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Multi-still to multi-still image

comparison
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Can you tell them apart?
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> Comparison based on correlations —
a baseline algorithm

Kricms .l"q'.':f:;-‘r.' for {10 IJ'.':.'_'L'.\.'

Cor(x®,y®) Cor(x®, y®)
(1) (2) (3) (4)

_ Y Ly y y*

Similarity score for comparing multi-still sets X and Y is defined to be,
k

1 . . . -
S(X ,Y) ZEZ(S(X(J)’Y)+S(V(J)’ X)) where s(X(J),Y) — maz( {Cor (X(J), y( ))}
j=1 1<i<

forall X'V e X and yY ey
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lllumination space - geometry
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 Belhumeur and Kriegman —
the set of n-pixel
> monochrome images of an

object of any shape with a
general reflectance function,
seen under all possible
illumination conditions, forms
a convex polyhedral cone [2].

M .- e |fAandB arein an

S illumination cone C, then for
| allae[0,1],a A+ (1-a)B e
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L
= lllumination space - geometry

[Oniversity”
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100

« Basri and Jacobs — the set of
images of a convex,
Lambertian object seen under
arbitrary distance light sources
lies approximately in a 9-
dimensional linear subspace
with over 99% of the energy

[1].

A
Bl +
My
Bl ¢
all v
0y

By e Ramamoorthi - Transforms the

problem of linear
approximation with spherical
harmonics into linear
approximation with principal
components [8].

Cumulative energy

Ay

1 2 3 4 5 6 7 8 910 1112 13
Number of modes
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lHlumination spaces and the

Grassmannian

Krenwlodse fo Gro Places

We model illumination spaces
as points on a geometric
object known as the
Grassmann manifold or the
Grassmannian.

Subject one’s illumination cone,
element of G(g,m)

A Grassmannian G(g,m) is a
m-dimensional geometric
object whose points
parameterize subspaces of a
fixed dimension, q.

Subject two’s illumination cone,

We measure the distance element of G(q,m)

between subspaces by
examining the principal angles.

The Grassmannian G(g,m)
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Principal angles - idea
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Subject one’s illumination cong,
G(g,m)

element g

Subject two’s illumination cone,

element of G(q,m)

The Grassmannian G(g,m)
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Principal angles - definition

Krenwlodse fo Gro Places

It X and Y are two vector subspaces of R™, then the principal angles ), € |0, %]

1 <k < qbetween X and Y are defined recursively by

cos(f) = maxmaxu’ v = u} vy
ueX veY
subject to ||u|| = [|v]| = 1, ulu; = 0and v!v; = 0fori =1: &k — 1 and

¢ = min{dim(X),dim(Y)} > 1.

* Thus, at the end of the comparison between two subspaces, we obtain a
vector of principal angles 0 =16,,6,,...,6,) thattell us the geometric
relationship between the two subspaces.
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ldea of principal angles —

optimization by deflation
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Subspace of subject 1

q
u, =Y aX,a =scalar
i=1

Basis (i) | Vector (x) ]
1 — _ _
5 — Vi = ;ﬁ. Yi, 5, = scalar
3 <«
X T
g AN

Subspace of subject 2

Basis (i) Vector (y,)
: n u,' v
- 0)=-—
e
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Should we consider...?

vrienlodse fo Gio Places

Single? Multiple?

(6 =0in) (8,,6,)

(6 = Orax) o 6,,6,,6,)
(6) 6,,0,,0,,...,0)

It is revealing to consider nested subspaces of X and Y in
G(g,m) by defining the ¢ - truncated principal angle vector

0' =(6,.6,,...,6,) ,where 0, <6,<...<0, are the principal
angles between Xand Y and 1</<q.
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Truncated Grassmannian distances

Krenwlodse fo Gro Places

‘ ‘

Arc Length (Geodesic) [4] d,(X,Y)= H<9 H2
l

Fubini-Study [7] des (X,Y) = 0051(1__1[ cos Hij
Projection F (Chordal) [3] d (X,Y)= Hsin 0" ‘2

l : 1 4
Chordal Frobenius de (X,Y) = 23"159

2

/ .

