
ABSTRACT

A COMPARATIVE STUDY FOR THE HANDWRITTEN DIGIT

RECOGNITION PROBLEM

By

José Israel Pacheco

May 2011

The problem of handwritten digit recognition has long been an open

problem in the field of pattern classification and of great importance in industry.

The heart of the problem lies within the ability to design an efficient algorithm

that can recognize digits written and submitted by users via a tablet, scanner, and

other digital devices. In this thesis project, we will compare the success rate of

three algorithms on the publicly available and widely used MNIST database. In

particular, a SVD-based algorithm and a linear approximation model will be

reviewed and implemented, while a Grassmann framework will be introduced and

tested against the aforementioned techniques. We anticipate that the Grassmann

framework will achieve a success rate higher than that of the previously

established algorithms mentioned above.

A COMPARATIVE STUDY FOR THE HANDWRITTEN DIGIT

RECOGNITION PROBLEM

A THESIS

Presented to the Department of Mathematics and Statistics

California State University, Long Beach

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Applied Mathematics

Committee Members:

Jen-Mei Chang, Ph.D
Tangan Gao, Ph.D
Hojin Moon, Ph.D

College Designee:

Robert Mena, Ph.D.

By José Israel Pacheco

B.S. Mathematics, 2007, Chapman University

May 2011

WE, THE UNDERSIGNED MEMBERS OF THE COMMITTEE,

HAVE APPROVED THIS THESIS

A COMPARATIVE STUDY FOR THE HANDWRITTEN DIGIT

RECOGNITION PROBLEM

By

José Israel Pacheco

COMMITTEE MEMBERS

Jen-Mei Chang, Ph.D Mathematics & Statistics

Tangan Gao, Ph.D Mathematics & Statistics

Hojin Moon, Ph.D Mathematics & Statistics

ACCEPTED AND APPROVED ON BEHALF OF THE UNIVERSITY

Robert Mena, Ph.D.
Department Chair, Department of Mathematics and Statistics

California State University, Long Beach

May 2011

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Jen-Mei Chang

for her guidance and patience during my tenure at California State University,

Long Beach which has allowed me to achieve success both in and out of the

classroom. Under her tutelage, I have been able to develop both as a student and

as a researcher.

I would also like to thank Cecile Lindsay, Vice Provost of Academic Affairs

and Dean of Graduate Studies at CSU, Long Beach, for supporting my research

via the Graduate Research Fellowship.

Lastly, to my mother and grandparents: Gracias por todo el amor y el

apoyo que me han dado durante mi carera academica. Ningunos de mis exitos

serian posibles sin ustedes. Mi maestria es mas de ustedes que mia. Le doy gracias

a Dios por tenerlos a mi lado.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1. INTRODUCTION .. 1

2. CLASSIFICATION WITH SINGULAR VALUE DECOMPOSITION . 5

Theory. 5
Implementation . 6

3. TANGENT DISTANCE .. 14

Introduction. 14
Implementation . 17
Calculating Tangent Vectors . 20

4. A GRASSMANNIAN APPROACH .. 25

Introduction. 25
Implementation . 29

5. EXPERIMENTS AND RESULTS . 34

6. SUMMARY AND CONCLUSIONS . 37

APPENDIX . 39

A. MATLAB CODES . 40

BIBLIOGRAPHY .. 57

iv

LIST OF TABLES

TABLE Page

1. Table of Grassmannian Distances . 29

2. Results of Algorithms on MNIST Database . 35

v

LIST OF FIGURES

FIGURE Page

1. Samples of digits from MNIST’s training set. 3

2. Rotation, scaling, and translations of an image. 4

3. Image represented as a matrix. 7

4. Data matrix whose columns are images that have been concatenated. 8

5. Singular value distribution of data matrix with a ‘2’ in each column. . 9

6. First three singular vectors of data matrix with a ‘2’ in each column.. 9

7. The probe P , its projection onto S = span(Uk), and the residual. 12

8. Approximation of surface by its tangent plane.. 15

9. Two-sided tangent distance and Euclidean distance. 16

10. Physical interpretation of spring tangent distance. 20

11. Comparison of Euclidean distance and tangent distance. 21

12. Tangent vectors at the north pole of the unit sphere. 22

13. Tangent vectors of a ‘2’ in MNIST. 23

14. The angle between two vectors and a vector and a subspace. 26

vi

FIGURE Page

15. Illustration of the principal angles of two subspaces.. 27

16. Illustration of two subspaces on the Grassmannian. 29

17. Flow chart for vector to subspace algorithm. 33

vii

CHAPTER 1

INTRODUCTION

A classic problem in the field of pattern recognition is that of handwritten

digit recognition. Suppose that we have an image of a digit submitted by a user

via a scanner, a tablet, or other digital device. The goal is to design an algorithm

that can correctly identify the digit. The applications of such an algorithm are far

reaching. With this technology, the post office would be able to scan envelopes and

effectively sort them by zip code and banks would be able to process checks more

efficiently [1]. Handwritten digit recognition is really a subproblem of handwritten

character recognition where an algorithm is needed not only to classify digits, but

letters as well. Findings in the field of digit recognition can surely help advance

that of characters with perhaps one of the most interesting applications being the

ability to convert a document written by a user on a tablet into a more readable

document. There are essentially two types of algorithms which one can design:

memory based and learning based.

Suppose we have a training set of digits, that is, a set of images whose

classification as a certain digit is known. Memory based algorithms store theses

images and classify an unknown digit by comparing it to each of the stored

patterns. Instead of storing the training set, learning based algorithms try to learn

from the known patterns and build a classification function accordingly. An

example of a learning based algorithm is a neural network which has been proven

to be very successful in the handwritten digit recognition [1]. In this thesis, we will

only discuss memory based algorithms. While it has not been shown that these

1

algorithms alone can be as successful as neural networks in classifying digits, they

do offer great insight into the inherent geometry of the data and thus, provide a

platform for the application of several mathematical concepts as we will see in this

discussion.

Every algorithm that will be presented in this thesis is, in some form or

another, a nearest neighbor algorithm. Suppose we have ten patterns in our

training set, x1, x2, . . . , x10, an unknown pattern y, and a metric d(x, y). We

calculate d(xi, y) for i = 1, . . . , 10 and classify it as a pattern of type xk where k is

the index that minimized d(xi, y). In other words, y is classified as the pattern

that it is closest to, hence the phrase nearest neighbor.

In Chapter 1, we present a simple yet effective algorithm which assumes

that each set of digits lies in subspace whose basis is obtained via the idea of

Singular Value Decomposition (SVD). When an unknown digit is read in, we

project the digit onto each of the ten subspaces and classify the digit according to

the smallest residual vector under the 2-norm. In Chapter 2, we assume a more

general model for our data. Here we treat each digit as a point on a high

dimensional manifold and and use the tangent plane at that point as an invariant

feature for comparison. The metric used to determine the nearest neighbor is

tangent distance which is defined as the Euclidean distance between two tangent

planes. In Chapter 3, we present the concept of principal angles and how they are

used to obtain metrics on the Grassmann manifold. When then introduce an

algorithm that models each digit as a vector in a subspace which in turn is a point

on the Grassmann manifold. We then experiment with different metrics on the

Grassmannian to see which yields the best results. Lastly, in Chapter 4, we test

the algorithms discussed on the MNIST database [2] and present the results.

