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Abstract

Empirical studies have shown that the collection of
handwritten digits when acquired under a uniform condi-
tion forms a differentiable manifold which can be well ap-
proximated with linear structures. That is, each point on the
manifold is associated with a geometry that parameterizes
linear structures. Because of this, the problem of comparing
a pair of digits can be turned into the problem of calculating
the distance between two linear structures in their respec-
tive geometric space. In this paper, we present a new classi-
fication paradigm that builds upon the linear structure that
arises from the Grassmann manifold and benchmark our
empirical results on the publicly available MNIST database
with two other geometrically sound methods. Without any
further preprocessing, the classification performed on the
Grassmann manifold achieves the best result among these
three approaches.

Keywords: Geometric data analysis, handwritten digit
recognition, nearest neighbor classifier, Grassmann mani-
fold

1. Introduction
The problem of handwritten digit recognition has long

been an open area in the field of pattern classification and of
great importance in industry. The heart of the problem lies
within the ability to design an efficient algorithm that can
recognize digits written and submitted by users via a tablet,
scanner, and other digital devices in real time. The appli-
cations of successful handwritten digit classification algo-
rithms are far-reaching. For example, the post office can
scan envelopes and automatically sort them by the recog-
nized zip code and banks can automatically pick up dol-
lar amounts from scanned checks [1]. Generally speaking,
handwritten digit recognition is a subproblem of handwrit-
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ten character recognition where an algorithm is needed not
only to classify digits, but letters as well. Findings in the
field of digit recognition can be projected to that of charac-
ters. Currently, one of the most interesting applications of
such field is the ability to convert a document written by a
user on a tablet into a typed document.

In this study, we will present a novel geometric ap-
proach rooted in the Grassmann manifold, a parameter
space where linear subspaces reside. Under this setup,
we design two algorithms for which one utilizes a one-to-
many while the other utilizes a many-to-many classifica-
tion paradigm [2]. These algorithms are tested on the pub-
licly available MNIST database [3] and the classification
results are benchmarked with two other geometry-driven al-
gorithms – a subspace approach based on an optimal basis
representation and a linearization approach based on a tan-
gent approximation.

Experiments conducted in the present study assume a
nearest neighbor algorithm. That is, given a set of train-
ing patterns {x1, x2, . . . , xN} each belonging to a unique
digit class via the map φ : Rn → C, where C =
{“0”, “1”, . . . , “9”} is the set of digit classes. Moreover, if
the space is endowed with a metric d(·, ·), then an unknown
pattern y is given the label of φ(xi′) if d(y, xi′) < d(y, xi)
for all 1 ≤ i ≤ N , i′ 6= i.

Due to the nature of the data, we use three transforma-
tions to mimic the results of human handwriting. Although
factors such as thickening and thinning can be considered in
the algorithm designs to improve accuracy [1], we adopted
three basic affine transformations: rotation, scaling, and
horizontal and vertical translation for a proof-of-concept in
the present work. See Figure 1 for an illustration of the ef-
fect of such transformations applied to a digit.

We organize the rest of the paper as follows. In Section 2,
we review two similar approaches where each assumes the
digit manifolds are approximated by a linear space. In
Section 3, we present the notion of angles in the high-
dimensional spaces which are the fundamental building
blocks of metrics on the Grassmann manifold. Within this
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(a) (b) (c) (d) (e)
Figure 1. (a) A sample digit in MNIST. (b) A rotation of (a) by 45◦

in the counterclockwise orientation. (c) A stretched version of (a)
by a factor of 1.5. (d) The result of (a) being translated 5 pixels to
the right. (e) The result of (a) being translated 5 pixels down.

section, we discuss how the proposed algorithms can be ap-
plied to the handwritten digit classification problem. Lastly,
empirical results conducted on the MNIST database are pre-
sented in Section 5 and comparisons are drawn among the
three methods.

2. Background
Commonly, a gray-scale image,A, of resolutionm×n is

realized on the computer as an m× n matrix whose entries
correspond to the intensity level of the respective pixel. Let
a1, . . . ,an denote the columns of the matrix A where each
ai is a vector in Rm. Such array representation of an image
can be turned into a vector representation if we concatenate
the columns of A so that

A = [a1| . . . |an] ;

 a1
...
an

 .
Under this structure, we can realize monochrome images
as points in their resolution space. If multiple images of a
single object class is needed for processing, a data matrix
can be used to store such information where each column
(or row) of the matrix represents a distinct image or pattern.
Throughout the discussions, it is assumed that data matrices
are such that each column represents a different pattern.

