.1.
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A natural fix to differentiate these points is to introduce a “structureness” measure to

insure that there is in fact significant curvilinear activity at the point in question. Frangi used

S :=
√
(λ1)2+ (λ2)2, which is in fact the Frobenius norm of the Hessian matrix. Inclusion of the

structureness factor with an appropriately chosen parameter c should result in a high vesselness

measure only for regions of significant curvilinear content.

3.3. The Frangi Vesselness Measure

Our goal then is to attach a numerical measure to each pixel in the image that is large when

the anisotropy measure A and the structureness measure S is sufficiently large.

The form Frangi arrived at in Eq. (3.1) in which a factor of exp(· · · ) and (1− exp(· · · )) are

multiplied together are simply to ensure that the final vesselness measureV is largest when A is

small and S is large enough, with rapid decay in other situations.

Frangi further strengthened the filter by adding an additional case to Eq. (3.1), ensuring

that λ2 is not positive. If we are indeed at a curvilinear ridge, then it is a critical point, and we

need the second derivative of the surface in the maximal direction to be negative, which hasn’t

been accounted for as yet in our formulation of A and S – we wish (for our purposes) to only

identify when we are finding crests. A will still be small and S will still be large however if we

identify a “trough”.

The only perceivable difference is that the maximum normal curvature will be positive–we

are at a local minimum in the direction of u2. In situations where we wish to only identify ridges

(bright curvilinear structures), we simply exclude all points where there is not a negative curvature

in the maximal direction. Conversely, we could only seek to find valleys (dark curvilinear

structures) and thus require λ2 > 0, and set the vesselness measure to zero when λ2 < 0.

3.4. Choosing Parameters β and c

The parameters β and c are meant to scale so that the peaks of the anisotropy factor

exp(−A2

2β2 ) and the structureness factor (1− exp
(
−S2

2c2

)
) coincide enough to be statistically significant

at highly curvilinear structures, but rapidly decay in areas not associated with curvilinear content.

What values of these parameters are appropriate is ultimately dependent on the context of the
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problem.

For the default value of the structureness parameter c, Frangi suggested that half of (the

Frobenius norm of the) Hessian matrix is appropriate, simply because the minimum value of S is

zero, and its maximum value is exactly the maximum value of the Frobenius norm over the surface.

With this in mind we would like to introduce the scaling factor γ, so that c = γSmax. This

creates a minor annoyance though: although the anisotropy factor can certainly attain a value of 1,

if c is to take this suggested value, the maximum value of the structureness factor is somewhat

smaller than 1. In fact,

max{V} ≤ max
(
exp

(
−A2

2β2

))
max

((
1− exp

(
−S2

2(γSmax)2

)))
≤ max

{(
1− exp

(
−S2

2(γSmax)2

))}
=

(
1− exp

(
−(Smax)

2

2(γSmax)2

))
=

(
1− exp

(
−1
2γ2

)) (3.3)

Thus, when γ takes the suggested value of γ = 1/2, the above calculation suggests that the

maximum theoretical value that the Frangi filter could attain for any image is

max{V} ≤ 1− exp (−1) ≈ .8647. This (among other obvious reasons) certainly justifies Frangi’s

description of the vesselness measure as only “probability-like.” Still, we would like the filter’s

sensitivity to relative structureness to not have the effect of dampening the Filter as a whole, so we

will introduce a rescaling factor aγ, which is an explicit function of γ that rescalesV so that the

structureness factor has a maximum value of 1 regardless of choice of γ. Our modified Frangi

vesselness measure is thus

V(x0,y0) =


0 if λ2 > 0

aγ exp
(
−A2

2β2

) (
1− exp

(
−S2

2(γSmax)2

))
otherwise

(3.4)
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where, as before,

A :=
����λ1
λ2

���� , S :=
√
λ2

1 +λ
2
2 and aγ =

(
1− exp

(
−1
2γ2

))−1

and

|λ1 | ≤ |λ2 | are eigenvalues of the Hessian matrix at point (x0,y0). (3.5)

For β, Frangi suggested an innocuous intermediate point, β = 1/2 (and thus 2β2 = 1/2).

As we will show later, choosing the structureness parameter γ is rather important for the context

especially if the background (non-ridgelike structure) is significant and noisy. β should be

strengthened/relaxed depending on how dramatic the curvilinear structures are in comparison to

the rest of the image. We shall show empirically that contexts in which more ’bloblike’ structures

are known to be present than that for which the Frangi filter was originally designed, we will

benefit from a smaller choice of β.

Considering as the anisotropy measure |λ1/λ2 | ∈ [0,1], we can actually visualize how

much the anisotropy factor varies depending on our choice of β, as seen in Fig. 4.

We can theoretically choose any values 0 < β,γ <∞ for the two parameters. Two

particular limits are of theoretical interest.

As β→∞, the anisotropy factor tends to 1, and the Frangi filter will simply return the

value of the structureness factor. Similarly, as γ tends to 0, the structureness factor tends to 1, and

the Frangi filter will return the value of the anisotropy factor. We will use this fact in Chapter 8 to

provide a visual demonstration of each individual factor. The limits in the other directions are less

interesting; if either β→ 0 or γ→∞, their respective factors will tend to 0, making the entire

filter zero everywhere.

Fig. 5 is a similar presentation of the dependence of the structureness kernel on its

parameter γ. A convenient by-product of our redefinition of γ actually is that can group together S

with the Smax that appears in the denominator, allowing us to refer to a structureness ratio S/Smax.

In fact, we could perfectly well define the Frangi filter to be in terms of this ratio–though we

refrain presently since we acknowledge specific cases where c can be chosen to be fixed

26



FIGURE 4. Dependence of the anisotropy factor on its parameter.

independent of a calculated Smax value.

The ultimate choice of these parameters β and γ have the overall effect of tuning the

selectivity of the Frangi filter itself. In Fig. 6, we show the shape of our rescaled filter depends on

the anisotropy measure |λ1/λ2 | and the “structureness ratio” S/Smax for some illustrative choices

of β and γ. Each of these filters has been rescaled with aγ. The steepness of the first figure

suggests that the filter is in fact, stricter compared to the default parameter selection. Section 3.4

shows the filters continued strength over a much larger range of values, indicating that it may not

work effectively. In particular, choosing γ, and thus c, poorly will lead to quite a lot of noise. An

interesting manifestation of this is that the default implementation of the Frangi filter (Jones,

Oliphant, and Peterson 2001) chooses an seemingly arbitrarily fixed value for the structureness

parameter, perhaps causing many naïve applications of the Frangi filter to give a needlessly poor

result, simply becuase the filter was not correctly parametrized in relation to the image at hand.

We now take a quick tangent from our description of the Frangi filter to develop and justify

our “multiscale” approach.
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FIGURE 5. Dependence of the structureness factor on its parameter.
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(a) Strict

(b) Standard

(c) Loose γ

FIGURE 6. Strictness of Frangi filter based on parametrization.
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CHAPTER 4

LINEAR SCALE SPACE THEORY

Although the ideas presented above require differentiation of continuous surfaces, our

image is in fact composed of discrete pixels. That is, our previous discussions have been in terms

of an image as the continuous surface in Definition 2.2, rather than the more realistic discrete

pixel matrix as in Definition 2.1. The present section seeks to address this disconnect. Divided

differences can serve as an analogue of differentiation in discrete contexts, but our "derivative"

and any use of it is then completely dependent on the bias of our limited sampling of the “true” 3D

surface. Our main goal is to counter against some of the bias of our particular sampling. In

particular, we wish to not over-represent structures that are clear at our resolution without giving

appropriate weight to larger structures as well. Ideally, we would like statements we make about

higher order phenomena to be stable enough at least that we would arrive at the same conclusions

from analyzing a higher resolution image of the same surface. Koenderink (1984) argued that

"any image can be embedded in a one-parameter family of derived images, with resolution as the

parameter in essentially only one unique way" given a few of the so-called scale space axioms.

He, along with other independent efforts, showed that a small set of intuitive axioms imply that

any such family of images {Kσ} must satisfy the heat equation


∆K(x,y;σ) =

∂K
∂σ
(x,y;σ) for σ ≥ 0

K(x,y,0) = u0(x,y)
(4.1)

where u0 : R2→ R is the original image (viewed as a continuous surface), σ is the

resolution parameter, and K : R2→ R for each fixed σ.

This result is intuitive and desirable–we would anticipate a lower-resolution version of our

original image to represent a diffusion or “blurring” of the initial scales information. Much work

has been done to formalize this approach (Sporring 1997). This has resulted in various

formulations of a minimal set of axioms from which all other desirable properties of the scale

space can be derived, culminating eventually in the necessity and sufficiency of Eq. (4.1) itself.
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We will refrain from such an exhaustive development in the present text, but rather list some

desirable properties and outline the approach.

4.1. Properties/Axioms of Linear Scale Space Theory

To make matters manageable, we require the one-parameter family to be generated by an

operator on the original image:

{ K(x,y;σ) = Tσu0 | σ ≥ 0 , K(x,y,;0) = u0 } (4.2)

The following axioms are then requirements on what sort of operation Tσ should be.

Axiom 4.1 (Linear-shift and Rotational Invariance): We require that no position in the

original signal is favored. This is intuitive, as our operation should apply to any image fairly,

regardless of where content is found in the image, and cropping or rotating our initial image

should not affect resolution of the content.

Axiom 4.2 (Semigroup property): The semigroup property is simply that transforming the

original image by some resolution σ should have the same overall effect of two successive

transformations σ1 and σ2, i.e.

Tσu = Tσ1

(
Tσ2u

)
, σ = σ1+σ2 (4.3)

Axiom 4.3 (Continuity of Scale Parameter): There is no reason for the scale parameter to

be discrete; we may alter the resolution with whatever precision we desire. That is, we take the

resolution parameter σ to be any nonzero real number. Moreover, we require that the operator

behaves continuously with respect to the scale parameter.

The following requirement has great implication, and is also very successful in encoding

our intuitive sense of resolution.

Axiom 4.4 (Causality Condition): The causality condition is the one that, as resolution

decreases, no finer detail is introduced into the image. That is, as the scale increases, there will be

31



no creation of local extrema that did not exist at a smaller scale.

To make this more precise, if K(x0,y0;σ0) (that is, a point (x0,y0) at some particular

resolution σ0) is a local maximum at that resolution, then an increase in scale cannot make this

maximum more prominent, i.e.


∇K(x0,y0;σ0) = 0

∆K(x0,y0;σ0) < 0
=⇒ K(x0,y0;σ1) ≤ K(x0,y0;σ0) ∀ σ1 ≥ σ0 (4.4)

Similarly, if K(x0,y0;σ0) is a local minimum (with respect to space), then an increase in

scale cannot make such a valley more profound, i.e.


∇K(x0,y0;σ0) = 0

∆K(x0,y0;σ0) > 0
=⇒ K(x0,y0;σ1) ≥ K(x0,y0;σ0) ∀ σ1 ≥ σ0 (4.5)

This encodes our intuition that no image feature should be sharpened by a descrease in 

resolution. The only result is a (non-strictly) monotonic blurring of the image as scale parameter 

σ tends to infinity.

4.2. Sufficiency of the Gaussian Kernel

Although we will omit it here, the above requirements are actually sufficient in proving not 

only that the operator Tσ is a convolution, but that the heat equation described in Eq. (4.1) must 

hold. This has been shown in various ways, both by Koenderink (1984), Babaud et al. (1986), as 

well as Lindeberg (Sporring 1997). Of course, once Eq. (4.1) has been established, it is 

straightforward to show that

K(x,y;σ) = Tσu0 = Gσ?u0 where Gσ :=
1

2πσ2 e(−|x |
2/(2σ2)) (4.6)

is a solution. That is, the family can be generated by convolution with a Gaussian kernel.

Lindeberg and others furthered this by arguing that the continuity of Tσ as σ approaches zero

ultimately implies that convolution by a Gaussian is the unique operator that generates this scale
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space.