MNIST is a database handwritten digits collected by Yann LeCun of the Courant

2

FIGURE 1. Samples of digits from MNIST’s training set.

Institute at New York University and Corinna Cortes of Google Labs, New York.

The database consists of 60,000 training digits and 10,000 testing digits, all of size

28× 28 pixels. The digits have all been size-normalized and centered. Figure 1

shows a few samples from MNIST’s training set.

Throughout this study we will utilize three standard transformations of

images: rotations, scaling, and translations. In Figure 2(a), we have an image of

the digit two taken from MNIST’s database. Figure 2(b) has the same digit, but it

has been rotated counterclockwise by π
4

while the digit in (c) has been scaled by a

factor of 1.5 and translated 5 pixels down in (d). MATLAB implementations of

these transformations can be seen in Codes #4, #5, and #6 of the Appendix.

3

(a) Original (b) Rotated (c) Scaled (d) Translated

FIGURE 2. Rotation, scaling, and translations of an image.

4

CHAPTER 2

CLASSIFICATION WITH SINGULAR VALUE DECOMPOSITION

Theory

The Singular Value Decomposition is a standard technique used in data

analysis for the purpose of dimensionality reduction. Here it will be used as a tool

for classification. Before we delve into the details of its application, let us first

review some of the theoretical background about singular value decomposition

(SVD).

Theorem 2.1. (Singular Value Decomposition) Let A be a real m× n matrix

and d = min{m,n}. Then there exist orthogonal matrices U and V such that

A = UΣV T

where U ∈ Rm×m,V ∈ Rn×n, and Σ = diag(σ1, . . . , σd) ∈ Rm×n.

The σi’s are known as the singular values of A and the columns of U and V

are called the left and right singular vectors of A, respectively. As we see in

Theorem 2.2, these vectors are of great importance.

Theorem 2.2. (Fundamental Subspaces) Let A be a real m× n matrix with

rank r. Let R(A) and N (A), denote the range and null space of A, respectively.

Then,

1. The left singular vectors u1, ..., ur of A are an orthonormal basis in R(A)

and rank(A) = dim(R(A)) = r.

2. The right singular vectors vr+1, ..., vn of A are an orthonormal basis in N (A)

and dim(N (A)) = n− r.

5

3. The right singular vectors v1, ..., vr of A are an orthonormal basis in R(AT).

4. The left singular vectors ur+1, ..., um of A are an orthonormal basis in

N (AT).

The first result of Theorem 2.2 says that taking the SVD of a matrix

produces a basis for its column space. This fact is at the heart of our SVD-based

algorithm. Another useful property of SVD is its approximation property

described in Theorem 2.3.

Theorem 2.3. Let A be a real m× n matrix with rank r. The matrix

approximation problem

min
rank(Z)=k

‖A− Z‖2

has the solution

Z = UkΣkV
T
k

where k < r, Uk = [u1| . . . |uk] (the first k left singular vectors of A),

Vk = [v1| . . . |vk] (the first k right singular vectors of A), Σk = diag(σ1, . . . , σk) (the

first k singular values of A).

In words, the best rank-k approximation of a matrix in the 2-norm sense is

provided by SVD. SVD also solves the minimization problem under the Frobenius

matrix norm. Proofs of these results can be found in [3].

Implementation

Let us now introduce a convenient way of representing an image in order to

use these results. A gray-scale image, A, of resolution m×n is essentially an m×n

matrix whose entries correspond to the gray level of the corresponding pixel. On

an 8-bit machine, the possible gray level values are 0 to 255 with 0 corresponding

to black and 255 corresponding to white. For an illustration see Figure 3.

6

FIGURE 3. Image represented as a matrix.

Let a1, . . . , an denote the columns of our matrix A. Since A is an m× n

matrix, each ai is a vector in Rm. If we concatenate the columns of A, we can

represent the matrix as a single vector in Rm·n.

A = [a1| . . . |an] −→

a1
...

an

With this representation, we can easily store multiple images in a single

data matrix by placing an image in every column as is illustrated in Figure 4

where x1, x2, . . . , xn are images that have been concatenated.

Keeping these representations in mind, suppose we have p images of the

number 2 with resolutions l = m× n. Concatenating these images will yield p

vectors in Rl. Let us now store these vectors in the columns of a data matrix, X,

as was done in Figure 4. These columns now span a linear subspace of Rl (i.e. the

column space of X). By Theorem 2.2, the left singular vectors of X form an

7

FIGURE 4. Data matrix whose columns are images that have been concatenated.

orthonormal basis for this space. Moreover, from Theorem 2.1 we know that we

have a total of l left singular vectors. However, we will be able to sufficiently

represent this subspace using only a few of the left singular vectors. By few we

mean much smaller than l. To see why this is true, let us look at an example.

Suppose we take 50 images of the digit two from the MNIST database and

arrange them in a data matrix as described above. Since the images have

resolution 28× 28, this yields a 784× 50 data matrix. Taking the SVD of the

matrix and examining the singular values, we see that there is a significant drop in

magnitude after the first singular value as is seen in Figure 5.

The singular values represent the distribution of the data’s energy among

the singular vectors. Since the first singular value is drastically larger than the

other singular values we would expect the first left singular vector to exhibit the

dominant behavior of the data, that is, we would expect the vector to look like a

number two after we reshaped it back into a 28× 28 image. If we look at

Figure 6(a), this is indeed what we obtain. Figure 6 (b) and (c) are the second and

third singular vectors which represent variations in the data.

8

FIGURE 5. Singular value distribution of data matrix with a ‘2’ in each column.

(a) First Singular Vector (b) Second Singular Vector (c) Third Singular Vector

FIGURE 6. First three singular vectors of data matrix with a ‘2’ in each column.

9

Since each left singular vector has a singular value associated with it each

vector has an energy attributed to it. Consider the following definition:

Definition 2.4. (Cumulative Energy) Let A be a matrix of rank r with

singular values σ1 . . . σr. The cumulative energy of the first t, (1 ≤ t ≤ r), singular

values is ∑t
i=1 σ

2
i∑r

i=1 σ
2
i

. (2.1)

In this example, the first ten left singular vectors of the data matrix obtain

a cumulative energy greater than 97% which is a common threshold for

determining numerical rank [4]. Hence, even though the data lies in the high

dimensional space of R784, a majority of the information can be represented using

a few basis vectors. In general, suppose that the first k left singular vectors of our

data matrix, u1, . . . , uk, capture 97% of the cumulative energy. These vectors will

form the basis for the “digit space”, that is, the subspace of all images of the same

digit. If we have an unknown digit P , we would like to calculate its distance from

the digit space which is defined to be

min
α
‖Ukα− P‖2 (2.2)

Where α ∈ Rk and Uk is the matrix whose columns are u1, . . . , uk. Instead

of solving this minimization problem, we can equivalently solve for the square of

the 2-norm.

10

min
α
‖Ukα− P‖22 = min

α
(Ukα− P)t · (Ukα− P)

= min
α

(αtU t
k − P t) · (Ukα− P)

= min
α

(αtα− αtU t
kP − P tUkα + P tP)

Taking the derivative of the last expression with respect to α and setting it

equal to zero we get

2 · αt − 2 · P tUk = 0

αt = P tUk

α = U t
kP

Intuitively, U t
kP is the projection of P onto the digit space so the distance

is just the 2-norm of the residual vector. In Figure 7, we have a geometric

illustration of the scenario where S = span(Uk).