Subspace Distance [6] d,(X,Y)= Hsm 6 )
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Concept of idiosyncrasy
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An illumination space estimated from images
of one subject should always be “closer” to
another illumination space estimated from
images of the same subject than to any

illumination space estimated from images of a
different subject.
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Methods of experimentation

Krenwlodse fo Gro Places

® We estimate two illumination subspaces for every
subject in the Yale [5] and CMU-PIE [9] data sets.

® The subspaces for each person are estimated from
randomly selected sets of 8 or more images of the
subject.

® For the 67 subjects in the CMU-PIE data set, this
creates 67 pairs of matching subspaces and 4,422 pairs
of non-matching subspaces.

® For the 10 subjects in the Yale Database B, this creates
10 pairs of matching subspaces and 90 pairs of non-
matching subspaces.
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Empirical results — YDB

Krenwlodse fo Gro Places
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) Empirical results — CMU-PIE, separate

lighting conditions
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) Empirical Results — CMU-PIE, pooled

EE lighting conditions
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Analysis of empirical results

Krenwlodse fo Gro Places

* For each of the ten trials and all 67 subjects in CMU-PIE
data set, the distance between the two matching
subspaces is always less than the distance between
any non-matching pair of subspaces.

* For each of the ten trials and all 10 subjects in Yale
Database B, the distance between the two matching
subspaces is always less than the distance between
any non-matching pair of subspaces.

* We therefore assert that these data sets are Grassmann
separable and illumination face spaces are idiosyncratic.

Jen-Mei Chang WORLDCOMP’06 : IPCV’06 June 27 2006 — Las Vegas, NV 27/34



Colorado

Conclusions — 1/4

= Feature

# Noise

Jen-Mei Chang WORLDCOMP’06 : IPCV’06 June 27 2006 — Las Vegas, NV 28/34




Conclusions — 2/4

Universitg™

Krenwlodse fo Gro Places

V.S.

1
i

V.S.

WORLDCOMP’06 : IPCV’'06

June 27 2006 — Las Vegas, NV 29/34




Conclusions — 3/4
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An illumination space = a point on a Grassmann manifold

Grassmannian distance
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Conclusions — 4/4

Krenwlodse fo Gro Places

Room Lights Off Perfect separation when
All Subjects considering truncated
[ B B BN BN B BN BN BN BN BN BN B AR BN principal angles

FAR at 0% FRR

Imperfect separation when
using ALL of the principal
angles available

Number of principal angles (()
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Illumination variations - movie



What I mean by variation of illuminations
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Illumination variations



You can see how variations of illuminations might present as a problem in the task of recognition.
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How do others commonly handle illumination variations?
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Illumination normalization
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Single to single image comparison

Can you tell them apart?
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Single to single image comparison

Can you tell them apart?
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Multi-still to multi-still image comparison





Can you tell them apart?



We propose keeping the variations of illuminations and treat them as feature of the subjects and will show later that these variations are characteristic of the subjects. What’s a better way to keep the variations than doing set to set image comparisons?
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Comparison based on correlations – a baseline algorithm

X = 

Y = 

Similarity score for comparing multi-still sets X and Y is defined to be, 

, where 

for all

and



		One way to do set to set image comparisons is using correlations. For example, to compare set X and set Y, we can calculate correlation scores between an image of X and every single image in Y. Record  the maximum of that calculation, then repeat this for every image in X. Similarly, do this for every image in Y. Finally, the similarity score between X and Y will be based on these max correlations. 

		This is just a simple straight-across comparison. No use of the geometry of the dataset.
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Illumination space - geometry



		Belhumeur and Kriegman – the set of n-pixel monochrome images of an object of any shape with a general reflectance function, seen under all possible illumination conditions, forms a convex polyhedral cone [2].





		If A and B are in an illumination cone C, then for all a Î[0,1], a A + (1- a) B Î C.









		Another geometric property of the illumination spaces is that it’s a convex polyhedral cone. 

		 Thus, combining the two properties, we can see that illumination spaces are convex polyhedral cone in a low-dimensional space.
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Cone convexity - movie

A

B
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Illumination space - geometry

		Basri and Jacobs – the set of images of a convex, Lambertian object seen under arbitrary distance light sources lies approximately in a 9-dimensional linear subspace with over 99% of the energy [1]. 