4.3. Scale Spaces Over Discrete Structures

The above developments from scale space axioms have since been recast in terms of

discrete structures, rather than continuous surfaces as above (Lindeberg 1990). However, we’ve

chosen to present the above in their original continuous surface for clarity of argument. The

discrete case is not much different– we still have the same axioms, and it can be shown that the

family of scaled images must simply satisfy a discrete version of the heat equation. However,

viewing our actual image Definition 2.1 as a sample of a continuous surface Definition 2.2, we

might expect our convolution by the Gaussian to “commute” with our supposed sampling of the

continuous signal, or even that we could simply convolve our discrete signal with a discretely

sampled Gaussian kernel. The latter in fact, seems to be an often implemented interpretation of

scale space theory.

To be clear, the “sampled” 1D Gaussian Kernel we have in mind might be given by:

Definition 4.1 (Sampled Gaussian Kernel and Generated Family):

g(n;σ) =
1

2πσ
e−n2/2σ , −∞ < n <∞

and the resulting (1D) convolution would be given by

K(x,σ) =
∞∑

n=−∞

g(n;σ) f (x−n) for x ∈ Z, σ > 0

Lindeberg (1990; 1988) also demonstrated that the sampled Gaussian kernel violates not only

semigroup property (Axiom 4.2), but–much less forgivably–the causality property (Axiom 4.2).

There is absolutely no guarantee that convolution with a sampled Gaussian kernel will not create

“spurious” structures as resolution increases.

Fortunately, Lindeberg was immediately able to remedy this by providing a discrete

analogue of the Gaussian kernel, which does satisfy Axiom 4.4 and Axiom 4.2:
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Definition 4.2 (Discrete Gaussian Kernel): The discrete Gaussian kernel, which can be

shown to be a suitable generator for scale space, is given by

T(n;σ) = e−ασ In(ασ), In(σ) = I−n(σ) = (−1)nJn(iσ) n ≥ 0,σ,α > 0 (4.7)

where In are the modified Bessel functions of integer order based on the ordinary Bessel functions

Jn, i.e.

In(x) =
∞∑

m=0

1
m!(m+n)!

( x
2

)2m+n
, n ≥ 0

where we have taken the liberty of simplifying the typical definition (Abramowitz and Stegun

1964) (which involves the gamma function), since we only desire Bessel functions of integer

order. The parameter α above is simply an optional scaling parameter which is simply set to 1

hereforth. The derived family of 1D signals is then given by

K(x,σ) =
∞∑

n=−∞

T(n; t) f (x−n) for x ∈ Z, t > 0 (4.8)

The compatibility of scale space theory and derivatives on discrete structures and

extension to two dimensions was also demonstrated by Lindeberg (1993; 1998). In particular, we

may take derivatives of the convolutions of our discrete images using, say, a local central

difference. Lastly, the 2D version of the family given in Eq. (4.8) can be obtained by independent

convolution of its dimensions (i.e. it is separable).
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CHAPTER 5

THE MULTISCALE FRANGI FILTER AND OTHER VARIATIONS

With the notion of scale space established, we return to the task of computing the Frangi

filter for discrete images. We repeat our final definition of the Frangi filter here, now encoding an

explicit choice of scale, σ.

Vσ(x0,y0) =


0 if λ2 > 0

aγ exp
(
−A2

2β2

) (
1− exp

(
−S2

2(γSmax)2

))
otherwise

(5.1)

where

A :=
����λ1
λ2

���� , S :=
√
λ2

1 +λ
2
2 and aγ =

(
1− exp

(
−1
2γ2

))−1

(5.2)

and |λ1 | ≤ |λ2 | are eigenvalues of the Hessian matrix at point (x0,y0) at scale σ.

A central point of importance here is that certain ridgelike structures will be more

prominent at different scales. Fig. 7 and Fig. 8 demonstrate this effect for two different placental

samples. Here, a Frangi filter is applied to the sample at eight different scales ranging from small

to large. The vesselness response is greater at smaller scales for smaller width vessels and smaller

for larger width vessels. When the scale is large, the reverse is true: response to small vessels is

nonexistent, and larger scales are prominent. A full treatment of applying the Frangi filter to these

samples begins in Chapter 7.

5.1. The Multiscale Frangi Filter

Since our eventual goal is a complete extraction of the vasuclar network, a multiscale

approach is the natural one. Considering the dependence of the Frangi filter’s response on choice

of scale as demonstrated in Chapter 3, we wish to probe at multiple scales regions that would

receive a high vesselness score at any range and somehow merge the result.

Frangi (1998) approached this problem by simply taking the maximum vesselness measure
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FIGURE 7. Example scalewise Frangi output (plate and inset) (example 1).
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FIGURE 8. Example scalewise Frangi output (plate and inset) (example 2).
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over all scales. Thus the multiscale Frangi vesselness score at the pixel (x0,y0) would be

Vmax(x0,y0) :=max
σ∈Σ
{Vσ(x0,y0)} (5.3)

where Σ := {σ0,σ1, · · · ,σn} is the set of n scales at which to probe, andVσ is the Frangi

vesselness measure at scale σ for the pixel (x0,y0), as given in Eq. (5.1). Occasionally it will be

useful to refer to the scale at whichVmax occurs for a particular pixel, so we analogously define

Vargmax(x0,y0) := argmax
σ∈Σ

{Vσ(x0,y0)} (5.4)

The set of scales Σ should be chosen to be representative enough of all scales where meaningful

content is expected to be found. Unfortunately this appropriate range of scales may not be known

a priori. We will address this issue in Chapter 9.

Finally, we may also wish to deal with the unmerged vesselness measures as a whole, i.e.

without taking a maximum at all. In this case, we will refer toVΣ, the 3D matrix of shape

n×(M ×N), where M and N are the dimensions of the image matrix I as in Definition 2.1.

VΣ(x0,y0;σ) :=Vσ(x0,y0) (5.5)

After the maximization in Eq. (5.3), we are left with a matrix with as many pixels as the

original image, all with a vesselness measure between 0 and 1 for each pixel in the image.

At this point, Frangi (1998) refrained from explicitly interpreting the score assigned by

Eq. (5.3); that is–whether a particular pixel (x0,y0) in the image definitely respresents a vessel or

not based on its Frangi score. Instead, he cautioned that the result should not be used as a

segmentation method alone; moreover, the width of the vasculature cannot be determined

rigorously from the Frangi filter, as discussed in Chapter 3.

Nonetheless, we wish to demonstrate the usefulness of the Frangi filter within our image

domain towards segmentation. We should at least expect that a well-tuned Frangi filter on an
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appropriately registered and denoised sample should assign its highest scores to vessel pixels. We

can select these strong Frangi responses and use them as seeds for some subsequent algorithm.

We will discuss methods of harnessing the Frangi result to the task of segmentation in Chapter 9.

We briefly discuss two variations on the Frangi filter which will prove useful in turn.

5.2. The Signed Frangi Filter

We finally introduce the novel (yet straightforward) notion of the signed Frangi filter. As

will be shown in Chapter 9, we can befefit from simultaneously calculate for a dark background

and a light background. Since the Frangi filter normally throws away any response where λ2 < 0 (if

dark curvilinear features are targeted) or λ2 > 0 (if light curvilinear features are targeted), we lose

no computation time at all (although we must store more results). After computing the multiscale

result, we can easily separate these into a positive and a negative strain, which we will denote

V
(+)
max andV

(−)
max. OurV

(+)
max is the same as ourVmax before, andV(−)max is the same result as if we

had taken the Frangi filter while only looking for the opposite type (light/dark) curvilinear feature,

i.e. by changing the piecewise case of Eq. (3.1) to λ2 > 0. PlottingVmax over a scale of [−1,1]

demonstrates an interesting effect, as shown in Fig. 29. Whereas the Frangi filter generally is not

reliable in terms of accurately predicting widths of trough-like (or ridge-like) curvilinear features,

we can get a sense of the width of the vessel in our particular application by simulataneously

consideringV(+)max andV
(−)
max. We will develop a method of utilizing this observation in Chapter 9.

All that remains to describe mathematically is how to actually calculate the derivatives of

our images and deal with the ultimately discrete nature of our samples.

5.3. Weingarten-based Frangi Filter

As a final note, even though the Frangi filter uses the eigenvalues of the Hessian matrix as

approximations to principal curvatures, we could in fact calculate the eigenvalues of the

Weingarten map instead, as given in Eq. (2.24). Indeed, our development of the Frangi filter in

Chapter 3 would proceed identically with λ2 and λ1 being the true principal curvatures of the

surface. In the case of identifying bright curvilinear structures, we would still like zero filter

response when λ2 > 0, as this would imply that the surface has positive curvature at that point,
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(a) Raw Sample (b)Vmax (Hessian-based) (c)Vmax (Weingarten-based)

FIGURE 9. Comparing Hessian-based and Weingarten-based Frangi filter.

indicating a possible valley. Similarly, if we are seeking dark curvilinear structures, we would

want to exclude points where λ2 < 0, as dark curvilinear structures should not have negative

maximum curvatures. Although we retain our focus on the more classical Hessian-based Frangi

filter for the remainder of our efforts, we do offer one visual comparison betweenVmax of a

Hessian-based Frangi filter andVmax of a Weingarten-based Frangi filter in Fig. 9. Unfortunately,

time did not permit further investivation the Weingarten-based Frangi filter within the scope of

this project, but such an effort seems to be a very promising future direction of research.
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CHAPTER 6

FFT-BASED DISCRETE DERIVATIVES

According to Section 4.3, we may calculate derivatives of our structure by calculating a

gradient on our convolved image. Our method of calculating the gradient of a matrix uses a

second-order accurate central difference (Fornberg 1988).

We note in passing that we may take the derivative of the Gaussian kernel and then

convolve it, and the effect will be the same as if we had taken the derivative subsequently

(Gonzalez and Woods 2002). This could offer some computational speedup if we wish to run this

procedure on many samples and fixed scale sizes. For the time being, we will convolve first,

although our method will differ from standard convolution.

6.1. Fourier Transforms

In practice, the convolutions described above are very slow for large scales (σ), as the size

of the kernel is very large. Instead, we will perform a fast Fourier transform, which requires only

O
(
N · log2 N

)
operations for a one dimension signal of length N , as compared to the N2

operations required of a conventional discrete Fourier transform (Gonzalez and Woods 2002). We

will briefly outline the theory of Fourier transforms.

6.1.1. Fourier Transform of a Continuous 1D Signal

A periodic signal (real valued function) f (t) of period T can be expanded in an infinite

basis as follows:

f (t) =
∞∑
−∞

cnei 2πn
T t , cn =

1
T

∫ T/2

−T/2
f (t)e−i 2πn

T t dt (6.1)

The Fourier transform of a 1D continuous function is defined by

F(µ) := F { f (t)} =
∫ ∞

−∞

f (t)ei2πµdt (6.2)
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An inverse transform will then recover our original signal:

f (t) = F −1 {F(µ)} =
∫ ∞

−∞

F(µ)ei2πµt dt (6.3)

Together, Eq. (6.2) and Eq. (6.3) are referred to as the Fourier transform pair of the signal

f (t).

6.1.2. Fourier Transform of a Discrete 1D signal

We wish to develop the Fourier transform pair for a discrete signal, following Gonzalez

and Woods (2002). We frame the situation as follows: a continuous function f (t) is represented as

the sampled function f̃ (t) by multiplying it by a sampling (or impulse) function, an infinite series

of discrete impulses with equal spacing ∆T :

s∆T (t) :=
∞∑

n=−∞

δ[t −n∆T] , δ[t] =


1 , t = 0

0 , t , 0
(6.4)

where δ[t] is the discrete unit impulse.

The discrete sample f (t) is then constructed from f (t) by

f̃ (t) = f (t)s∆T (t) (6.5)

From this we can calculate F̃(t). Given the discrete signal f̃ , we construct the transform

F̃(µ) = F { f̃ (t)}. by expanding f̃ in the same infinite basis as the continuous case.

F̃(µ) =
∞∑

n=−∞

fne−i2πµn∆T , fn = f̃ (n) = f (n∆T) (6.6)

The transform is a continuous function with period 1/∆T .

6.1.3. 2D DFT Convolution Theorem

Theorem 6.1 (2D DFT Convolution Theorem): Given two discrete functions are sequences

with the same length. f (x,y) and h(x,y) for integers 0 < x < M and 0 < y < N , we can take the
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discrete fourier transform (DFT) of each, where D{· · · } denotes the DFT.