We can now use this as a means of classifying unknown digits. We can

calculate the distance from an unknown digit to all ten digit spaces (one for each

digit) and classify the probe based on the smallest residual. For instance, if the

distance from P to two space is smaller than the distance to any other digit space,

then P will be classified as a two. This algorithm is described in full in Algorithm

1.

In order to determine k, the number of singular vectors to be used, we take

the SVD of each of the ten data matrices and find the number of vectors required

11

P

ProjSP

P − ProjSP

S

FIGURE 7. The probe P , its projection onto S = span(Uk), and the residual.

Algorithm 1 Digit Classification with SVD [3]

Input: Probe image P

Output: Classification of P as a digit 0, . . . , 9.

Step 1: Construct the data matrix for each digit using the training images.

Step 2: Calculate the SVD of each of the ten data matrices.

Step 3: Take the first k left singular vectors of each decomposition.

Step 4: Compute the distance from probe to each subspace.

Step 5: Classify according to the smallest distance.

12

to achieve a cumulative energy of 97% for each. We then take k to be the

maximum of these numbers ensuring that the singular vectors being used are

capturing 97% of the energy of all the digit spaces. In practice, a threshold of 95%

is used when one desires to design an efficient algorithm. When accuracy is the

major concern, a threshold of 99% is used. Since we are concerned with both

efficiency and accuracy, we chose the midpoint of these two thresholds, i.e., 97%. If

our images are size m× n and we used k left singular vectors for each subspace,

then calculating the quantity ||UkU t
kP − P ||2 requires 4mnk + 2mn− k flops for

each of the ten digit spaces. Notice that this total does not include the flops for a

computation of SVD. This is due to the face that the SVD of the digit spaces is

performed in the training phase of the algorithm. The basis vectors are

pre-computed and then stored for later use.

13

CHAPTER 3

TANGENT DISTANCE

Introduction

In the SVD approach described above, we assumed that our digits lied in a

subspace and, in turn, that our data was linear. A more general approach is to

assume that it is nonlinear. In this section, we will treat each digit as a point on a

high dimensional manifold. The question now becomes how to calculate the

distance from a probe to each of these manifolds. A very simple and naive

approach would be to compute the Euclidean distance to each digit in the training

set and classify the probe as the digit yielding the shortest distance. This is a type

of Nearest Neighbor Algorithm. Since this is essentially a pixel by pixel

comparison of two images, the accuracy of the algorithm is highly dependent on

the size of the training data. We would need our training set to include an image

of almost every variation of each digit. For example, not only would we need an

image of the number ‘7’ in our training set, but we would also need an image of a

‘7’ that has been shifted to the left/right and up/down. This is clearly unfeasible

and furthermore, it also has the makings of a very inefficient algorithm since we

would have to compare to every images. Thus, we need a measure of distance that

is invariant to small transformations of the digits. The reason we say small

transformations is that large transformations may alter a digit too much. For

example, if an image of ‘6’ is rotated a full 180o we obtain a ‘9’ [1]. Again, let us

treat an image P as a vector in R784. If we assume that the set of allowable

transformations (e.g. translation, scaling, rotation) are continuous, then applying

14

S(P, α)

TP

FIGURE 8. Approximation of surface by its tangent plane.

one or a combination of these transformation to the vector P will result in a

surface in R784. As an example, suppose that the only transformation allowed is

rotation which is dependent on a parameter α. If P is transformed according to

the transformation s(P, α), then the set of all transformations

SP = {x | ∃ α for which x = s(P, α)} (3.1)

is a one dimensional curve in R784. In general, if the we allow n transformations, α

will be an n-dimensional vector and SP will be an n-dimensional surface. It is easy

to see that s(P, 0) = P (i.e. applying no transformations to P will not change P).

For the purpose of this study, we will assume that s(P, α) is differentiable,

ensuring that SP is a smooth surface. This is of upmost importance since the heart

of the algorithm relies on the ability to find the tangent plane.

Although we now have a manifold, finding the distance from a probe to this

structure would be very expensive and unreliable since the manifold in

nonlinear [1]. To remedy this, we will approximate the surface by its tangent

plane. In Figure 8 we see an illustration of the tangent plane T at a point P on

the manifold generated by the transformations, s(P, α).

15

The problem then reduces to finding the distance to a plane which is much

simpler to solve. If we take the Taylor expansion of s(P, α) around α = 0:

s(P, α) = s(P, 0) + α
∂s(P, α)

∂α
+O(α2) ≈ P + LPα (3.2)

where LP = ∂s(P,α)
∂α

, we see that the linear approximation of the surface is

completely characterized by P and LP . Now, instead of simply calculating the

Euclidean distance from a point E ∈ R784 to P , we can calculate the distance from

E to the tangent plane at P ; this is what is called a One-Sided Tangent Distance.

There is also a Two-Sided Tangent Distance where the tangent plane for E is also

calculated and we find the distance between the two planes. This is the measure

that we will use in the algorithm. In Figure 9, we have an illustration of the

two-sided tangent distance and the Euclidean distance between two points E and

P whose tangent planes are denoted TE and TP , respectively [1].

Euclidean DistanceTangent Distance

TP

TE

SP

SE

P

E

FIGURE 9. Two-sided tangent distance and Euclidean distance.

Implementation

16

At this point, we have two immediate questions that we need to answer: (1)

How do we find the tangent plane and (2) how do we compute the distance

between the two planes. The details of finding the tangent plane are a bit

complicated and thus, we will save that discussion for the next section. In this

section, we will concern ourselves with question (2) assuming that we have a way

of finding tangent vectors. The derivation that follows was first presented in [1].

Suppose that we allow a total of m possible affine transformations (e.g. rotations,

translations, scalings, etc.). Then the transformation parameter α is a vector in

Rm, α = (α1, . . . , αm). Therefore, our tangent plane at P will be m-dimensional

and generated by the columns of the matrix LP defined to be:

LP =
∂s(P, α)

∂α

∣∣∣∣
α=0

=

[
∂s(P, α)

∂α1

, . . . ,
∂s(P, α)

∂αm

]
α=0

(3.3)

In other words, the columns of LP form a basis for the tangent plane at P .

Moreover, they are the vectors tangent to the manifold. Suppose we have two

images, E and P , with tangent planes TE and TP , respectively. Then the two-sided

tangent distance between the two is defined to be:

TD(E,P) = min
x∈TE ,y∈TP

||x− y||22 (3.4)

The equations for the tangent planes TE and TP are given by

E
′
(αE) = E + LEαE (3.5)

P
′
(αP) = P + LPαP (3.6)

where LE and LP are, as before, the matrices whose columns are the tangent

vector at E and P , respectively. Substituting these into Equation(3.4), we obtain

17

TD(E,P) = min
αE ,αP

||E ′
(αE)− P ′

(αP)||2 (3.7)

To solve this minimization problem, we can differentiate the expression

||E ′
(αE)− P ′

(αP)||2 with respect to αE and αP and set each expression equal to

zero:

2(E
′
(αE)− P ′

(αP))TLE = 0 (3.8)

2(E
′
(αE)− P ′

(αP))TLP = 0 (3.9)

Substituting equations (3.5) and (3.6) into these expressions we obtain

LTP (E − P − LPαP + LEαE) = 0 (3.10)

LTE(E − P − LPαP + LEαE) = 0 (3.11)

Solving for αE and αP respectively gives

(LPEL
−1
EEL

T
E − LTP)(E − P) = (LPEL

−1
EELEP − LPP)αP (3.12)