		Ramamoorthi – Transforms the problem of linear approximation with spherical harmonics into linear approximation with principal components [8].



Number of modes

Cumulative energy

> 99 %



		We want to explore the geometry of such data set and further use geometrically-motivated distance measure to compare image sets.

		 illumination face spaces are intrinsically low-dimensional.
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Illumination spaces and the Grassmannian

		We model illumination spaces as points on a geometric object known as the Grassmann manifold or the Grassmannian. 



		A Grassmannian G(q,m) is a m-dimensional geometric object whose points parameterize subspaces of a fixed dimension, q.   





		We measure the distance between subspaces by examining the principal angles.



Subject one’s illumination cone,

                         element of G(q,m)

Subject two’s illumination cone,

element of G(q,m)

The Grassmannian G(q,m)



Once we see that illumination spaces are convex polyhedral cone in a low-dimensional space, we can model these subspaces as points on a geometric object known as the Grassmann manifold. Then use the well-developed theories regarding distances on Grassmannian to compare illumination subspaces.  These Grassmannian distances are forms of geodesic and base on the so-called principal angles. 
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Principal angles - idea

Subject one’s illumination cone,

element of G(q,m)

Subject two’s illumination cone,

element of G(q,m)

The Grassmannian G(q,m)



Calculating angle between 1-dimensional subspaces is easy, based on dot product, everyone knows it. Angles between higher dimensional subspaces are called principal angles.
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Principal angles - definition

		Thus, at the end of the comparison between two subspaces, we obtain a vector of principal angles                                 that tell us the geometric relationship between the two subspaces.





Definition page, take 5-10 seconds to point out the red part. 
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Idea of principal angles – optimization by deflation

Subspace of subject 1

Subspace of subject 2

…

…

		 Basis (i)		   Vector 

		1

		2

		3



		q



		Basis (i)		  Vector

		1

		2

		3



		q
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Should we consider…?

It is revealing to consider nested subspaces of X and Y in G(q,m) by defining the     - truncated principal angle vector  

                                , where                            are the principal angles between X and Y and               .

OR

Single?

Multiple?



Relate this to principal components. Use the subspaces of most energy to capture the geometry of the data set.
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 Truncated Grassmannian distances

		
    Arc Length (Geodesic) [4]

		 
   Fubini-Study [7]

		
   Projection F (Chordal) [3]

		
   Chordal Frobenius

		
   Subspace Distance [6]
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Concept of idiosyncrasy

An illumination space estimated from images of one subject should always be “closer” to another illumination space estimated from images of the same subject than to any illumination space estimated from images of a different subject.
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Methods of experimentation

We estimate two illumination subspaces for every subject in the Yale [5] and CMU-PIE [9] data sets.



The subspaces for each person are estimated from randomly selected sets of 8 or more images of the subject.



For the 67 subjects in the CMU-PIE data set, this creates 67 pairs of matching subspaces and 4,422 pairs of non-matching subspaces.



For the 10 subjects in the Yale Database B, this creates 10 pairs of matching subspaces and 90 pairs of non-matching subspaces.
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Data structure
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Empirical results – YDB

FAR at 0% FRR

Number of principal angles 



3 sentences

		Each subject can be separated perfectly with 100% accuracy. 

		Choose one point for the projection f norm to discuss. Put into the context of what percentage means.

		Use mirror image achieve 100%  accuracy.

		Using as few as 8 images to train.
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Empirical results – CMU-PIE, separate lighting conditions

FAR at 0% FRR

Number of principal angles

0

10

20

5

15

25



		Legends are the same as before

		Similar phenomena in a bigger data set in CMU-PIE 

		Grassmannian distances perfect, baseline poor  performance











June 27 2006 – Las Vegas, NV               */34

Jen-Mei Chang



Empirical Results – CMU-PIE, pooled lighting conditions

Number of principal angles

FAR at 0% FRR



Similar phenomenon happened here where Grassmannian distances are able to separate subjects perfectly and baseline algorithm is still doing poorly.
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Analysis of empirical results

		For each of the ten trials and all 67 subjects in CMU-PIE data set, the distance between the two matching subspaces is always less than the distance between any non-matching pair of subspaces.