F(u,v) :=D{ f (x,y)} =
M−1∑
x=0

N−1∑
y=0

f (x,y)e−2πi( uxM +
vy
N ) (6.7)

H(u,v) :=D{h(x,y)} =
M−1∑
x=0

N−1∑
y=0

h(x,y)e−2πi( uxM +
vy
N ) (6.8)

and given the convolution of the two functions

( f ?h) (x,y) =
M−1∑
m=0

N−1∑
n=0

f (m,n)h(x−m,y−n) (6.9)

then ( f ?h) (x,y) and MN ·F(u,v)H(u,v) are transform pairs, i.e.

( f ?h) (x,y) =D−1 {MN ·F(u,v)H(u,v)} (6.10)

The proof follows from the definition of convolution, substituting in the inverse-DFT of f

and h, and then rearrangement of finite sums.
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Proof:

( f ?h) (x,y) =
M−1∑
m=0

N−1∑
n=0

f (m,n)h(x−m,y−n) (6.11)

=

M−1∑
m=0

N−1∑
n=0

©«
M−1∑
p=0

N−1∑
q=0

F(p,q)e2πi(mp
M +

nq
N )ª®¬

(
M−1∑
u=0

N−1∑
v=0

H(u,v)e2πi
(
u(x−m)

M +
v(y−n)

N

) )
(6.12)

=

(
M−1∑
u=0

N−1∑
v=0

H(u,v)e2πi( uxM +
vy
N )

) ©«
M−1∑
p=0

N−1∑
q=0

F(p,q)

(
M−1∑
m=0

e2πi
(
m(p−u)

M

) ) (
N−1∑
n=0

e2πi
(
n(q−v)

N

) )ª®¬
(6.13)

=

(
M−1∑
u=0

N−1∑
v=0

H(u,v)e2πi( uxM +
vy
N )

) ©«
M−1∑
p=0

N−1∑
q=0

F(p,q)
(
M · δ̂M(p−u)

) (
N · δ̂M(q− v)

)ª®¬
(6.14)

=

(
M−1∑
u=0

N−1∑
v=0

H(u,v)e2πi( uxM +
vy
N )

)
·MNF(u,v) (6.15)

= MN ·
M−1∑
u=0

N−1∑
v=0

F(u,v)H(u,v)e2πi( uxM +
vy
N ) (6.16)

= MN · D−1 {FH} (6.17)

where

δ̂N (k) =


1 when k = 0 mod N

0 else
(6.18)

Above, we make use of the following lemma

Lemma 6.2 : Let j and k be integers and let N be a positive integer. Then

N−1∑
n=0

e2πi
(
n(j−k)

N

)
= N · δ̂N ( j − k) (6.19)

Proof:
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Consider the complex number e2πi( j−k)/N . Note first that this is an N-th root of unity, since

(
e2πi( j−k)/N

)N
= e2πi( j−k) =

(
e2πi

) ( j−k)
= 1( j−k) = 1

In other words, e2πin( j−k)/N is a root of zN −1 = 0, which we can factor as

zN −1 = (z−1)
(
zn−1+ · · ·+ z+1

)
= (z−1)

N−1∑
n=0

zn. (6.20)

thus giving us

0 =
(
e2πi( j−k)/N −1

) N−1∑
n=0

e2πin( j−k)/N (6.21)

To prove the claim in Eq. (6.19), we consider two cases: First, if j − k is a multiple of N ,

we of course have e2πin( j−k)/N =
(
e2πi )n( j−k)/N

= 1 and thus the left side of Eq. (6.19) reduces to

N−1∑
n=0

(
e2πi

)n( j−k)/N
=

N−1∑
n=0
(1) = N

In the case that j − k is not a multiple of N , we refer to Eq. (6.21). The first factor is not

zero since,
(
e2πi( j−k)/N

)
, 1 (simply since ( j − k)/N is not an integer), and thus it must be that the

second factor is 0:
N−1∑
n=0

(
e2πi( j−k)/N

)n
= 0

We can combine these two cases by invoking the definition of Eq. (6.18), giving us the

result.

6.2. The Fast Fourier Transform

As noted, the above result applies to the Discrete Fourier Transform. We actually achieve a

convolution speedup using a Fast Fourier Transform (FFT) instead. We follow the developments

of Gonzalez and Woods (2002). For clarity, we present the following theorems which allow a

framework to calculate a 2D Fourier transforms quickly.

First, a 2D DFT may actually be calculated via two successive 1D DFTs, which can be

45



seen through a basic rearrangement, as follows:

F(µ,ν) =
M−1∑
x=0

N−1∑
y=0

f (x,y)e−i2π(µx/M+νy/N) (6.22)

=

M−1∑
x=0

e−i2πµx/M


N−1∑
y=0

f (x,y)e−i2πνy/N
 (6.23)

=

M−1∑
x=0

e−i2πµx/M F x{ f (x,y)} (6.24)

= F y{F x{ f (x,y)}} (6.25)

where F x′ refers to the 1D discrete Fourier transform of the function with respect to the variable

x′ only.

Thus, to calculate the Fourier transform F(u,v) at the point u,v requires the computation of

the transform of length N for each iterated point x ∈ 0, · · · ,M −1. Thus there are MN complex

multiplications and (M −1)(N −1) complex additions in this sequence required for each point u,v

that needs to be calculated. Overall, for all points that need to be calculated, the total order of

calculations is on the order of (MN)2. We’ll also mention that the values of e−i2πm/n can be

provided by a lookup table rather than ad-hoc calculation.

We now show that a considerable speedup can be achieved through elimination of

redundant calculations. In particular, we wish to show that the calculation of a 1D DFT of signal

length M = 2n,n ∈ Z+ can be reduced to calculating two half-length transforms and an additional

M/2 = 2n−1 calculations.

To simplify our notation we will use a new notation for the Fourier kernels/basis functions.

Let the 1D Fourier transform be given by

F(u) =
M−1∑
x=0

f (x)Wux
M , where Wm := e−i2π/m (6.26)

We’ll define K ∈ Z+ : 2K = M = 2n (i.e. K = 2n−1).

46



We use this to rewrite the series in Eq. (6.26) and split it into odd and even entries in the

summation

F(u) =
2K−1∑
x=0

f (x)Wux
2K (6.27)

=

K−1∑
x=0

f (2x)Wu(2x)
2K +

K−1∑
x=0

f (2x+1)Wu(2x+1)
2K (6.28)

We’ll get a few identities out of the way (where m,n,x ∈ Z+ arbitrary).

W (2n)
(2m) = e

−i2π(2m)
2m = e

−i2πm
n =Wn

m (6.29)

W (u+m)x
m = e

−i2π(u+m)x
m = e

−i2πunx
m e

−i2πmx
m = e

−i2πux
m (1) =Wux

m (6.30)

W (u+m)
2m = e

−i2π(u+m)
2m = e

−i2πux
2m e−iπ =Wu

2me−iπ = −Wu
2m (6.31)

Thus we can rewrite Eq. (6.28) as

F(u) =
K−1∑
x=0

f (2x)W2ux
2K +

K−1∑
x=0

f (2x+1)W2ux
2K Wu

2K (6.32)

=⇒ F(u) =

(
K−1∑
x=0

f (2x)Wux
K

)
+

(
K−1∑
x=0

f (2x+1)Wux
K

)
Wu

2K (6.33)

The major advance comes via using the identities Eq. (6.29) to consider the Fourier

transform K frequencies later :

F(u+K) =

(
K−1∑
x=0

f (2x)W (u+K)x
K

)
+

(
K−1∑
x=0

f (2x+1)W (u+K)x
K

)
W (u+K)

2K (6.34)

=⇒ F(u+K) =

(
K−1∑
x=0

f (2x)Wux
K

)
−

(
K−1∑
x=0

f (2x+1)Wux
K

)
Wu

K (6.35)

Comparing Eq. (6.33) and Eq. (6.35), we see that the expressions within parentheses are identical.
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What’s more, these parentetical expressions are functionally identical to discrete fourier

transforms themselves. Let’s notate them as follows:

Du{ feven(t)} :=
K−1∑
x=0

f (2x)Wux
K

Du{ fodd(t)} :=
K−1∑
x=0

f (2x+1)Wux
K (6.36)

If we’re calculating an M point transform (i.e. we’re wishing to calculate F(1), ...,F(M)),

once we’ve calculated the first K discrete frequencies (i.e. F(1), · · · ,F(K)) we may simply reuse

the two values we’ve calculated in Eq. (6.36) to calculate the next F(K +1), ..,F(K +K) = F(M).

Since each expression in parentheses involves K complex multiplications and K −1 complex

additions, we are effectively saving K(2K −1) calculations in computing the entire spectrum

F(1), ..,F(M). When M is large, the payoff is undeniable.

In fact, through counting calculations and then doing a proof by induction, we can show

that the effective number of calculations is given by M log2 M . Of course, since Eq. (6.36) are

DFTs themselves, there’s nothing stopping us from reiterating this procedure; if M is substantially

large, we can just as easily repeat this process a few times. Of course, our development was for

1D. We can extend this to 2D by taking note of Eq. (6.22). Finally we note the inverse DFT can

actually be found via a DFT of the complex conjugate of the original signal, and of course we may

translate that operation to a FFT.

6.3. Calculating the Hessian via FFT: A Demonstration

Efficient implementation of the Frangi filter ultimately relies on performing a 2D Gaussian

blur in frequency space. Here we demonstrate that our FFT implementation of Gaussian blur is

commensurate with other implementations.

In Fig. 10, we demonstrate the compatibility of standard convolution and FFT convolve.

Each row corresponds to a different scale at which Gaussian blurring occurs. Column (a) is

standard convolution with a sampled Gaussian kernel, column (b) is FFT-convolution with a

Gaussian kernel, and column (c) is a FFT-convolution with the “discrete Gaussian kernel”. In
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TABLE 1. MSE and MAE of One-pass vs. Two-pass Gaussian Blur.

convolution implementation MSE MAE
spatial convolution, sampled kernel (A) 0.00054426 0.02015643
FFT convolution, sampled kernel (B) 0.00055205 0.02029916
FFT convolution, discrete kernel (C) 0.00054406 0.02015336

column (d), the 1D discrete Gaussian kernel (in green) is plotted against the sampled continuous

Gaussian kernel (in black). Note that each of the images in the first three columns are scaled the

same.

We also demonstrated the “semigroup property” of Gaussian kernel convolution. For a

large scale (σ = 45) Gaussian blur ((a) - standard convolution with sampled kernel, (b) FFT with

sampled kernel, (c) FFT with discrete kernel), the top row is one round of Gaussian blur with

σ = 45 and the bottom row is two progressive passes of Gaussian blur (σ1 = 10,σ2 = 35). The

mean squared error and mean absolute error between the one-pass and two-pass versions are

outputted in Table 1. Code for this demo can be found in hfft.semigroup_demo. The discrete

kernel performs very slightly better than the sampled versions. We originally attempted this

demonstration with a much larger sigma (say σ = 150) and multiple iterations, but unfortunately

multiple passes cause the “noise” from zeroing out around the boundaries to become very

noticable after several iterations. Here, we’ve opted to crop out a radius of pixels from around the

edges equal to the standard deviation of the Gaussian before we calculated the MAE or MSE, to

reduce noise from the border.

We further confirm the commensurate nature of Gaussian blur techniques by comparing

the three techniques on a placental image and using each to calculate Frangi targets. The code can

be found in hfft_accuracy.py. In Tables 2 to 5 we compare the mean squared error of a single

image blurred (A) with standard spatial convolution, (B) with FFT sampled Gaussian kernel, and

(C) with the discrete kernel. We see that the standard convolution and discrete convolution are

very similar, while the sampled discrete Gaussian is off by two orders of magnitude, but still

reasonably small. We further confirm these by viewing the grayscale intensity of the image from 0
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FIGURE 10. Compatibility of Gaussian convolution strategies.
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TABLE 2. MSE of Gaussian Blurs (σ = 0.3).

A B C
A - 1.296e-03 6.772e-06
B - - 1.247e-03
C - - -

TABLE 3. MSE of Frangi Scores σ = 0.3.