(LEPL
−1
PPL

T
P − LTE)(E − P) = (LEE − LEPL−1PPLPE)αE (3.13)

where LEE = LTELE, LPE = LTPLE, LEP = LTELP , and LPP = LTPLP . Both

Equation (3.12) and (3.13) are linear systems that can be solved by Gaussian

elimination to obtain αE and αP . Plugging these vectors back into (3.7) yields the

tangent distance between the two patterns E and P . If we insert the formulas for

E
′
(αE) and P

′
(αP) into (3.7), we get

18

TD(E,P) = min
αE ,αP

||E + LEαE − P − LPαP || (3.14)

= min
αE ,αP

||(E − P) + LEαE − LPαP || (3.15)

Simard warns that Equation (3.4) is singular if some of the tangent vectors

of E and P are parallel [1]. While this is unlikely, it is possible that a pattern

could repeat in the training and testing set. To remedy this, one can introduce a

spring constant k and replace Equation (3.4) by

TD(E,P) = min
x∈TE ,y∈TP

||E + LEx− P − LPy||22 + k||LEx||22 + k||LPy||22 (3.16)

Going through the derivation as before we get

(LPEL
−1
EEL

T
E − (1 + k)LTP)(E − P) = (LPEL

−1
EELEP − (1 + k)2LPP)αP(3.17)

(LEPL
−1
PPL

T
P − (1 + k)LTE)(E − P) = ((1 + k)2LEE − LEPL−1PPLPE)αE(3.18)

which will always have a solution for k > 0. The physical interpretation of this,

which can be seen in Figure 10, is that P is attached to a point in its tangent

plane, x, and E is attached to a point in its tangent plane, y, by a spring of

elasticity k while x and y are attached by a spring of elasticity 1. The new

”spring” tangent distance is the total potential energy stored in all three springs at

equilibrium.

As was mentioned earlier, we would like our metric to be invariant to small

transformations. In Figure 11 we have taken an image of the digit ‘3’ and

translated it ten pixels to the left and right. We then take one image of every digit

0, 1, . . . , 9 as our training set. In Figure 11(a), we calculate the Euclidean distance

19

y

E

kk

x

P

1

FIGURE 10. Physical interpretation of spring tangent distance.

from every translated ‘3’ to each of the digit in the training set and plot the

distances. Thus, every curve is a plot of the Euclidean distance between a digit in

the training set and the translated ‘3’s. The V-shaped curve is the distance from

the translated ‘3’s to the ‘3’ in the training set. If we classify the translated digits

according to smallest distance, the Euclidean metric only classifies translations up

to ±2 pixels correctly, that is, two pixels to the left and right. In Figure 11(b), we

have done the same except that we have used the spring tangent distance with

k = .05 instead of the Euclidean distance. Notice that the tangent distance can

accurately recognize the digit up to translations of about ±9 pixels which is a

drastic improvement over Euclidean distance. Similar behavior can be seen when

the digit ‘3’ is translated vertically, rotated, and scaled which demonstrates the

invariance of the Tangent Distance metric under these transformations. The plots

for these transformations look very similar to that in Figure 11, but are not

included in order to avoid redundancy.

Calculating Tangent Vectors

In this section we address the question of how to obtain the tangent vectors

needed in the calculation of the tangent distance. While there are multiple

20

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

(a) Euclidean Distance (b) Tangent Distance

FIGURE 11. Comparison of Euclidean distance and tangent distance.

methods of obtaining tangent vectors, we take an approach very similar to that in

Chapter 1 and was motivated by the work in [5]. For a method involving

numerical differentiation, the reader is encouraged to see [6]. The key to our

method is the observation that a tangent plane is essentially a subspace except for

the fact that a tangent plane does not necessarily contain the origin. However, this

can easily be remedied by shifting the point of tangency to the origin. Then the

problem of finding tangent vectors is identical to the task of finding basis vectors

for a subspace which we accomplished in Chapter 1 using the left singular vectors

from the singular value decomposition and an energy criterion. Thus, we can

obtain tangent vectors for a point P on the manifold SP by the following steps: (1)

Find points in SP near P and place them in the columns of a data matrix. (2)

Subtract P from every column. (3) Take the SVD of the data matrix. (4)

21

Determine how many singular values are needed to capture 97% of the energy; the

corresponding number of left singular vectors will be the tangent vectors. To

illustrate this method, let us consider the toy example of finding the tangent

vectors of the sphere at the north pole, i.e. P = (0, 0, 1). We generated 1500 points

on the unit sphere and took those within a distance of .1 from P . As we can see in

Figure 12, the method yields a fairly good approximation.

FIGURE 12. Tangent vectors at the north pole of the unit sphere.

One issue that arises when applying this method is that the MNIST

database is a bit sparse making it difficult to find data points near a particular

image. Thus, for the purpose of this study, we created neighboring points using

ten vertical and ten horizonal translations from −5 to 5 pixels, ten rotations from

−π
8

to π
8
, and ten scalings from .8 to 1.2. Figure 13 shows the tangent vectors we

obtain for a ‘2’ in MNIST when using our method with the neighborhood

described. While it is unclear what some of these vectors represent, the affine

transformations used to form the neighborhood around the ‘2’ can be seen in the

22

first row of Figure 13. Consider the first image from the left in the first row. The

white pixels surrounding the black ‘2’ indicate that this tangent vector represents

scaling. The next image to the right represents vertical translation as is evidenced

by the shadowing of white pixels above the ‘2’. Similarly, the third image from the

left in the first row represents horizontal translation. Lastly the final image in the

first row represents rotation.

FIGURE 13. Tangent vectors of a ‘2’ in MNIST.

The algorithm is described in full in Algorithm 2 below. If our images are

of resolution m× n and we form the neighborhoods around E and P using t

transformations, the cost will be 27mnt for each neighborhood. Shifting each

neighborhood to the origin requires mnt subtractions. Moreover, each

neighborhood yields two data matrices of size (mn)× t whose SVD will cost

approximately 4t2(mn− 1
3
t) flops each [7]. If we utilize kE and kP tangent vectors

for E and P , respectively, then solving for the tangent distance requires

mn(kE + 1)(kP + 1) + 3(k3E + k3P) flops [1]. Thus, calculating the tangent distance

23

Algorithm 2 Tangent Distance Algorithm [1]

Input: Probe image P

Output: Classification of P as a digit 0, . . . , 9.

Step 1: For every training digit E, form the neighborhood around E

and find the tangent vectors.

Step 2: For P , form its neighborhood and find the tangent vectors.

Step 3: Calculate the tangent distance from P to every digit in the training set.

Step 4: Classify P according to the smallest tangent distance calculated.

between a training digit E and a probe P requires a total of

56tmn+ 8t2(mn− 1
3
t) +mn(kE + 1)(kP + 1) + 3(k3E + k3P) flops.

24

CHAPTER 4

A GRASSMANNIAN APPROACH

Introduction

As was the case in Chapter 1, the underlying structure of the algorithm

that will be presented in this chapter is a vector space. Let us begin with the

familiar concept of angles.

Definition 4.1. (Angle Between Two Vectors) Let u and v be vectors in Rn.

The angle between u and v is defined as

∠(u, v) = cos−1
(|vtu|
||u||2||v||2

)
.

Moreover, we can extend this definition to define the angle between a vector and a

subspace.