		For each of the ten trials and all 10 subjects in Yale Database B, the distance between the two matching subspaces is always less than the distance between any non-matching pair of subspaces.





		We therefore assert that these data sets are Grassmann separable and illumination face spaces are idiosyncratic.
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Conclusions – 1/4





= Feature

¹ Noise
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Conclusions – 2/4

v.s.

v.s.

=

=
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Conclusions – 3/4

An illumination space = a point on a Grassmann manifold

Grassmannian distance
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Conclusions – 4/4

FAR at 0% FRR

Number of principal angles

0

10

20





Perfect separation when considering truncated principal angles

Imperfect separation when using ALL of the principal angles available



Claim of idiosyncrasy would not have been possible if not considering the notion of nested subspaces and the use of truncated principal angles.
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 - Thank you for your attention - 





What I have given you is a very brief overview of some new ideas and hopefully you are somewhat convinced  that illumination face spaces are idiosyncratic.



What we proposed here is not a way to do face recognition, but to deliver an important message – illumination variations are important in determining separability!
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If X and Y are two vector subspaces of R™, then the principal angles 0, € [0, 5],

1 <k < gbetween X and Y are defined recursively by

cos(0;) = max maxu’v = u} vy
ueX vey

subjectto ||u|| = |[v]| = 1, uTu; = 0and vTv; =0fori =1:k —1and
g = min{dim(X),dim(Y)} > 1.




l






Similarity Score

s®

S

s

55

s®
5%

5

55

























































Location 1


Location 2


Failures (out of 27)


Messy GA


0


0


Random Starts Local Search


0


9


Key-Feature Matching


0


3


Averate run-times (seconds)


Messy GA


1,006


7,171


Random Starts Local Search


1,180


8,137


Key-Feature Matching


118


1,307


Probability of Success per Trial


Messy GA


0.97


0.57


Random Starts Local Search


0.009


0.002


Summary of Horizon Results










(


)


l






1


q


2


q


o
L













Department of

Mathematics




100

il

il

70

60

50

0

0

Eil

10

12 3 4 5 6 7 8 9 10 11 12 13

















A

=












1


q


1


1


1


1


1


)


cos(


v


u


v


u


T


=


q


1


v


1


u


2


u


2


v


q


q


2


q


2


2


2


2


2


)


cos(


v


u


v


u


T


=


q


(


)


i


y


(


)


i


x


scalar


x


u


i


q


i


i


i


=


=


å


=


a


a


,


1


1


å


=


=


=


q


i


i


i


i


scalar


y


v


1


1


,


b


b


(


)


l


)}


,


(


{


)


,


(


)


(


)


(


1


)


(


max


i


j


k


i


j


y


x


Cor


Y


x


s


£


£


=


(


)


å


=


+


=


k


j


j


j


X


y


s


Y


x


s


Y


X


S


1


)


(


)


(


)


,


(


)


,


(


2


1


)


,


(


X


x


j


Î


)


(


Y


y


j


Î


)


(






)


1


(


x


)


2


(


x


)


3


(


x


)


5


(


x


)


4


(


x


)


1


(


y


)


3


(


y


)


2


(


y


)


4


(


y


)


,


(


)


1


(


)


1


(


y


x


Cor


)


5


(


y






)


,


(


)


5


(


)


1


(


y


x


Cor










÷


÷


ø


ö


ç


ç


è


æ


=


Õ


=


-


l


l


1


1


cos


cos


)


,


(


i


i


FS


Y


X


d


q


(


)


q


q


q


q


q


,


,


,


2


1


K


=


2


)


,


(


l


l


q


=


Y


X


d


g


1] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces. PAMI, 25(2):218-233,
2003.

2] P. Belhumeur and D. Kriegman. What is the set of images of an object under all possible
illumination conditions. IJCV, 28(3):245-260, July 1998.

3] J. Conway, R. Hardin, and N. Sloane. Packing lines, planes, etc.: Packings in Grassmannian
spaces. Experimental Mathematics, 5:139-159, 1996.

4] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality
constraints. SIAM J. Matrix Anal. Appl., 20(2):303-353, 1999.

5] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: lllumination cone models
for face recognition under variable lighting and pose. PAMI, 23(6):643-660, 2001.

6] G.H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University Press, third
edition, 1996.

7] P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley & Sons, 1978.

8] R. Ramamoorthi. Analytic PCA construction for theoretical analysis of lighting variability in




q


£


£


l


1










(


)


l


l


K


q


q


q


q


,


,


,


:


2


1


=


Pl P
HAANEEE.
HEANEEE
HENNEE

A 1 o B |
HEREEE -
ok Ld - PP













=









images of a Lambertian object. PAMI, 24(10):1322—1333, 2002.

[9] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. PAMI,
25(12):1615 — 1618, 2003.








2


sin


)


,


(


l


l


q


=


Y


X


d


c


2


2


1


sin


2


)


,


(


l


l


q


=


Y


X


d


cF


¥


=


l


l


q


sin


)


,


(


Y


X


d


ss










Room Lights Off

All Subjects





5 10 15

Mean Subtracted

Baseline c
Arc Length A
Chordal Frobenius <
Projective F Norm v
Fubini-Study o





(


)


l


1 1
Room Lights On

All Subjects

DSOGOOOOOOOEEO

Room Lights Off

All Subjects





Poadl Lighting

Subtract Means

sessescssencecanssenn

T T T T
5 10 15 20









Knowledge to Go Places




l


K


q


q


q


£


£


£


2


1


q


u


q


q


q


v


(


)


q


q


q


T


q


q


v


u


v


u


=


q


cos


l


l


)


,


(


2


1


q


q


)


(


min


1


q


q


=


)


,


,


(


3


2


1


q


q


q


)


,


,


,


,


(


3


2


1


l


K


q


q


q


q


)


(


max


q


q


=


q


)


(


i


q










































Knowledge to Go Places








Kuowledse to Go Places
















UNKNOWN-0.xls

Sheet1


			


						Summary of Horizon Results


												Location 1			Location 2


						Failures (out of 27)


									Messy GA			0			0


									Random Starts Local Search			0			9


									Key-Feature Matching			0			3


						Averate run-times (seconds)


									Messy GA			1,006			7,171


									Random Starts Local Search			1,180			8,137


									Key-Feature Matching			118			1,307


						Probability of Success per Trial


									Messy GA			0.97			0.57


									Random Starts Local Search			0.009			0.002








Sheet2


			








Sheet3


			










UNKNOWN-1.xls

Sheet1


			


						Summary of Horizon Results


												Location 1			Location 2


						Failures (out of 27)


									Messy GA			0			0


									Random Starts Local Search			0			9


									Key-Feature Matching			0			3


						Average run-times (seconds)


									Messy GA			1,006			7,171


									Random Starts Local Search			1,180			8,137


									Key-Feature Matching			118			1,307


						Probability of Success per Trial


									Messy GA			0.97			0.57


									Random Starts Local Search			0.009			0.002


						Mean, standard deviation, min, max and median are given in paper.








Sheet2


			








Sheet3


			










UNKNOWN-2.xls

Sheet1


			


						Summary of Algorithm Performance on 54 Horizons


												Location 1			Location 2


						Failures (out of 27)


									Messy GA			0			0


									Random Starts Local Search			0			9


									Key-Feature Matching			0			3


						Average run-times (seconds)


									Messy GA			1,006			7,171


									Random Starts Local Search			1,180			8,137


									Key-Feature Matching			118			1,307


						Probability of Success per Trial


									Messy GA			0.97			0.57


									Random Starts Local Search			0.009			0.002


						Mean, standard deviation, min, max and median are given in paper.








Sheet2


			








Sheet3


			










UNKNOWN-3.unknown



UNKNOWN-4.unknown



UNKNOWN-5.unknown



UNKNOWN-6.unknown



UNKNOWN-7.unknown



UNKNOWN-8.unknown



UNKNOWN-9.unknown



UNKNOWN-10.unknown



UNKNOWN-11.unknown



UNKNOWN-12.unknown



UNKNOWN-13.unknown



UNKNOWN-14.unknown



UNKNOWN-15.unknown



UNKNOWN-16.unknown



UNKNOWN-17.unknown