A B C
A - 4.256e-06 5.537e-08
B - - 4.337e-06
C - - -

to 1 and the Frangi targets themselves across an arbitrarily chosen horizontal cross section of the

image Fig. 11, the peaks of the Gaussian blurred image all still occur at the same places, as do the

Frangi responses. We repeated this procedure up to σ = 90 and found a situation similar to σ = 5;

it was only in very small scales where there was any noticeable difference at all.

Finally, we wish to demonstrate the point of this comparison–that FFT − based

convolution is much faster than spatial convolution. We took a much larger sample (2200×2561)

and timed each method of convolution (average of three trials) for a large number of samples:

logarithmic between σ = 1 and σ = 128 with 32 steps. We plot the result in Fig. 12. It shows that

the convolution time seems to at least linearly increase with the size of the kernel, whereas FFT is

independent of choice of scale. This is to be expected, as convolving with a Gaussian kernel in

spatial coordinates requires a greater number of calculations as σ increases, whereas the size of

the kernel does not change in our frequency space convolution.

TABLE 4. MSE of Gaussian Blurs of an Image (σ = 5).

A B C
A - 9.012e-06 8.629e-09
B - - 9.031e-06
C - - -
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FIGURE 11. Image cross-section of Gaussian-blurred (grayscale) placental sample.

TABLE 5. MSE of Frangi Scores σ = 5.

A B C
A - 9.388e-05 8.383e-07
B - - 9.599e-05
C - - -
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FIGURE 12. Runtime comparison of Gaussian convolution implementations.
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CHAPTER 7

RESEARCH PROTOCOL

We ultimately perform a multiscale Frangi prefilter on a subset of 201 color images of

placental samples. We describe here the sample set and the preprocessing steps we take prior to

performing the multiscale filter.

7.1. Samples / Image Domain

The 201 samples are from a larger private database provided by the National Children’s

Study, which had been prepared for a different study (Chang et al. 2017). These 201 samples are

those that have a ground truth provided, although the actual database is much larger with many

untraced samples. The placental samples were cleaned and formalin-fixed prior to their being

photographed (Almoussa et al. 2011), and their placental chorionic surface vascular networks

(PCSVN) manifest as primarily dark curvilinear structures. The samples are provided as XCF files

(the native project file for the image processing software GIMP) and contain four major layers.

7.1.1. A Representative Sample

The layers together give a hand tracing of the vascular network and perimeter. A sample of

overlaid layers in a representative sample (with ID number “BN0164923”) is given in Fig. 13.

Each sample is roughly 1954x1200 pixels with some occasional variation. In Fig. 13, we

see these four layers of a characteristic sample. Fig. 13a is the base image. A cleaned,

formalin-fixed placenta is placed on a table with a camera a fixed distance away, and a ruler and

penny (presumably for redundancy) are placed nearby to aid registration and calibration of the

resolution. The resolution of each sample is roughly 46 pixels per centimeter, with some

variation. Fig. 13b is a tracing (in green) of the perimeter of the placenta. The umbilical cord

insertion point (UCIP) is notated in yellow. Two cyan marks are placed on consecutive centimeter

markings on the ruler. The dots are enlarged and shown as a darker blue in the figure for clarity.

Fig. 13c and Fig. 13d are each hand traces of the PCSVN, with a layer for each the arteries and

veins. These layers are simultaneously overlain on the base image in Fig. 13e, with the arterial

trace on top, just as the arteries generally lay on top of the veins in the samples themselves. In
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(a) Fixed Placental Sample (b) Perimeter tracing and UCIP

(c) Arterial tracing (d) Venous tracing

(e) Total Vascular Network

FIGURE 13. A representative placental sample and tracing.
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TABLE 6. Vessel Width Color Code for Manual Tracing Protocol.

vessel width color (hex value) approximate color
3 pixels #ff006f magenta
5 pixels #a80000 dark red
7 pixels #a800ff purple
9 pixel s #ff00ff light pink
11 pixels #008aff blue
13 pixels #8aff00 green
15 pixels #ffc800 gold
17 pixels #ff8a00 orange
19 pixels #ff0015 bright red

these traces, the coloration of each vessel corresponds its the reported diameter. The diameters are

binned into 9 discrete widths, odd integers from 3 to 19 pixels. Vessels of smaller diameter are

either binned to three or (quite frequently) left untraced. The correspondence between pencil

color and (binned) vessel width used in the tracing protocol is given in Table 6.

The task of creating these samples, in particular the tracing and estimation involved in

creating Fig. 13c and Fig. 13d is very labor intensive–requiring between 4 and 8 hours to trace a

single sample. A closer look at many of the samples often reveals that a great deal of subjectivity

in providing this “ground truth,” as it is not often clear what the underlying truth really is. Often

it’s hard to see where the vein is, vascular networks are obscured by the umbilical stem, the blood

in the vessels dries unevenly or ruptures, and the vessel seems to disappear momentarily. These

situations and more will be discussed in Section 8.2, where we will demonstrate how the Frangi

filter reacts to these problem areas. Our efforts at the eventual task of total network completion

must deal with these shortcomings and, in some circumstances, make subjective decisions like the

manual tracer did.

7.1.2. Knowns and Unknowns

Since our final goal is a fully automated procedure, we wish to simply operate on the

placental sample itself, without any understanding of its provided tracing (except for judging the

strength of our algorithm); our goal is to develop an algorithm that can produce a “ground truth”
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tracing similar to Fig. 13e or Fig. 14d without any user intervention.

For our purposes however, we will concede and provide a limited amount of information

from the tracings, namely the provided placental perimeter (shown in green in Fig. 13). In

Section 7.2.1 we will describe a simple edge finding algorithm that allows us to estimate the

perimeter in Fig. 13b. Unfortunately we achieve a subpar result on a small subset of

images–roughly 7 of the 201 total images–using our currently implemented algorithm, and in such

cases will revert to using the reported perimeter from the ground truth.

Finally, we will consider the location of the umbilical insertion point as a “known”, as the

vessels around it are frequently impossible to see and we wish to exclude them from

consideration. It is not unreasonable, however, to consider this to be a known–in future

preparations of samples, we could simply require that this point be centered in image in a

predictable location prior to the picture being taken. Furthermore, we suggest that we can avoid

this in the future by using an algorithm to find the umbilical cord stump and mask that region.

Such an algorithm is certainly reasonable, although we were not able to implement something that

worked on all images in a uniform fashion. Noise from the umbilical stump, if not addressed, will

affect the fidelity of our filter. We will discuss this further in Section 8.2.

7.2. Data Cleaning and Preprocessing

Building a sample suitable for use in our algorithm from Fig. 13 is relatively simple. We

zero outside the boundary of the plate (so as to not waste computational time calculating the

differential geometry of a ruler, say), and also generate a binary mask to identify the plate. Finally,

our vessel layers are combined and given as a binary trace, which we will use later for scoring. An

example of the preprocessed samples used by the algorithm are given in Section 7.2.

These procedures are performed automatically on the 201 images in our data set using a

custom GIMP plug-in, which performs various “bucket fill” operations, layer mergings, and

thresholdings.

As a point of technicality, the grayscale image in Fig. 14c is not actually produced directly

by the extractor plug-in, but created when the 3 channel RGB image Fig. 14b is imported at the
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(a) Background mask (in white) (b) Sample with background removed

(c) Grayscale (d) Trace / “Ground Truth”

FIGURE 14. Preprocessed files from an NCS sample.
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(a) Raw (traced mask) (b) Raw (watershed mask) (c)Vmax (traced mask) (d)Vmax (watershed mask)

FIGURE 15. Automated placental perimeter detection.

start of the algorithm. This grayscale conversion is simply done for ease of analysis on the sample:

although the Frangi filter is designed for arbitrary N-dimensional input (Frangi et al. 1998), an

image with three color channels does not have 3 spatial dimensions. We therefore simply combine

the information in three channels using the well-known and oft-implemented ITU-R 601-2 luma ,

or “luminance” transform (Jones, Oliphant, and Peterson 2001):

L =
299
1000

R+
587
1000

G+
114
1000

B (7.1)

It should be noted that this choice is not requisite–several other attempts have opted to use the

image’s green channel instead (Almoussa et al. 2011) and (Huynh 2013). Preliminary and

periodical rechecking has not indicated that such a conversion has any benefit over the luminance

transformation for our image domain, although other placental samples with a different

preparation method or color profile might benefit from it.

7.2.1. Placental Perimeter Detection and Background Masking

As mentioned above, expect for a few small images, we estimate the perimeter of the

placental plate from the raw image, rather than using the ground truth’s traced perimeter. Most

notably, the placental plate often includes includes a small V-shaped cuts in the placental plate.

The traced placental perimeter often overlooks these regions and opt for a more convex shape. In

Fig. 15, we showcase the effect of using our automated approach versus using the ground truth
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mask. The first two images demonstrate the Notably, this prevents the white background leading

to false positives at the edge of the cut. To find the placental plate,we take the gradient of the raw

sample’s green channel with a very small scale σ = .01 to identify very small and sharp edges.

We then mark the top right pixel, which is certainly outside the placental plate, with a background

marker, and we label any points where the gradient is above its mean value as foreground. We

then perform a watershed of the gradient given these markers and then perform a binary erosion of

the result with radius 15 to regularize the result (Walt et al. 2014; Gonzalez and Woods 2002).

From this, we grab the largest foreground object, which will inevitably be the placental plate.

Unfortunately, there are 7 of the 201 samples for which this procedure fails, typically due to poor

contrast at the edge of the placental plate. In the case of these samples, we revert to simply using

the traced outline of the placenta as given by the tracing protocol.

7.2.2. Boundary Dilation

All images are grayscale, M,N pixels as a masked array, where pixels outside of the

placental region are masked so they will not be considered by the algorithm. However, some

standard implementations of algorithms, namely numpy.gradient and scipy.signal.convolve2d are

not designed to handle masked regions. Although it would be potentially useful to adapt such

methods in a way to, say, calculate a gradient or perform a convolution by a “reflection” across an

arbitrary closed boundary (as opposed to the edge of the image matrix), we opted instead to “zero

out” unwanted background pixels and simply exclude affected areas from consideration. This

exclusion could be achieved by simply dilating the mask, but we opt to achieve it in a much more

resource efficient manner: we iterate through an array of indices for the image where the boundary

occurs and simply extend the mask R pixels in each direction (like a giant plus sign). Since the

boundary of the placental plate forms a closed loop, the effect is very similar to convolving with a

disk of radius R, but is much faster.

Fig. 16 shows the effect of this so-called “boundary dilation.” We show the output of the

Frangi filter with σ = 3. A border radius of 25 is chosen to exaggerate the effect. The first row

shows the unaltered boundary of the sample (left) and the sample after boundary dilation (with
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FIGURE 16. Effect of boundary dilation on Frangi responses.
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radius dilation of 25 pixels). The second row shows the Frangi vesselness measure at single scale

(σ = 3) where DARK_BG=False to target dark curvilinear structures performed on the altered

sample (left) and the boundary dilated sample (right). Removing an unnecessary part of the

placental plate prevents a small response to a non-vascular yet mildly curvilinear background

feature from appearing. The third row of Fig. 16 shows the Frangi vesselness measure at the same

scale (σ = 3) when we are probing for bright curvilinear structures (i.e. DARK_BG=True). Here,

wherever the very edge of the placental plate is *any* brighter than adjacent interior, a very large

Frangi response will occur, as seen on the left. Dilating the boundary completely avoids this issue,

as seen by the figure on the right. Thus we prevent a visual artifact that is present in much prior

work on this problem (Huynh 2013; Almoussa et al. 2011).

It should be noted that, while the figure on the right shows a much larger interior response,

this is simply because the intensity of the output in each of these images is being independently

scaled between the minimum and maximum intensity in the image. However, we argue that this is

an appropriate and desired depiction of the situation, as we will frequently consider only the

relative maxima of Frangi response per scale in our analysis.

We end our discussion by noting that we perform this boundary dilation within the Frangi

algorithm itself when we set the structureness parameter γ as half of the maximum Hessian norm

found at that scale–this ensures that the maximum occurs sufficiently away from the boundary of

the plate, and does not occur from a noise phenomenon.

Sometimes there are small cuts that appear on the side of the placental plate, which can

lead to large filter responses. We would like to filter these out to eliminate false positives in any

way we can. These places are identified somewhat reliably by the tracing protocol with a blue dot.