Definition 4.2. (Angle Between a Vector and a Subspace) Let u be a vector

in Rn and S be a k-dimensional subspace of Rn. Let ProjSu denote the projection

of u onto S. Then the angle between u and S is defined as

∠(u, S) = cos−1
(|utProjSu|
||u||2||ProjSu||2

)
.

These are two familiar definitions that are easy to understand and visualize as we

see in the illustrations in Figure 14. In 14(a) we have the angle between two

vectors u, v ∈ Rn and (b) illustrates the angle between u and a subspace S.

For angles between a pair of subspaces, we consider the high-dimensional analog of

vector angles, known as the principal angles.

25

v

u

u

S

ProjSu

(a) Angle between two vectors (b) Angle between a vector and a subspace.

FIGURE 14. The angle between two vectors and a vector and a subspace.

Definition 4.3. [8] (Principal Angles) Let U and V be subspaces in Rn such

that p = dim(U) ≥ dim(V) = q ≥ 1. Then the principal angles θk ∈ [0, π/2] for

k = 1, . . . , q between U and V are defined recursively by

cos(θk) = max
u∈U

max
v∈V
|utv| = |utkvk|

subject to ||u||2 = ||v||2 = 1, utui = 0, and vtvi = 0 for i = 1, . . . , k − 1.

To explain this definition more thoroughly, suppose we are looking for θ1.

We must search through all of U and V to find the unit vectors that maximize the

projection |utv|, or equivalently the vectors with the smallest angle between them.

These vectors will be u1 and v1. To find θ2, we again look for vectors in U and V

to maximize the projection, but now our search is restricted to the orthogonal

complement of u1 and v1 in U and V , respectively. Thus, in general, in order to

find θk we must search in the orthogonal complements of u1, . . . , uk−1 and

26

U

V

θ2
θ1

FIGURE 15. Illustration of the principal angles of two subspaces.

v1, . . . , vk−1, respectively. Figure 15 illustrates the geometric interpretation of the

principal angles between two subspaces in R2.

Given this recursive definition, one might think that finding the principal

angles between two subspaces is difficult and computationally expensive. However,

the task is greatly facilitated by the following theorem.

Theorem 4.4. [8] Let U and V be subspaces in Rn such that dim(U) = p

and dim(V) = q, p ≥ q. Assume that the columns of the matrices A and B form

orthonormal bases for U and V , respectively. Let the SVD of the covariance matrix

AtB be

AtB = Ũ S̃Ṽ t

where S̃ = diag(σ1, σ2, . . . , σq). Then the principal angles θ1, θ2, . . . , θq associated

with U and V satisfy

cos θk = σk, k = 1, . . . , q.

27

A proof of this result can be found in [8]. As an example, let us find the

principal angles between the xy-plane and the yz-plane with orthonormal bases

stored in A =

1 0

0 1

0 0

 and B =

0 0

1 0

0 1

, respectively. The singular values of

AtB =

 0 0

1 0

 are 1 and 0. Taking the inverse cosine of these values gives us the

principal angles of 0 and π
2
, respectively. This agrees with our intuition, given that

the xy-plane and the yz-plane are orthogonal to each other and share one basis

vector, i.e., [0 1 0]. Notice that we can also use principal angles to find the angle

between two vectors and the angle between a vector and a subspace if we treat

these scenarios as two 1-dimensional subspaces or a 1-dimensional subspace and a

k-dimensional subspace, respectively. In these two situations (two vectors and a

vector and a subspace), it is fairly straightforward to see how these structures can

be used to form a digit classification algorithm. However, given a set of principal

angles between two subspaces, it is unclear as to how to use them in designing a

distance function. For this, let us introduce a structure known as the Grassmann

Manifold or the Grassmannian which is where vector subspaces reside.

Definition 4.5. Grassmann Manifold. The Grassmann Manifold, denoted

G(k, n), is the set of k-dimensional subspaces in Rn,

G(k, n) = {W ⊂ Rn | dim(W) = k}.

In Figure 16, we have an illustration of two k-dimensional subspaces U and

V on the Grassmannian, G(k, n).

Just as in traditional manifolds, we would like to find the distance between

two points on the Grassmannian, i.e., the distance between two subspaces. It is

28

FIGURE 16. Illustration of two subspaces on the Grassmannian.

because of this that principal angles are so important since many metrics can be

derived from them. Table 1 lists the ones that we will be considering in this study

where θ is a vector containing the principal angles between a vector spaces U and

V with dim(U) = p ≥ dim(V) = q, i.e., θ = (θ1, θ2, . . . , θq) [9]. The derivation of

these metrics can be found in [7].

TABLE 1. Table of Grassmannian Distances

Metric Name Mathematical Expression

Fubini-Study dFS(U, V) = cos−1 (Πq
i=1cosθi)

Chordal 2-norm dc2(U, V) = ||2sin1
2
θ||∞

Chordal F-norm dcF (U, V) = ||2sin1
2
θ||2

Geodesic (Arc Length) dg(U, V) = ||θ||2
Chordal (Projection F-norm) dc(U, V) = ||sinθ||2
Projection 2-norm dp2(U, V) = ||sinθ||∞

Implementation

The question we address in this section is to how we can apply these

concepts of angles and metrics to design a successful algorithm. The idea of an

29

Algorithm 3 Vector to Vector

Input: Probe image P

Output: Classification of P as a digit 0, . . . , 9.

Step 1: For every digit in the training set, E, calculate the angle between E

and P .

Step 2: Classify P according to the smallest angle.

angle between two vectors can very easily be implemented into an algorithm by

simply calculating the angle between a probe and every digit in the training set,

classifying the probe according to the smallest angle. When applying the other two

concepts, we would like to maintain the nearest neighbor framework and thus, we

will need to manually form a subspace around each digit. We can do this in a

similar fashion as we did in Chapter 2, using rotations 10 from −π
8

to π
8
, ten

horizontal translations from −5 to 5 pixels, ten vertical translations from −5 to 5

pixels, and ten scalings from .8 to 1.2 to form a data matrix and then obtain a

basis using QR decomposition or SVD. Algorithms 3, 4, and 5 provide a

description of how the three algorithms will be implemented.

One thing to notice is that we are using QR decomposition to obtain a

basis instead of SVD. The reason for this is that QR is computationally less

expensive than SVD and we do not need the singular values of the data matrices

for these implementations. We should also point out that we used all of the

principal angles in the Subspace to Subspace algorithm to compute the distance

between two subspaces.

Suppose our images are of size m× n. Then Algorithm 3 is very efficient

since calculating the angle between two vectors only requires approximately

6mn− 1 flops. For Algorithms 4 and 5, suppose we generate tE transformations

30

Algorithm 4 Vector to Subspace

Input: Probe image P

Output: Classification of P as a digit 0, . . . , 9.

Step 1: For every digit in the training set, form the data matrix using affine

transformations.

Step 2: Find basis of data matrix using QR decomposition.

Step 3: Calculate the angle between P and the every subspace generated by a

training digit.

Step 4: Classify P according to the smallest angle.

Algorithm 5 Subspace to Subspace

Input: Probe image P and Grassmannian metric

Output: Classification of P as a digit 0, . . . , 9.

Step 1: For every digit in the training set, E, form the data matrix using affine

transformations.

Step 2: Find basis of data matrix using QR decomposition.

Step 3: Form data matrix for P using affine transformations.

Step 4: Find basis of P ’s data matrix using QR decomposition.