We perform a morphological watershedding in this area in an attempt to add this area to the mask.

The threshold for the watershed is ultimately based on the background value of the blue dot; if this

is incorrectly placed (or anything else weird happens), we can manually opt to simply remove a

large area from consideration from the plate, as we do the umbilicial cord insertion point. This is

demonstrated in Fig. 15. From left to right, we have the original masked placental sample, the cut
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mark notated on the perimeter layer, the improved mask after watershedding, and finally, the

“scorched earth” approach in case the previous attempt failed. In few additional cases, neither

approach is adequate. We again will stress that a fully automated algorithm would have no

knowledge of our traced perimeter (as in Fig. 13b or the second from left image in Fig. 15), so we

anticipate a fully automated method of handling that problem should also be able to correct for

these “cuts” as well.

7.2.3. Deglaring

Despite best efforts when harvesting samples, a select number of the placental samples

exhibit substantial glare, which leads to inaccuracies in identifying curvilinear content. Our

protocol for deglaring is analogous to that performed in (Almoussa et al. 2011) and (Huynh 2013).

Unfortunately, the method relied upon by those previous papers (MATLAB’s imfill, which relies

on inpainting by solving the Dirichlet problem for masked regions) was not immediately available

in a Python environment. Instead, we used an already implemented inpainting algorithm,

scikit-image’s inpaint_biharmonic(), which should be expected to achieve similar results, albeit at

the expense of processing time.

The function inpaint_biharmonic relies on solving the biharmonic equation i.e. ∇∇ f = 0

for the surface f subject to boundary conditions (Damelin and Hoang 2018) (as compared to

imfill’s solving the Laplace equation ∇ f = 0 in regions marked as glare.

The method for deciding what is considered glare is similar to Almoussa et al. (2011), in

which we consider any intensities close the maximum intensity in the image (Almoussa et al. used

80% of max intensity, and we use 175/255 ≈ 68%). This threshold is unfortunately dependent on

the image domain. ‘ filter according to Chapter 3 and Chapter 5. We use these to provide a couple

examples of estimating the PCSVN network. The entire decision tree can be shown in

Appendix B. We follow this procedure for Chapter 9. For our analysis of the Frangi filter apart

from segmentation we shall stop before step (C), which involves segmentation only.
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CHAPTER 8

RESULTS AND ANALYSIS

We demonstrate the output of the Frangi filter on our samples after running a multiscale

technique with N = 20 scales with a stricter anisotropy parameter β = 0.35 and standard

structureness parameter γ = 0.5, with scales spaced logarithmically from σ1 = 2−1 to σN = 23.5,

performing glare and cut removal in preprocessing, and using a discrete gaussian kernel and

dilation border of 20. Our goal in this section is to provide a close up look at the Frangi filter on

two samples, and then provide some measures of the Frangi output’s correspondence with the

“ground truth” network tracings across all 201 images, without explicitly performing

segmentation. However, for visual demonstration, we will employ both simple thresholding

techniques (arbitrary fixed and nonzero-percentile) described in Chapter 5. In Chapter 9 we will

develop and analyze more sophisticated Frangi-based segmentation techniques and compare their

performance to these rudimentary thresholding techniques across the entire dataset. For this

chapter we will content ourselves with analysis of the raw Frangi vesselness measure within our

image domain, and use our simple thresholded results for visual demonstration alone.

8.1. Sample Visual Output

In Fig. 17 and Fig. 18 we take a look at the Frangi output (Vmax) for a well-behaved

sample. In the left column we have (from top to bottom) the un-preprocessed placental sample,

the preprocessed sample, the color trace (ground truth), andVmax. In the top-right, we have for

each n = 0, ...,19 scales, we have the size of the scale σn, the 95th percentile score at that scale, i.e.

αp where p = 95, and the maximum vesselness score given to a pixel at that scale, max(Vσ). This

table shows thatVσ does decay slowly as σ increases, and that smaller scales are slightly

dampened in their output compared to larger scales. The bottom-right set of images are two

rudimentary thresholds of the Frangi result. The top is the scalewise nonzero percentile threshold

(95th percentile) and the bottom is a strict threshold ofVmax ≥ 0.4. For each pixel that passes the

threshold, each of these graphs is color coded to indicate from which scale the maximum value at

that pixel occurs, colored according to the scale on the left. These two thresholds are included
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mostly to further show the dependence of scale on which vessels are identified.

8.2. Ground Truth Imperfections

We must first qualify binary classification. There are limitations intrinsic to the image

domain and tracing protocol that make our ground truth tracing somewhat inaccurate. In Fig. 19

we demonstrate a few common issues with the samples. The four figures show (top left) the

original colored raw sample, (top right) the ground truth tracing, (bottom left)Vmax, and (bottom

right) the confusion matrix after some segmentation strategy. The green arrow points to the

umbilical stump. You can see there is circular noise around this point, and in general perfusion

around this point is very low–many of these vessels have been estimated by the tracer. The orange

arrows represent points where perfusion is very low, perhaps caused by a clot in the blood vessel.

The pink arrows point to vessels that were not traced, although they are clearly visible. The blue

arrows point to where the shape of the vessel and the trace clearly do not agree. There any many

more examples of these in the frame, and many more across all samples. The red arrow points to

an issue unrelated to the ground truth, but an issue that arise when selecting scales in our

multiscale methodology– this is a point of dark curvature that represents noise at larger scales. As

you can see from theVmax of this inset, there is a positive response in this dead space between

vessels, and there is another one that appears in the bottom left between two close vessels of

similar size.

The sample we examined was a relatively well-behaved sample compared to others.

Conversely, in Fig. 20, we give examples of some sampled that did not respond well to the Frangi

filter, nor any of our Frangi-based segmentation methods. As can be seen from this gallery, poor

perfusion of the blood vessels and large amounts of high constrast background is the common

thread. One particular sample has very large arteries that were not reported. Increasing the scale

size might fix the issue for this particular sample.

We have empirically identified a few reasons for issues. Although we have in many cases

removed border areas from consideration where they would cause a large false response (see

Section 7.2.2 for our discussion on boundary dilation), some samples still demonstrate noise
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n σn αp max(Vσ)
0 0.353 0.054 0.986
1 0.424 0.059 0.979
2 0.509 0.065 0.970
3 0.611 0.076 0.973
4 0.733 0.089 0.988
5 0.880 0.096 0.991
6 1.056 0.108 0.991
7 1.267 0.130 0.970
8 1.521 0.166 0.973
9 1.825 0.223 0.978
10 2.190 0.292 0.984
11 2.629 0.319 0.968
12 3.155 0.326 0.994
13 3.786 0.355 0.998
14 4.544 0.405 0.999
15 5.454 0.376 0.963
16 6.545 0.318 0.950
17 7.855 0.304 0.958
18 9.427 0.328 0.916
19 11.313 0.352 0.916

FIGURE 17. Vesselness score, percentile thresholds, and simple thresholds (example 1).
66



n σn αp max(Vσ)
0 0.353 0.054 0.999
1 0.424 0.059 0.999
2 0.509 0.065 0.999
3 0.611 0.076 0.999
4 0.733 0.089 0.999
5 0.880 0.096 0.981
6 1.056 0.108 0.916
7 1.267 0.130 0.889
8 1.521 0.166 0.917
9 1.825 0.223 0.938
10 2.190 0.292 0.935
11 2.629 0.319 0.961
12 3.155 0.326 0.987
13 3.786 0.355 0.987
14 4.544 0.405 0.971
15 5.454 0.376 0.991
16 6.545 0.318 0.888
17 7.855 0.304 0.876
18 9.427 0.328 0.930
19 11.313 0.352 0.900

FIGURE 18. Vesselness score, percentile thresholds, and simple thresholds (example 2).
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around the “collar” of each plate. This can marginally be seen in Fig. 18–there is a large Frangi

response in the bottom left that was not removed, and thus shows up in each simple segmentation.

In Chapter 9 we have opted to remove an area around the umbilical cord insertion point from our

Frangi calculation for the same reason, although in Fig. 19 it is unmasked its effect on the Frangi

output.

8.3. Results

In Fig. 21, we demonstrate the usefulness of scricter parameters for the Frangi filter. Since

the Frangi vesselness measure is a "probability-like" score, we should be interested–without doing

any actual segmentation yet–to what extent this score aligns with the ground truth in a cumulative

sense. We should hope at least that larger values of our vesselness measure should occur along

vessels and not within the background. We define the cumulative vesselness ratio by “integrating”

the max vesselness score over pixels in the ground truth and over the entire image and considering

the ratio:

Definition 8.1 : The cumulative vesselness ratio for a particular parametrization of the

multiscale Frangi filter is given by

CV R (Vmax) :=
∑

G⊂IVmax(x0,y0)∑
IVmax(x0,y0)

(8.1)

where the sums on top and bottom are being carried out for all pixels (x0,y0) in the "ground truth"

subset G in the image I and over the entire image I itself, respectively.

Fig. 21 and Fig. 22 showVmax for two well-behaved samples with reported CV R for 9

various combinations of β and γ. Two combinations in particular, labeled “Anisotropy Factor”

and “Structureness Factor,” have parameter choices so that the structureness and anisotropy

factors (respectively) are exactly one throughout the entire image. Comparing all parameter

combinations, we see in both examples that stricter parameters (smaller β and larger γ)

correspond to an increased CV R. That is, the more selective our Frangi filter is, the better it aligns

with the vascular content within the image. This suggests not only that the Frangi filter is well

69



FIGURE 20. Bad samples.
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suited to this image domain, but also that choosing stricter parameters for the Frangi filter

concentrates the Frangi response within vascular features more and reduces background noise.

We also notice that maximum structureness factor throughout the entire image behaves relatively

similarly to the Frangi filter itself at this scale range, although much more of the background is

filtered out by incorportating the anisotropy factor.

Each of these sample was run over the same scales (logarithmically spaced from 2−1.5 to

23 with N = 12 and the color output of eachVmax is independently normalized between 0 and 1.

In Fig. 23 we show how the CVR is affected for 25 of the “best” samples, that is, those that

performed better in segmentation techniques relative to other samples, regardless of Frangi

parametrization or particular segmentation method. This shows that the relationship between

parametrizations of our two examples seem to hold in general for all “well-behaved” samples in

our image domain.

The upper image in Fig. 24 depicts, for a single sample, the relationship between the scale

at whichVmax (which we will callVargmax) occurs for a particular pixel and the width of the vessel

according the ground truth, and the bottom figure is a coloration of the ground truth with this

same information. We can see that in general, larger scales correspond with larger reported vessel

widths, and smaller scales correspond with smaller reported vessel widths. In Fig. 24 we repeat

these same observations but limit ourselves only to those pixels identified in the ground truth for

which someVσ occured above some scale’s 95th percentile (as will be explained in Chapter 9,

these pixels are the “true positives” of the nz-percentile segmentation method). The y-axis of each

of the charts is the ratio of pixels at whichVmax is attained at the given width over all scales for

that particular reported width.

Fig. 25 is a recontextualization of Fig. 24, where the total number of pixels (rather than a

ratio) is considered for the same sample. We see that many more vascular pixels are identified as

having width 7, and that in general we cannot provide a completely faithful mapping of reported

vascular width to scale of largest response, but the trend of larger widths having larger scale

responses and small widths having smaller scale responses remains true.
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FIGURE 21. Vmax and CV R for varying multiscale Frangi parametrizations (example 1).

72



FIGURE 22. Vmax and CV R for varying multiscale Frangi parametrizations (example 2).
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FIGURE 23. CV R scores of 25 samples under varying parametrizations.

TABLE 7. Summary of Frangi Parametrizations for CVR Demo.

Label βββ γγγ

standard 0.5 0.5
loose 1.0 0.3
strict 0.10 1.0

anisotropy factor 0.5 0
semiloose-beta 1.0 0.5
semistrict-beta 0.1 0.5

structureness factor ∞ 0.5
semiloose-gamma 0.5 0.3
semistrict-gamma 0.5 1.0
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(a)Vargmax along ground truth

(b)Vargmax along ground truth (true positives of segmented result only)

FIGURE 24. Scale of maximum Frangi score along ground truth.
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FIGURE 25. Pixel width of ground truth vs. scale length for true positives.
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CHAPTER 9

SEGMENTATION

We discuss how we use the Frangi as a prefilter and discuss several different segmentation

strategies based upon our Frangi-filtered result. We will compare these methods to an unrelated

segmentation strategy, the ISODATA threshold. First, we define some standard quantitative

measures of success for segmentation methods.