Step 5: Calculate the distance between the subspace generated by P and

every subspace generated by a training digit.

Step 6: Classify P according to the smallest distance.

31

about the training digit E and tP about the probe P . This will require 27mntE

and 27mntP , respectively. In order two find the principal angles, we need two

reduced QR decompositions and a reduced SVD (2
3
t2Emn+ 2

3
t2Pmn+ 4t3E) and a

multiplication of matrices of size tE ×mn and mn× tP (tEtP (2mn− 1)) [7]. Thus,

for Algorithm 4 we have tE = t and tP = 1 giving us a total of

4t3 + 2
3
t2mn+ 29tmn+ 83

3
mn− t flops. Algorithm 5, with tE = tP = t, requires

4t3 + 10
3
t2mn+ 54tmn− t2 flops.

Figure 17 gives us a visualization of Algorithm 4 via a flow chart where

x1, x2, . . . , xn are the images in the training set and U1, U2, . . . , Un are the

corresponding subspaces that were manually generated from the transformations.

The bottom row illustrates the probe, P , being projected onto each subspace to

find the principal angle for classification.

32

Use QR to find bases.

Find Angles.

x1 x2 xn

U2 Un

...

Apply transformations.

U1

P P P

FIGURE 17. Flow chart for vector to subspace algorithm.

33

CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter we present the results of the algorithms that were described

in Chapters 2, 3, and 4 on the MNIST database. While the SVD-based algorithm

is very efficient, those that were presented in Chapters 2 and 3 are not, thus

making it impractical to test on the entire database. Instead, what we have done

here is to randomly select 50 images from the training set of each digit to form a

smaller training set. We then tested the algorithm on the first 50 images in the

testing set of each digit. In total, we are using 500 images from the training set

and testing against 500 from the testing test. The measurement used to determine

the effectiveness of the algorithms was Classification Rate (CR) which is defined as

Classification Rate =
Number of True Positives

Number of Classifications

We ran each algorithm 10 times, each time using a different set of images

for training, but the same testing set. In Table 2, we have the average CR of each

algorithm along with its standard deviation and the time it takes to classify one

digit. The algorithms were executed on a CPU with a speed of 2GHz and 1GB of

RAM.

One thing that should be pointed out is that despite its relatively poor

performance, the tangent distance algorithm is one of the most successful methods

for classifying digits [1]. However, more is needed to make this method work. For

example, it is strongly recommended in [1] and [6] that one smooth the images

with a Gaussian before applying the method. Also, one should look at

34

TABLE 2. Results of Algorithms on MNIST Database

Algorithm Average CR Standard Deviation Time(s)

SVD [3] 87.74% 1.95% 0.0007

Tangent Distance [1] 80.36% 2.06% 0.5749

Vector to Vector 82.02% 1.27% 0.0180

Vector to Subspace 90.07% 0.80% 0.0305

Fubini-Study 42.12% 1.94% 0.7134

Chordal 2-norm 51.20% 1.24% 0.7134

Chordal F-norm 82.00% 1.54% 0.7134

Geodesic (Arc Length) 81.84% 1.62% 0.7134

Chordal (Projection F-norm) 82.48% 1.46% 0.7134

Projection 2-norm 51.72% 1.68% 0.7134

transformations beyond the standard set of translations, rotations, and scalings.

In [1], transformations such as thickening are considered while [5] looks at

transformations inherent to the data. For more ways of improving the algorithm,

the reader is encouraged to read [1].

Notice that the classification rate of the Subspace to Subspace algorithm is

highly dependent on the norm used. The Chordal norm, the most successful of the

norms, achieved a classification rate of 82.48% while the worst norm, Fubini-Study,

failed to reach a classification rate of 50%.

Overall, our Subspace to Subspace methods did not perform as well as

expected, but our Grassmannian approach proved to be very effective in our Vector

to Subspace method which achieved the highest classification rate of 90.07% and

the lowest standard deviation of 0.80%. The classification rate is almost 3% higher

35

than the next closest algorithm, the SVD-based method. It should be pointed out

that in order to achieve the times in Table 2 we performed several computations

off-line. In the SVD-based method, the bases for the ten digit spaces were

pre-computed and stored for later use. In the Tangent Distance algorithm, we

pre-computed the tangent vectors of the training digits. Lastly, in the Vector to

Subspace and Subspace to Subspace algorithms, the manually generated subspaces

of the training digits (e.g. the transformations and QR decompositions) were

computed off-line. One might feel inclined to use the SVD-based method over the

Vector to Subspace due to its efficiency, but with the constant improvements of

computer hardware resulting in faster processors, one should focus more on the

classification rate of the algorithm to determine its effectiveness.

36

CHAPTER 6

SUMMARY AND CONCLUSIONS

In this thesis, we reviewed two geometry based algorithms for the

handwritten digit recognition problem while introducing three novel algorithms

based on the Grassmannian manifold. One of our three algorithms, Vector to

Subspace, achieved the highest classification rate in this study while

simultaneously achieving one of the fastest times.

While the Vector to Subspace algorithm bears a resemblance to the

SVD-based algorithm, there are two key differences that make this algorithm more

effective. Firstly, the Vector to Subspace method makes significantly more

comparisons. The SVD-based algorithm compares an unknown digit with ten

subspaces while the Vector to Subspace method compares the digit to 500

subspaces, i.e. the size of the training set. And second, the manually generated

subspaces exhibit more linear behavior than the subspaces in the SVD-based

method. The transformations (e.g. rotations, translations, and scalings) of a

training digit are much closer to the digit than other digits in the training set.

Since smooth surfaces are locally linear, this results in a better linear

approximation.

The idea of a manually generated subspace arose from one of the problem

we faced when working with the MNIST database. Compared to other databases,

such as NIST, MNIST is relatively sparse making it very difficult to find

neighboring digits. Because of the spareness, we were unable to use the method

described in [5] to find tangent vectors.

37

Given its success in this study, we plan on testing the Vector to Subspace

method on the entire MNIST database and comparing its results with other

algorithms, including learning based algorithms, that have been shown to be the

most successful on MNIST. Moreover, we have begun to investigate ways of

improving the efficiency of the algorithm. In particular, we are looking into using

the Karcher Mean to obtain a single subspace representative for each digit. This

will make the time it takes to classify one digit comparable to that of the

SVD-based method.

38

APPENDIX

39

APPENDIX A

MATLAB CODES

40

Code #1 This code tests the SVD-based algorithm presented in Chapter 1 where
each set of training digits is treated as subspace and the bases vectors are obtained
by using the Singular Value Decomposition and an energy criterion. The unknown
digit P is then classified according to the smallest residual.

clear all

load digits

%Number of training digits to be used

numTrain = 50;

%Choose 50 random indices

trainIndices = randperm(5000);

trainIndices = trainIndices(1:numTrain);

%Number of digits to be tested

numTest = 50;

%Find maximum energy

digitEnergy = zeros(1,10);

for i = 1:10

S = svd(trainDigits(:,trainIndices,i),0);

digitEnergy(i) = cumEnergy(S);

end

%Number of singular vectors to be used

numSingVec = max(digitEnergy);

%Array to store left singular vectors

singVec = zeros(784,numSingVec,10);

%Take SVD of data and keep desired left singular vectors

for i = 1:10

[singVec(:,:,i),S,V] = svds(trainDigits(:,trainIndices,i),

numSingVec);

end

counter = zeros(1,10);

for i = 1:10

for j = 1:numTest

41

%Probe

P = testDigits(:,j,i);