9.1. Binary Classifications, Scoring Methods, and the Confusion Matrix

We wish to come up wish a means of gauging the success of an arbitrary segmentation and

will adopt a binary classification model to do so. We end up with a boolean matrix the size of the

image, and compare it to the ground truth, the trace, and then compare them to get the number of

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). We

demonstrate these four labels visually with a confusion matrix, as in Fig. 26.

Although there are many measures to gauge the success of binary classification, we will

focus on two that we find particularly illustrative. The first is precision, given by

precision =
TP

TP+FP
(9.1)

and the second is the Matthews Correlation Constant (MCC), given by

MCC =
TP×T N −FP×FN√

(TP+FP)(TP+FN)(T N +FP)(T N +FN)
(9.2)

where precision is a ratio between 0% and 100% and the MCC is a measure between -1 and 1.

Precision (or positive predictive power) is defined as the ratio between how many pixels were

labeled correctly (true positives) and all pixels labeled positive (either correctly or incorrectly).

This is a useful score for us–if we are using Frangi as a prefiltering for a more robust technique,

then we would rather provide an incomplete starting point, rather than an inaccurate one.

Precision therefore does an okay job of representing that scenario: we are not penalized for what

we do not label as true, as long as our reports of true are correct.
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FIGURE 26. Sample confusion matrix.

Of course, we cannot rely on precision as our sole quantitative factor alone–we could

simply return everything negative and receive a perfect score of 100% precision. Therefore we

will gauge that measure with that of the MCC (Matthews 1975). The main advantage of the MCC

is that it is well balanced no matter what the size of the two classes are, and will only be high if the

approximation scores well against both labels. A score of 1.0 means the approximation is 100%

correct, a score of −1.0 means that everything is completely incorrect, and a score of 0 means that

the test performs only as well as random guessing. In our analysis, we will consider both the MCC

and precision of a particular segmentation simultaneously. We would like an MCC score as high

as possible, but will contextually settle for a lower score as long as the approximation is

sufficiently precise.

One final point about these measures is that we have decided to report their scores only

within the placental plate, rather than the entire rectangular image. Since the area outside of plate

is masked from consideration, those points will be true negatives no matter what, and we don’t

want these points to artificially inflate our score. That being said, we do currently concede one

part right now: we will also mask an area around the umbilical cord insertion point, as the large

amount of noise here will mean that our scores are artificially low. We would like to remove these
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areas, but for now we will simply not score them.

9.2. Postprocessing Techniques

Here we develop four relatively straightforward methods of postprocessing the multiscale

Frangi output to obtain an actual PCSVN extraction. Again, we stress that the Frangi filter itself

does not produce a segmentation itself. In fact, Frangi in his original paper (Frangi et al. 1998)

refrained from any explicit analysis of the Frangi score apart from taking the maximum across all

scales. Still, we wish to demonstrate some immediate methods of postprocessing these samples in

order to illustrate the usefulness of this optimized Frangi filter.

9.2.1. Method A: Fixed Threshold

Like Huynh (2013), we consider a thresholdedVmax as a crude segmentation. In the fixed

threshold method, we choose some threshold α and we say that a pixel (x,y) of the image

corresponds to a vessel ifVmax > α. This α, as noted above, is unfortunately highly dependent on

the image domain, and this merging method will tend to happily allow noise generated from scales

that are too large or too small if Σ is not chosen correctly. We would hope that some normalization

of our data set would permit a single choice of α across all samples, but unfortunately we cannot

seem to guarantee this. Without prior knowledge of an appropriate choice of α, we may have to

simply select α by trial and error.

Another issue with this is the individual scales of the Frangi filter in the extreme cases are

not known to scale–although Lindeberg introduced a normalization factor based on the scale to

apply to the derivatives, we do not know of an optimal factor to use.

Unfortunately, even with our “rescaled” Frangi filter, this α cannot be picked without

regard for the particular image domain. Equally problematic, we cannot guarantee that the Frangi

filter will decay as our scale exceeds the the bounds where structure is expected to be found.

If we insist on such a performing such a thresholding, the “correct” choice of α

unfortunately seems to depend on the image domain, so user intervention when dealing with the

problem domain seems to be the best strategy. A more sincere use of thresholding might be to

choose a relatively high threshold, and then use the result for a further technique. We will discuss
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alternatives methods of aggregating results from our multiscale method, as well as optimal values

for parameters and scales. As a final note, we admit that any future extensions of this work should

not hold too much stock in this thresholded result. Analyzing the raw vesselness score Eq. (5.3),

or even the un-merged scale-wise scores Eq. (5.5), would be far more rewarding.

9.2.2. Method B: Scalewise Percentile Based Merging

There is an alternative method of thresholding which avoids the domain-dependent

selection of a fixed threshold α altogether. Instead, we could simply select the highest scores from

each responses: we calculate a high percentile score and threshold at that value. Due to the large

number of zeros outputted by the filter, we opt instead to take the pth percentile of only nonzero

values of eachVσ. We briefly demonstrate this in Fig. 27 on a particularly well-behaved sample.

The idea behind percentile-based merging is beneficial for multiscale methods. At each scale, we

would like to assume that there is some curvilinear content that could be identified. With that in

mind, we could simply accept from each scales scores in a very high percentile. We chose for our

demonstration a fairly large percentile, 95, and furthermore bolster this by requiring that any

selected pixels be in the 95th percentile of nonzero and unmasked pixels–otherwise the average is

artificially low due to the large background and pixels with zero Frangi score. The use of

percentiles removes dependence of picking a particular threshold on the problem, while allowing

the most prominent features to emerge at each scale.

Of course, the downside of this method is that we do not know in general the size of the

network, and we may miss entire branches of the vascular network if there is a large amount of

curvilinear content elsewhere in the image that is simply less prominent than some other features

which are prominent at the same scale. An additional caveat of this method is that, since all scales

are given equal importance, this method could introduce a large amount of noise if the range of

scales probled Σ, in particular the extremes σmin and σmax are not chosen carefully. That being

said, the avantage of this method is that smaller scale features are more reliably extracted, whereas

the slightly weaker Frangi signal at smaller scales causes smaller scale phenomena to less likely

show up in a fixed threshold extraction.
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(a) grayscale image (b)Vmax

(c) scalewise percentile filtering (p = 95) (d) scalewise percentile filtering (p = 98)

FIGURE 27. Nonzero-percentile thresholding ofVmax (95th and 98th percentile).
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9.2.3. Method C: Trough Filling

As we discussed in Section 5.2, we can simultaneously calculate the Frangi filter for light

and dark curvilinear structures without any added computation time. We shown the signed result

of the Frangi filter at different scales two examples in Fig. 28 and Fig. 29, we can simultaneously

calculate calculate the Frangi filter response for bright curvilinear features (dark background) and

dark curvilinear features (dark background). These two figures are the analogues to Fig. 7 and

Fig. 8. Since the Frangi filter normally throws away any response where λ2 < 0 (if dark

curvilinear features are targeted) or λ2 > 0 (if light curvilinear features are targeted), we lose no

computation time at all by simply keeping both, although we must store more results. After

computing the multiscale result, we can easily separate these into a positive and a negative strain,

which we will denoteV(+)
Σ

andV(−)
Σ

, and then merge each as we would with a traditional

multiscale Frangi filter, giving usV(+)max andV
(−)
max. That is, ourV

(+)
max is the same as ourVmax in a

conventional Frangi filter, andV(−)max is the same result as if we had taken the Frangi filter while

only looking for the opposite type (light/dark) curvilinear feature. PlottingVmax over a scale of

[−1,1] demonstrates an interesting effect. Whereas the Frangi filter generally is not reliable in

terms of accurately predicting widths, we can get a sense of the width by looking at where there is

a relatively strong response of opposite sign.

That is, at the "foot" of every trough on either side, we can see a bordering curvilinear

structure of opposite sign. We perform strict Frangi filtering and separate the positive and

negative components. We then perform a different threshold for each signed portion of the Frangi

response–a strict one (say α(+) > .3) for the conventionalVmax, and a much looser one for our

opposite signedV(−)max > α
(−) = .01. We also truncate the scales we consider for calculatingV(−)max,

considering only the 6 smallest scales of 20, since we empirically notice that the bordering

curvilinear features are consistently narrower than the vessels themselves.

We will refer to any pixel whereV(+)max > α
(+) as “in the trough” (assuming dark curvilinear

features), and any pixel whereV(−)max > α
(−) as potentially “on the lip” of the trough. The process

of “trough-filling” then proceeds as follows. For each pixel within the trough, we iterate over disks
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FIGURE 28. Signed Frangi output (plate and inset) (example 1).

83



FIGURE 29. Signed Frangi output (plate and inset) (example 2).
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of integer radius and dilate the pixel by a disk of that radius if that disk includes a point on the lip,

whereV(−)max > α
(−). This allows us to extend the Frangi output from the point where it’s strongest

all the way to the base of the curvilinear structure, providing a much better indication of the true

width of the curvilinear structure.

In Fig. 30 we demonstrate the process of creating a trough dilation segments. The top left

is the original sample. This was a N = 20 Frangi filter with log range from -1.5 to 3.2 and Frangi

parameters β = 0.15 and γ = 1.0 The middle top and top right showsV(+)max andV
(−)
max respectively.

The bottom then shows the two markersV(−)max > α
(−) = 0.01 (in red) andV(+)max > α

(−) = .3 (in

blue). We buildV(−)max only using the 6 smallest scales, since the lighter curvilinear ’lip’ of the

trough is of smaller radius than the radius of the trough itself. Probing at too large scales could

perhaps introduce noise. We will call this subset Σ(−) ⊂ Σ and choose Σ(−) = {σ1, ...,σ6}.

9.3. Nonfrangi Segmentation Methods

Of course, there are many other viable methods of segmentation. We refer to (Anghel

et al. 2018) for several high-performing (albeit considerably resource intensive) segmentation

methods on this dataset, namely involving shearlets, Laplacian eigenmaps, and a conditional

generative adversarial network.

We will be content in the present paper to simply compare our results to a relatively fast

technique that is not based on differential geometry or morphology, but instead that of a global

threshold on the grayscale image. Although many viable thresholding algorithms exist, we opt for

an intermeans threshold, or the Ridler-Calvert or ISODATA method, as described in (Ridler,

Calvard, et al. 1978), which is implemented in scikit-image as filters.threshold_isodata. This

functions uses an iterative process to find the smallest threshold which is midway between the

mean intensities of the high pixels and the low pixels. In other words, the optimal αISO satisfies

αISO = argmin
α

(
1
2

[
mean {I(x,y) | I(x,y) ≤ α}+mean {I(x,y) | I(x,y) > α}

] )
(9.3)
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FIGURE 30. Trough dilation process (inset and plate).
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Since the vascular structure in our image domain is darker than the background, we select

pixels where I(x,y) < αISO.

9.4. Comparison of Segmentation Methods

In our demonstration of segmentation methods across all 201 samples in our image

domain, we use the preprocessing procedure described in Chapter 7.

Our multiscale Frangi filter setup involves 20 scales spaced logarithmically from

σ1 = 2−1.5 ≈ .35 to σ20 = 23.2 ≈ 9.20. We will compare the results of 6 different segmentation

methods using three different parametrizations of the Frangi filter. These parametrizations and

segmentation methods with specific parameter choices are summarized in Tables 8 and 9.

TABLE 8. Summary of Segmentation Methods.

Label Description Parameter(s)
thresh-high Fixed threshold of Frangi filterVmax > α α = 0.3
thresh-low Fixed threshold of Frangi filterVmax > α α = 0.2
snz-p-high scalewise nonzero percentile filtering ofVΣ q = 95
snz-p-low scalewise nonzero percentile filtering ofVΣ q = 98

TF trough-filling method α(+) = 0.3, α(−) = .01,
Σ(−) = {σ1, · · · ,σ6}

ISODATA Non-Frangi global threshold see Eq. (9.3)

TABLE 9. Summary of Frangi Parametrizations for Segmentation Demo.