%Array to store distances

D = zeros(1,10);

%Find distance from probes to digit spaces.

for k = 1:10

D(k) = norm(singVec(:,:,k)*((singVec(:,:,k)’)*P) - P);

end

%Smallest distance

m = min(D);

%Count how many places the minimum occurs

minCount = 0;

for k = 1:10

if D(k) == m

minCount = minCount + 1;

end

end

if minCount == 1 %Minimum only occurs once

if D(i) == m %Minimum occurs in right position

%Correct classification; update counter

counter(i) = counter(i) + 1;

end

end

end

end

accuracy = sum(counter)/(10*numTest);

Code #2 This function determines the number of singular values needed to
achieve an energy of at least 97%. The input must be a row or column vector of
singular values in decreasing order.

function n = cumEnergy(D)

totalE = sum(D.^2);

n = 1;

42

partialE = 0;

while true

partialE = partialE + D(n)^2;

if partialE/totalE > .97

break

else

n = n + 1;

end

end

Code #3 This code tests the Tangent Distance algorithm presented in Chapter 3
where a neighborhood is formed around the test digit E and the probe P using
translations, rotations, and scalings and the tangent vectors are obtained by using
the SVD and an energy criterion. The spring tangent distance is then calculated
with k = .05.

clear all

load digits

%Number of training digits to be used

numTrain = 50;

%Choose random indices

trainIndices = randperm(5000);

trainIndices = trainIndices(1:numTrain);

%Number of images to be tested for each digit

numTest = 50;

%counter

c = zeros(10,1);

%Arrays to store tangent distance for each digit

D = zeros(numTrain,10);

for k = 1:10

for j = 1:numTest

%Get Probe

43

P = testDigits(:,j,k);

%Get Tangent Vectors for P

Ball_P = transformations(P);

[UP,SP,TP] = svd(Ball_P - repmat(P,1,size(Ball_P,2)),0);

P_energy = cumEnergy(diag(SP));

LP = UP(:,1:P_energy);

%Calculate distance to each digit in training set

for i = 1:length(trainIndices)

for n = 1:10

%Get Training Digits

E = trainDigits(:,trainIndices(i),n);

%Get Tangent Vectors for E

Ball_E = transformations(E);

[UE,SE,TE] = svd(Ball_E

- repmat(E,1,size(Ball_E,2)),0);

E_energy = cumEnergy(diag(SE));

LE = UE(:,1:E_energy);

D(i,n) = springtangentDistance(P,LP,E,LE,.05);

end

end

%Minimum distance for every digit

minDists = min(D);

%Find where minimum distance occurs

[C,I] = min(minDists);

%Count number of times minimum occurs

minCount = 0;

for i = 1:10

if minDists(i) == C

minCount = minCount + 1;

end

end

if minCount == 1 %Minimum occurs only once

44

if I == k %Minimum occurs at correct digit

%Correct classification; update counter

c(k) = c(k) + 1;

end

end

end

end

accuracy = sum(c)/(10*numTest);

Code #4 This function translates a gray scale images in the x and/or y direction.

function x = translate(image,tx,ty)

%Get size of images

A = image;

[n,m] = size(A);

%Construct rotation matrix

T = [1, 0, tx;

0, 1, ty;

0, 0, 1];

[X,Y] = meshgrid(1:n,1:m);

X1 = [X(:)]’;

Y1 = [Y(:)]’;

%Form matrix to store coordinates

xy_mat = vertcat(X1, Y1, ones(1,n*m));

%Apply transformation to coordinates

Z = inv(T)*(xy_mat);

%New Coordinates

XI = Z(1,:);

YI = Z(2,:);

%Reshape coordinates to have same form as X and Y

XI = reshape(XI’, n, m);

YI = reshape(YI’, n, m);

%Interpolate values

45

final = interp2(X,Y,A,XI,YI);

%Set background pixels to white

for i = 1:n

for j = 1:m

if isnan(final(i,j)) == 1

final(i,j) = 255;

end

end

end

x = final;

end

Code #5 This function rotates a gray scale images about its center.

function x = rotate(image,theta)

%Get size of images

A = image;

[n,m] = size(A);

%Translation Matrix to ensure rotation is done about center

T = [1, 0, (-m/2);

0, 1, (-n/2);

0, 0, 1];

%Construct rotation matrix

R = [cos(theta), -sin(theta), 0;

sin(theta), cos(theta), 0;

0, 0, 1];

[X,Y] = meshgrid(1:n,1:m);

X1 = [X(:)]’;

Y1 = [Y(:)]’;

%Form matrix to store coordinates

xy_mat = vertcat(X1, Y1, ones(1,n*m));

%Apply transformation to coordinates

Z = (inv(T)*R*T)*(xy_mat);

46

%New Coordinates

XI = Z(1,:);

YI = Z(2,:);

%Reshape coordinates to have same form as X and Y

XI = reshape(XI’, n, m);

YI = reshape(YI’, n, m);

%Interpolate values

final = interp2(X,Y,A,XI,YI);

%Set background pixels to white

for i = 1:n

for j = 1:m

if isnan(final(i,j)) == 1

final(i,j) = 255;

end

end

end

x = final;

end

Code #6 This function scales a gray scale image about a point in the image
plane (tx, ty) by a factor of sx in the x direction and sy in the y direction.

function x = scale(sx,sy, image, tx,ty)

A = image;

[n,m] = size(A);

%Construct scaling matrix

M = [sx, 0, -tx*(sx-1); 0, sy, -ty*(sy-1); 0, 0, 1];

[X,Y] = meshgrid(1:n,1:m);

X1 = [X(:)]’;

Y1 = [Y(:)]’;

%Form matrix to store coordinates

xy_mat = vertcat(X1, Y1, ones(1,n*m));

%Apply transformation to coordinates

Z = inv(M)*(xy_mat);

47

%New Coordinates

XI = Z(1,:);

YI = Z(2,:);

%Reshape coordinates to have same form as X and Y

XI = reshape(XI’, n, m);

YI = reshape(YI’, n, m);

%Interpolate values

final = interp2(X,Y,A,XI,YI);

%Set background pixels to white

for i = 1:n

for j = 1:m

if isnan(final(i,j)) == 1

final(i,j) = 255;

end

end

end

x = final;

end

Code #7 This function performs various transformations of an image (rotations,
translations, scalings). Input image must be a column vector that can be reshaped
into a square image.

function [trans] = transformations(P)

trans = [];

nsquared = size(P,1);

n = sqrt(nsquared);

%Reshape image

I = reshape(P,n,n);

%Number of transformations

k = 10;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Rotations %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

48

a = -pi/8;

b = pi/8;

%Step Size

h = (b-a)/k;

for i = 1:k

temp = rotate(I,a+(h*i));

trans = [trans temp(:)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%x-translations %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a = -5;

b = 5;

%Step size

h = (b-a)/k;

for i = 1:k

temp = translate(I,a+(h*i),0);

trans = [trans temp(:)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%y-translations %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a = -5;

b = 5;

%Step size

h = (b-a)/k;

for i = 1:k

temp = translate(I,0,a+(h*i));

trans = [trans temp(:)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%scalings %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

49

a = .8;

b = 1.2;