Label β γ

standard 0.5 0.5
semistrict 0.15 0.5
strict 0.15 1.0

In Fig. 31, we look at the results of our various segmentation procedures for a typical well

behaved sample. We can see that there are fewer false negatives for strict parametrization than

with a standard parametrization. Even though the best MCC score across the 10 demonstrated in

Fig. 31 is achieved by trough filling under standard parametrization, we note that trough filling in

the strict parametrization has comparatively fewer false negatives and much higher precision. The

highest precision is achieved by our higher fixed threshold. Thus, we should see the high MCC
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score achieved by the trough filling method as a testament to the usability of a simpler threshold

(such as FT-high) as a precursor to more complete segmentation methods.

In Fig. 33 we graph the MCC and precision scores across our entire set of 201 images. In

each boxplot, the median is labeled, with first and third quartiles making up the edges of the box.

The ends of the whiskers represent median±1.5∗ (Q3−Q1). The quantity (Q3−Q1), the

difference of the third quartile (where p = 75) and first quartile (where p = 25) is the so-called

interquartile range (Jones, Oliphant, and Peterson 2001). Outliers outside of those whiskers, from

samples such as those in Fig. 20, are plotted as individual data points.

Across all samples, maximum precision was achieved by the higher fixed threshold of

α = 0.3 in all but 22 samples, and the trough filling method offered the best MCC in about

three-fourths of the samples (51 of 201). Where the trough filling method was not most accurate,

we noticed that the q = 95 nz-percentile method had a slightly higher MCC score. From viewing

the samples, we see that noise from the umbillical cord insertion point still hinders a number of

samples, causing noise within the Frangi filter.

From viewing Fig. 33 we can see that, for any of the three parametrizations, we achieve a

higher precision and lower MCC from increasing the fixed threshold. The same trend occurs

between scalewise nz-p segmentations when we increase the quartile (from q=95 to q=98). The

median MCC of the ISODATA method was lower than all Frangi-based segmentations across all

with the exception of the highest fixed threshold under strict parametrization–although the latter

method has the highest median precision score by far. ISODATA has a much lower precision than

any of the other methods present here.

We notice a larger number of MCC outliers for scalewise methods than fixed threshold

based methods. We theorize that this is due to the difficulty in knowing a apriori an appropriate

range of scales to probe. Future work therefore could immediately improve upon the results of this

chapter by finding an appropriate range or, more likely, a normalization factor for scales that

makes the success of segmenation less dependent on σmin and σmax .

From Fig. 33 we also notice that the MCC and precision for each scalewise method is not
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as affected by changes in parameterization as the fixed methods. We suggest that is because

stricter parameters have the effect of rescaling to some degree within each step of the multiscale

method, so that the same pixels at each scale ultimately occur at each scale’s highest percentiles.

Looking at Fig. 32, we see a situation in which scalewise methods do poorly. The p = 95

scalewise method under either parametrization, as well as the lower fixed threshold under standard

parametrization show some curvilinear noise between vessels. These come from larger scales, so

there is apparently no signficant vasculature being picked up at the largest scales, causing noise to

appear. This is less pronounced for fixed thresholding using stricter parameters, although some of

this noise can still be seen in the strict Frangi’sVmax plot.

9.5. Network Completion

We can see from looking at theVmax outputs of our samples that even where gaps exist in

the segmentation output, there is still some Frangi output where the gap exists. For various

reasons, the output might not be as strong at that particular region, but we can use that fact to

bridge some of these gaps. To do so would be to achieve “simple gap completion”–that is,

connecting the vascular network to compensate for the shortcomings of a particular segmentation

method. We differentiate this from “predictive gap completion,” which we will use to signify the

problem of connecting the vascular network where the tracer themselves had to guess what was

happening with the network. For example, the entire area surrounding the umbilical cord insertion

point in Fig. 32 is difficult to make out. The tracer ultimately used some knowledge of vascular

network growth to predict what was happening in this region to produce the ground truth.

Predictive gap completion would also need to be used to solve crossings of veins and arteries.

First, once we’ve produced a segmentation, we use morphological thinning to reduce it to

one pixel width with (Guo and Hall 1989) and look for endpoints of an otherwise connected point.

Using a 3×3 structuring element, we iterate over each pixel and identify how many local

neighbors it has. If a pixel has zero or one local neigbors, we identify it as an endpoint of the

partial network. After identifying these endpoints, we assign each a label (i, j) depending on where

the neighboring pixel is located, as according to Fig. 34. We deem two endpoints potentially
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(a) standard parametrization

(b) strict parametrization

FIGURE 31. Segmentation results, example 1 (standard and strict parametrization).
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(a) standard parametrization

(b) strict parametrization

FIGURE 32. Segmentation results, example 2 (standard and strict parametrization).
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(a) standard Frangi parametrization (β = 0.5,γ = 0.5)

(b) semistrict Frangi parametrization (β = 0.15,γ = 0.5)

(c) strict Frangi parametrization (β = 0.15,γ = 1.0)

FIGURE 33. MCC and precision of segmentation methods (201 samples).
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FIGURE 34. Endpoints labels based on adjacent neighbor location.

connectible only if they’re not connected on the same side. That is, their labels (i, j) and (i′, j′)

must have i , i′ or j , j′ (unless i or j is 1). For example, if an endpoint is connected to the partial

network on its top side, any endpoint that connects to it cannot also be connected to a network on

its top. If a pixel has no connections at all, with label (1,1), we do not restrict its connetions at all.

To save time (though we don’t anticipate it will affect the result much), we also restrict pais from

being more than a set distance away (in this case, 100 pixels in Euclidean length).

After we limit the connections, we consider each pair of endpoints and draw a straight line

segment between the two. If that passes through a point whereVmax is 0, we disallow that pair as

well. We also disallow any line which crosses any part of the network which is known to exist.

Finally, from the list of all remaining pairs of endpoints, we simply select the path along

which the maximum mean value ofVmax is achieved. Fig. 35 shows non-violating paths between

end-point pairs. The coloration shows the average value ofVmax along any straight path between

compatible endpoints for which there does not occur any pixel with zeroVmax. From these we can

choose the path with largest averageVmax. This partially completed network is shown in

Fig. 36(in yellow) overlaid onVmax. We show this result as an indication of what can be done
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FIGURE 35. All lines between endpoints with nonzeroVmax.

FIGURE 36. Partially completed network.

94



FIGURE 37. Approximated principal directions at endpoints.

with the simple generation ofVmax, although we simply demonstrate it here rather than including

it in our main segmentation results. This is because, for its complexity, we hope we can instead

solve both simple and predictive gap completion using a single method.

Finally, one final comment we can make. For the scale the maximum Frangi output occurs,

at, we can look at the Hessian matrix itself to glean additional information. Recalling our

discussion from Chapter 2, we can instead of calculating the leading eigenvalue, we can calculate

the leading eigenvector. Just as the leading eigenvalue of the Hessian is a good approximation of

the principal curvature at that point, the leading eigenvector is a good approximation of the

principal direction. In Fig. 37 we show the vectors of the leading (and trailing) eigenvectors of

each endpoint of the thinned, approximated network. We note that these could additionally be

used towards the goal of network completion, but again we hesitate and instead look for a better

overarching method that would address the gap problem.
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9.6. Further Research Directions

Future research will first aim toward continue automating more of the preprocessing,

specifically toward an even higher success rate of identifying the placental perimeter, umbilical

cord insertion point, and any cuts without relying on a manual trace. As mentioned in Chapter 7, a

more careful preparation of samples (i.e. as the picture is taken) would alleviate some of the

difficulty of image registration. We also should improve our glare reduction algorithm, as it

currently relies on an arbitrary threshold. We also need to remove the umbilical cord stump, as a

large amount of noise around that point is still causing a large amount of noise in many samples.

As far as our multiscale method goes, we would like to develop a notion of automatic scale

selection, that would help us better normalize smaller scales, as well as allow us to find a specific

largest scale (as some vessels in specific samples were only easily identified at very large scales,

whereas these scales would introduce only noise in most other samples). Finally, we strongly

suggest further investigation of the usefulness of the Weingarten-based Frangi filter as compared

to the convential Hessian-based one, as we briefly discussed in Section 5.3.

Any additional research on this problem that wishes to use the Frangi filter as a prefilter

(e.g. the trough completion method detailed in Chapter 9 or some more involved algorithm) will

likely need to solve the network completion problem, which we addressed briefly in Section 9.5.
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CHAPTER 10

CONCLUSION

We justified the use of differential geometry in 2D discrete image processing to effectively

re-establish the usefulness of the Frangi filter for identifying curvilinear content in digital images.

We improved upon the implementation of the Frangi filter and provided several modifications of

the Frangi filter–namely to normalize the filter’s output each scale to allow us to choose a

structureness parameter more freely, and more deeply examined the effectiveness of various

parametrizations.

Our improved implementation allowed us to calculate our result faster, incorporating many

scales. We also rationalized choosing stricter parameters for our particular agenda of extracting

the PCSVN for placental images. We used our multiscale Frangi vesselness measure to suggest

several alternative approaches at merging the vesselness and compared their effectiveness as a

precursor to segmentation and eventually network completion. Finally, we discussed several

promising research directions by which to improve our result and further approach our goal of

complete PCSVN extraction.
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APPENDIX A

CODE LISTINGS
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The following python scripts and modules were developed with the following packages:

• python 3.6

• numpy, version 1.12.0

• scipy, version 0.19.0

• scikit-image, version 0.13.0

• matplotlib, version 2.02

Earlier versions of these packages may be compatible but are not guaranteed to be so. All scripts

used in the preparation of this thesis are available at github.com/wukm/pycake, although the

sample images used specificially in this project are not open access.

A single top level script, used to generate the segmentation examples and data for

Chapter 9, is presented below. Please refer to the repository above for details of any support

functions used within this script.

. listings/compare_segmentations.py.
#!/usr/bin/env python3

"""
this is the main result in which we compare the segmentations across all
samples. rerun this code changing beta & gamma to get outputs for different
segmentations.

segmentation strategies used here are:

for a fixed gamma, beta, and range of sigma
1. ISODATA (Frangiless)
2. Frangi simple threshold (high thresh)
3. Frangi simple threshold (low thresh)
4. Frangi nz-percentile (high percentile)
5. Frangi nz-percentile (lower percentile)
6. trough-filling
"""

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from placenta import (get_named_placenta , list_by_quality , cropped_args ,

mimg_as_float , open_typefile , open_tracefile ,
strip_ncs_name , list_placentas , measure_ncs_markings ,
add_ucip_to_mask)

from frangi import frangi_from_image
from merging import nz_percentile , apply_threshold
from plate_morphology import dilate_boundary
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import os.path
import os

# from scipy.ndimage import distance_transform_edt as edt
# from skimage.filters.rank import enhance_contrast_percentile as ecp
from scoring import confusion , mcc

from skimage.color import grey2rgb

from skimage.filters import threshold_isodata
from postprocessing import dilate_to_rim
from preprocessing import inpaint_hybrid
import json

def split_signed_frangi_stack(F, negative_range=None, positive_range=None,
mask=None):

"""Get Vmax+ and Vmax- from Frangi stack

F is the frangi stack where the first dimension is the scale space.
transposing it would be easier.

if negative_range is given, then only scales within that range are
accumulated

will return Vmax(+) and Vmin(-)

should redo this so that it returns V_{\Sigma}^{(+)} and V_{\Sigma}^{(-)}
"""

if negative_range is None:
negative_range = (0, F.shape[-1])

if positive_range is None:
positive_range = (0, F.shape[-1])

f = F[positive_range[0]:positive_range[1]].max(axis=0)
nf = ((-F*(F < 0))[negative_range[0]:negative_range[1]]).max(axis=0)

if mask is not None:
nf[mask] = 0

return f, nf

#quality_name = ’good’
#placentas = list_by_quality(0, N=2)

quality_name = ’all’
placentas = list_placentas()

#beta, gamma, parametrization_name = 0.15, 1.0, "strict"
#beta, gamma, parametrization_name = 0.15, 0.5, "semistrict"
#beta, gamma, parametrization_name = 0.5, 1.0, ’semistrict -gamma’
beta, gamma, parametrization_name = 0.5, 0.5, "standard"

OUTPUT_DIR = (f’output/190304-segmentation_demo_’
f’{quality_name}_{parametrization_name}-ucip’)

if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)

N_scales = 20
THRESHOLD = .3 # \alpha^{(+)}
THRESHOLD_LOW = .2 # \alpha^{(+)}
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MARGIN_THRESHOLD = 0.01 # \alpha^{(-)}
NEGATIVE_RANGE = (0, 6)
log_range = (-1, 3.2)
scales = np.logspace(*log_range , base=2, num=N_scales)

mccs = list()
precs = list()
for filename in placentas:

# get the name of the sample (like ’BN#######’)
basename = strip_ncs_name(filename)

print(basename, ’*’*30)

# this calls find_plate_in_raw for all files not in placenta.FAILS
# in an attempt to improve upon nthe border
# load sample and do pre-processing
img = get_named_placenta(filename)
img = inpaint_hybrid(img)
ucip, res = measure_ncs_markings(filename=filename)
old_mask = img.mask.copy()
img.mask = add_ucip_to_mask(ucip, radius=50, mask=img.mask)

# load trace
crop = cropped_args(img)
cimg = open_typefile(filename , ’raw’)
ctrace = open_typefile(filename, ’ctrace’)
trace = open_tracefile(filename)
bigmask = dilate_boundary(None, mask=img.mask, radius=20)

# rotate the image so it’s hotdog not hamburger
if img[crop].shape[0] > img[crop].shape[1]:

# and rotating it would be fix all this automatically
cimg = np.rot90(cimg)
ctrace = np.rot90(ctrace)
trace = np.rot90(trace)
img = np.rot90(img)
crop = cropped_args(img)
bigmask = dilate_boundary(None, mask=img.mask, radius=20)
old_mask = np.rot90(old_mask)

# threshold according to ISODATA threshold for a strawman
straw = img.filled(0) < threshold_isodata(img.filled(0))
straw[img.mask] = False # apply the mask

# make a MxNxN_scales matrix of Frangi outputs (where (M,N) == img.shape)
F = np.stack([frangi_from_image(img, sigma, beta, gamma, dark_bg=False,

dilation_radius=20, rescale_frangi=True,
signed_frangi=True).filled(0)

for sigma in scales])

# Fneg still has negative direction but these are now separated
Fpos = np.clip(F, 0, None) # replace negative values with 0
Fneg = np.clip(F, None, 0) # replace positive values with 0

# makes Vmaxpos and Vmaxneg (could also take max of Fpos and -Fneg above
f, nf = split_signed_frangi_stack(F, positive_range=None,

negative_range=NEGATIVE_RANGE ,
mask=bigmask)

# everything in the following section needs a better name :/
spine = dilate_boundary(f, mask=img.mask, radius=20).filled(0)
spineseeds = (spine > THRESHOLD)
margins = (nf > MARGIN_THRESHOLD)

# trough-filling segmentation
approx_tf , radii = dilate_to_rim(spineseeds > THRESHOLD , margins,

102



return_radii=True)

# fixed threshold
approx_FA_high = (spine > THRESHOLD)
approx_FA_low = (spine > THRESHOLD_LOW)

# scalewise for 95th percentile
ALPHAS_95 = np.array([nz_percentile(Fpos[k], 95.0)

for k in range(len(scales))])
ALPHAS_98 = np.array([nz_percentile(Fpos[k], 98.0)

for k in range(len(scales))])

approx_PF95 = apply_threshold(np.transpose(Fpos,(1,2,0)), ALPHAS_95 ,
return_labels=False)

approx_PF98 = apply_threshold(np.transpose(Fpos,(1,2,0)), ALPHAS_98 ,
return_labels=False)

precision_score = lambda t: int(t[0]) / int(t[0] + t[2])

# mcc, counts, precision for ISODATA
m_st, counts_st = mcc(straw, trace, bg_mask=img.mask, return_counts=True)
p_st = precision_score(counts_st)

# mcc, counts, precision for fixed threshold w/o prefilter
m_FA_low , counts_FA_low = mcc(approx_FA_low , trace, bg_mask=img.mask,

return_counts=True)
p_FA_low = precision_score(counts_FA_low)

m_FA_high , counts_FA_high = mcc(approx_FA_high , trace, bg_mask=img.mask,
return_counts=True)

p_FA_high = precision_score(counts_FA_high)

# mcc, counts, precision for scalewise percent filtelr
m_PF95, counts_PF95 = mcc(approx_PF95 , trace, bg_mask=img.mask,

return_counts=True)
p_PF95 = precision_score(counts_PF95)

m_PF98, counts_PF98 = mcc(approx_PF98 , trace, bg_mask=img.mask,
return_counts=True)

p_PF98 = precision_score(counts_PF98)

#mcc, counts, precision for trough_fillings w/o ECP prefilter
m_tf, counts_tf = mcc(approx_tf , trace, bg_mask=img.mask, return_counts=True)
p_tf = precision_score(counts_tf)

# this is just used for visualization , not very meaningful though
#recolor_with_negative = (f <= THRESHOLD) & (nf > MARGIN_THRESHOLD)
#fboth = f.copy()
#fboth[recolor_with_negative] = nf[recolor_with_negative]

sns.set(font_scale=0.8)
fig, ax = plt.subplots(nrows=2, ncols=4, figsize=(13,7))

I = grey2rgb(img.data) # three channels (based on img old data)
I[old_mask] = (1.,1.,1.) # make old BG white not black
I[img.mask] *= (1.0, 0.8, 0.8) # overlay red on ucip mask
#ax[0,0].imshow(img[crop], cmap=plt.cm.gray)
ax[0,0].imshow(I[crop])
ax[0,0].set_title(basename)

ax[0,1].imshow(confusion(approx_FA_high , trace)[crop])
ax[0,1].set_title(rf’ fixed α = THRESHOLD’, loc=’left’)
ax[0,1].set_title(f’MCC: {m_FA_high:.2f}\n’
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f’precision: {p_FA_high:.2%}’, loc=’right’)

ax[0,2].imshow(confusion(approx_FA_low , trace)[crop])
ax[0,2].set_title(rf’ fixed α = THRESHOLDLOW’, loc=’left’)
ax[0,2].set_title(f’MCC: {m_FA_low:.2f}\n’

f’precision: {p_FA_low:.2%}’, loc=’right’)

ax[0,3].imshow(confusion(straw,trace)[crop])
ax[0,3].set_title(f’ ISODATA\n (Frangi-less)’, loc=’left’)
ax[0,3].set_title(f’MCC: {m_st:.2f}\n’

f’precision: {p_st:.2%}’, loc=’right’)

ax[1,0].imshow(f[crop], cmap=’nipy_spectral’, vmax=1.0, vmin=0.0)
ax[1,0].set_title(r’Vmax ’

fr’β = beta,γ = gamma’)

ax[1,1].imshow(confusion(approx_PF95 ,trace)[crop])
ax[1,1].set_title(f’ scalewise nz-p\n (p=95)’, loc=’left’)
ax[1,1].set_title(f’MCC: {m_PF95:.2f}\n’

f’precision: {p_PF95:.2%}’, loc=’right’)

ax[1,2].imshow(confusion(approx_PF98 ,trace)[crop])
ax[1,2].set_title(f’ scalewise nz-p\n (p=98)’, loc=’left’)
ax[1,2].set_title(f’MCC: {m_PF98:.2f}\n’

f’precision: {p_PF98:.2%}’, loc=’right’)
ax[1,3].imshow(confusion(approx_tf ,trace)[crop])
ax[1,3].set_title( ’ trough-fill\n’

r’ α(+) =’
fr’THRESHOLD’, loc=’left’)

ax[1,3].set_title(f’MCC: {m_tf:.2f}\n’
f’precision: {p_tf:.2%}’, loc=’right’)

[a.axis(’off’) for a in ax.ravel()]
fig.tight_layout()
fig.subplots_adjust(right=1.0, left=0, top=0.95, bottom=0.,

wspace=0.0, hspace=0.05)
plt.savefig(os.path.join(OUTPUT_DIR , ’’.join((’fig-’, basename , ’.png’))))
#plt.show()
plt.close()

mccs.append((filename , m_FA_high , m_FA_low , m_PF95, m_PF98, m_st, m_tf))
precs.append((filename, p_FA_high , p_FA_low, p_PF95, p_PF98, p_st, p_tf))

runlog = { ’mccs’: mccs, ’precs’: precs}

with open(os.path.join(OUTPUT_DIR ,’runlog.json’), ’w’) as f:
json.dump(runlog, f, indent=True)

# get rid of sample labels
M = np.array([m[1:] for m in mccs])
P = np.array([p[1:] for p in precs])

M_medians = np.median(M, axis=0) # what the actual medians are (for labeling)
P_medians = np.median(P, axis=0) # what the actual medians are (for labeling)

# segmentation strategy labels
labels = [

rf’thresh-high α = THRESHOLD’,
rf’thresh-low α = THRESHOLDLOW’,
’snz-p\n(p=95)’,
’snz-p\n(p=98)’,
’ISODATA’,
’trough-fill’
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]

# make a bunch of boxplots
for scorename , data, medians in [(’MCC’, M, M_medians),

(’precision’, P, P_medians)]:

# would like to combine these into the same plot
# easier to do with xarray, maybe just do processing in a different script
fig, ax = plt.subplots()
boxplot_dict = ax.boxplot(data, labels=labels)
axl = plt.setp(ax, xticklabels=labels)
plt.setp(axl, rotation=90)
ax.set_xlabel(’segmentation method’)
ax.set_title(f’{scorename} scores of segmentation methods’

f’({quality_name} samples),’
f’{parametrization_name} parametrization’)

ax.set_ylabel(scorename)

# label medians, from https://stackoverflow.com/a/18861734
for line, med in zip(boxplot_dict[’medians’], medians):

x, y = line.get_xydata()[1] # right of median line
plt.text(x, y, ’%.2f’ % med, verticalalignment=’center’)

# you have to manually prevent clipping of rotated labels, amazing
plt.subplots_adjust(bottom=0.30)
plt.tight_layout()
boxplot_name = ’-’.join((quality_name , scorename , "boxplot",

parametrization_name))
plt.savefig(os.path.join(OUTPUT_DIR , boxplot_name + ’.png’))
plt.show()
plt.close()
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APPENDIX B

RESEARCH PROTOCOL DECISION TREE
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The following is an outline of our entire Frangi filter-based segmentation process. For

details, see Chapter 7. We follow steps A,B, and C in Chapter 9, whereas only the first two steps

are used in Chapter 8.

A) Preprocessing
1) Find placental border
a) Gradient of green channel for small sigma=.01
b) Watershed outside against above gradient mean
c) erode these points, radius=15
d) Identify largest object in watershed threshold
2) RGB to single channel via Luminance Transform
3) Glare removal
a) Mask glare (threshold at *175/255*)
b) Dilate glare mask with radius=2
c) Inpaint glare
+ Hybrid inpainting, with size threshold *32*
. Biharmonic inpainting
. Median value of boundary

4) Dilate around UCIP, add to mask (radius=50)
B) Multiscale Frangi filter
1) Set parameters
a) Scales
= n_scales (default: *20*)
= log_range (default *[-1.5, 3.2]*), log base 2
-> scales

b) Beta = 0.1, Gamma = 1.0 (or alternate parametrization)
d) Dilate mask per scale (20 pixels)

2) For each sigma: compute Uniscale Frangi Filter
a) gauss blur image with discrete Gaussian kernel FFT
b) take gradient across each axis of blurred image;
take gradient across each axis of gradient
-> (Hxx, Hxy, Hyy)

c) Find eigenvalues of hessian at each point (using np.eig)
and sort by absolute magnitude

d) Calculate Frangi Vesselness Measure
3) Split positive and negative strain.
3) Merge each result, reserve positive and negative stacks

C) Estimate PCSVN
1) Approximate using strategy
a) Calculate Vmax above high fixed threshold alpha=0.3
b) Calculate Vmax above lower fixed threshold alpha=0.2
b) Threshold scalewise at 95th nonzero-percentile
c) Threshold scalewise at 98th nonzero-percentile
d) Margin adding algorithm with high fixed threshold

2) Compare to ground truth trace to obtain confusion matrix
3) Calculate MCC score and precision
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