%Step size

h = (b-a)/k;

for i = 1:k

temp = scale(a+(h*i),a+(h*i),I,n/2,n/2);

trans = [trans temp(:)];

end

Code #8 This function finds the Spring Tangent Distance between two digits. E
and P are images that have been concatenated into column vectors. LE and LP
are matrices whose columns are the the tangent vectors at E and P , respectively.
Lastly, k is a nonnegative number. If k = 0, this calculates the standard tangent
distance.

function std = springtangentDistance(E,LE,P,LP,k)

LEE = LE’*LE;

LEP = LE’*LP;

LPE = LP’*LE;

LPP = LP’*LP;

%Solve system

%alpha_P

Bp = (LPE*inv(LEE)*LE’ - (1+k)*LP’)*(E-P);

Ap = LPE*inv(LEE)*LEP - ((1+k)^2)*LPP;

alpha_P = Ap\Bp;

%alpha_E

Be = (LEP*inv(LPP)*LP’ - (1+k)*LE’)*(E-P);

Ae = ((1+k)^2)*LEE - LEP*inv(LPP)*LPE;

alpha_E = Ae\Be;

Pprime = P + LP*alpha_P;

Eprime = E + LE*alpha_E;

std = (norm(Eprime - Pprime)^2)

50

+ k*(norm(LE*alpha_E)^2)

+ k*(norm(LP*alpha_P)^2);

Code #9 This codes tests the Vector to Vector algorithm presented in Chapter 4
in which the angle between a training digit E and a probe P is used as the means
of classification.

clear all

load digits

%Number of images to be used in test set

%per digit

numTrain = 50;

trainIndices = randperm(5000);

trainIndices = trainIndices(1:numTrain);

%Number of images to be tested for

%every digit

numTest = 50;

%Array to store distances

dist = zeros(numTrain,10);

%Counter

c = zeros(1,10);

for k = 1:10

for i = 1:numTest

P = testDigits(:,i,k);

for j = 1:length(trainIndices)

for n = 1:10

E = trainDigits(:,trainIndices(j),n);

%Calculate Angle

angle = acos((P’*E)/(norm(P)*norm(E)));

dist(j,n) = angle;

51

end

end

digitMins = min(dist);

m = min(digitMins);

%Count how many places the minimum occurs

minCount = 0;

for l = 1:10

if digitMins(l) == m

minCount = minCount + 1;

end

end

%Minimum only occurs once

if minCount == 1

%Minimum occurs in right position

if digitMins(k) == m

%Correct classification; update counter

c(k) = c(k) + 1;

end

end

end

end

accuracy = sum(c)/(10*numTest);

Code #10 This codes tests the Vector to Subspace algorithm presented in
Chapter 4 where a subspace is manually formed around a training digit E and P is
classified according to the smallest angle it makes with each subspace.

clear all

load digits

%Number of images to be used in test set

%per digit

numTrain = 50;

trainIndices = randperm(5000);

trainIndices = trainIndices(1:numTrain);

%Number of images to be tested for

52

%every digit

numTest = 50;

%Array to store distances

dist = zeros(numTrain,10);

%Counter

c = zeros(1,10);

for k = 1:10

for i = 1:numTest

P = testDigits(:,i,k);

for j = 1:length(trainIndices)

for n = 1:10

E = trainDigits(:,trainIndices(j),n);

Ball = transformations(E);

%Calculate Principal Angle

angle = principalAngles(P,Ball);

dist(j,n) = angle;

end

end

digitMins = min(dist);

m = min(digitMins);

%Count how many places the minimum occurs

minCount = 0;

for l = 1:10

if digitMins(l) == m

minCount = minCount + 1;

end

end

53

%Minimum only occurs once

if minCount == 1

%Minimum occurs in right position

if digitMins(k) == m

%Correct classification; update counter

c(k) = c(k) + 1;

end

end

end

end

accuracy = sum(c)/(10*numTest);

Code #11 This code tests the Subspace to Subspace algorithm presented in
Chapter 4 using the Chordal(Projection F-norm). Here, subspaces are manually
formed around both the training digit E and the probe P . The distance between
the two subspaces is then determined using the Chordal norm of the principal
angles. The other 5 variations of this algorithm are implemented in exactly the
same manner by simply changing the norm used on the principal angles.

clear all

load digits

%Number of images to be used in test set

%per digit

numTrain = 50;

trainIndices = randperm(5000);

trainIndices = trainIndices(1:numTrain);

%Number of images to be tested for

%every digit

numTest = 50;

%Array to store distances

dist = zeros(numTrain,10);

%Counter

c = zeros(1,10);

for k = 1:10

for i = 1:numTest

54

P = testDigits(:,i,k);

Ball_P = transformations(P);

for j = 1:length(trainIndices)

for n = 1:10

E = trainDigits(:,trainIndices(j),n);

Ball_E = transformations(E);

%Calculate Principal Angles

angles = principalAngles(Ball_P,Ball_E);

%Chordal(Projection F-norm)

dist(j,n) = norm(sin(angles));

end

end

digitMins = min(dist);

m = min(digitMins);

%Count how many places the minimum occurs

minCount = 0;

for l = 1:10

if digitMins(l) == m

minCount = minCount + 1;

end

end

%Minimum only occurs once

if minCount == 1

%Minimum occurs in right position

if digitMins(k) == m

%Correct classification; update counter

c(k) = c(k) + 1;

end

end

end

55

end

accuracy = sum(c)/(10*numTest);

Code #12 This function calculates the principal angles between two subspaces
spanned by the columns of A and B.

function [angles] = principalAngles(A,B)

[Qa,Ra] = qr(A,0);

[Qb,Rb] = qr(B,0);

C = svd(Qa’*Qb,0);

angles = acos(C);

56

BIBLIOGRAPHY

57

BIBLIOGRAPHY

[1] P. Simard, Y. L. Cun, J. Denker, and B. Victorri. “Transformation invariance in
pattern recognition - tangent distance and tangent propagation.” Imaging
System Technology, vol. 11, pp. 181–194, 2001.

[2] Y. LeCun and C. Cortes. “The MNIST Database of Handwritten Digits.”
Internet: http://yann.lecun.com/exdb/mnist/, 1998 [Feb. 17, 2011].

[3] L. Elden. Matrix Methods in Data Mining and Pattern Recognition. SIAM, 2007.

[4] M. Kirby. Geometric Data Analysis: An Empirical Approach to Dimensionality
Reduction and the Study of Patterns. John Wiley & Sons, Inc., 2001.

[5] J.-M. Chang, M. Kirby, L. Krakow, J. Ladd, and E. Murphy. “Classification of
images with tangent distance.” Technical report, Colorado State University,
2004.

[6] B. Savas. “Analyses and test of handwritten digit algorithms.” Master’s thesis,
Linköping University, 2002.

[7] J.-M. Chang. “Classification on the Grassmannians: Theory and Applications.”
Ph.D. thesis, Colorado State University, 2008.

[8] A. Björck and G. Golub. “Numerical methods for computing angles between
linear subspaces.” Mathematics of Computing, vol. 27(123), pp. 579–594, 1973.

[9] A. Adelman, T. Arias, and S. Smith. “The geometry of algorithms with
orthogonality constraints.” Matrix Anal. Appl., vol. 20(2), pp. 303–353, 1999.

[10] J.-M. Chang, J. Beveridge, B. Draper, M. Kirby, H. Kley, and C. Peterson.
“Illumination face spaces are idiosyncratic,” presented at The International
Conference on Image Processing, Computer Vision, & Pattern Recognition,
Las Vegas, NV, 2006.

58