2.1. A Subspace Approach via SVD

A relatively straightforward, yet effective algorithm
based on a subspace representation of digits was presented
in [4]. The underlying assumption is that each digit is a
vector in a subspace with other digits of its kind yielding a
total of ten distinct digit subspaces. For example, the opti-
mal bases for the “1”-space, in the least square sense, turned
out to be the left singular vectors of the data matrix where
each column of the matrix consists of a distinct image of
the digit “1”. Mathematically, if X is the data matrix for
the “1”-space, then its Singular Value Decomposition (SVD)
yields

X = UΣV T ,

where the columns of U , known as the left singular vectors
of X , form an orthonormal basis for the column space of

X . The subspace dimension, k, of such representation is
typically given by the numerical rank (r), which can be ob-
tained through an energy calculation and is almost always
much smaller than the resolution dimension (d) of the im-
ages. Roughly speaking, this implies that each data point,
originally realized in Rd, can be projected down to Rk,
k ≤ r � d, without losing too much critical information.
For example, we can represent all data points that are digit
“2” in the MNIST training set with 97% of the information
retained when k = 10� n = 784.

An off-line singular value decomposition is performed
on the training set for each digit and the corresponding op-
timal basis is stored. An on-line classification of a novel
pattern, P , is done first by calculating its distance to each
of the digit spaces followed by a nearest neighbor classifi-
cation. That is, the pairwise distance between P and each
of the digit subspace S(i) is given by

d(P, S(i)) = min
α(i)∈Rk

‖U (i)
k α(i) − P‖2, (1)

where 1 ≤ i ≤ 10 and U (i)
k denotes the first k columns

from the SVD of the ith digit’s data matrix ordered decreas-
ingly by the magnitude of the singular values. A (gradient)
descent-based analysis yields the solution in Equation (1)

for α(i) = U
(i)
k

T
P . Note that the final choice for k, the

number of singular vectors necessary to retain 97% energy,
is taken to be the maximum over all the digit subspaces. A
single point-to-subspace distance calculation for an image
of size m × n requires 4mnk + 2mn − k flops, making
such algorithm fairly efficient. For more details, readers are
referred to [5, 4].

2.2. A Tangent Space Model

If we imagine the aforementioned approach as a global
method, then the work proposed by Simard et al. [1] would
be considered as a local method. In their approach, every
digit is assumed to lie on a high-dimensional manifold and
associated with its tangent space. The notion of tangent
distance is incorporated for finding the pairwise distance
between patterns. Precisely, the tangent distance between
two patterns P and E is found by calculating their respec-
tive tangent space TP and TE followed by the minimization
problem

TD(P,E) = min
x∈TP ,y∈TE

‖x− y‖22. (2)

A pictorial illustration is shown in Figure 2 with a con-
trast to the conventional Euclidean distance. Under this
setup, pattern E is contained in SE , the set of points ob-
tained via a collection of allowable transformation, i.e.,

E ∈ SE = {x | x = s(E,α) for someα},
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where s(E,α) is the result of transforming E via the pa-
rameter α. Similarly,

P ∈ SP = {x | x = s(P, α) for someα},

where s(P, α) is the result of transforming P via the param-
eter α. The ways for which the tangent spaces are formed
are beyond the scope of this paper. Readers who are inter-
ested in such details are referred to [1, 6]. Note that a funda-
mental difference between the SVD model and the tangent
distance model is the overall number of pairwise distances
that are computed. Although the tangent space for each
digit in the training set is computed and stored off-line, a
tangent distance between a novel pattern and every point in
the training set is carried out and stored before classification
can take place. Such exhaustive approach is what causes the
decrease in algorithm efficiency.

Euclidean DistanceTangent Distance

TP

TE

SP

SE

P

E

Figure 2. A comparison between the tangent distance and Eu-
clidean distance between two digits, E and P . SP is the underly-
ing manifold in which P lives while SE is the underlying differ-
entiable manifold where E is found.

3. Classification on the Grassmann Manifold
Taking advantage of the success accomplished in the

area of face recognition [7], we examine the effect of the
handwritten digit recognition done on the Grassmann man-
ifold in the present study. Next, we describe in details how
the classification is done on this manifold.

Let k (generally independent) images of a given digit be
grouped together to form a data matrix X with each image
stored as a column of X . If the column space of X , R(X),
has rank k and if n denotes the image resolution, thenR(X)
is a k-dimensional vector subspace of Rn, which is a point
on the Grassmann manifold G(k, n).

Specifically, the real Grassmann manifold (Grassman-
nian), G(k, n), parameterizes k-dimensional vector sub-
spaces of the n-dimensional vector space Rn. Its precise
mathematical definition is given in Definition 3.1 and a pic-
torial illustration is shown in Figure 3(a).

Definition 3.1. The Grassmann Manifold, denotedG(k, n),
is the set of k-dimensional subspaces in Rn,

G(k, n) = {W ⊂ Rn | dim(W ) = k}. (3)

 

),( nkG  

U

V

θ2
θ1

(a) (b)
Figure 3. (a) Points on the Grassmann manifold are subspaces. (b)
Principal angles are found recursively with the first principal angle
being the smallest in the collection.

Naturally, this parameter space is suitable for subspace-
based algorithms. In the case of handwritten digit recog-
nition, by realizing sets of images as points on the Grass-
mann manifold, we can exploit the geometries imposed by
individual metrics (drawn from a large class of metrics) in
computing distances between these sets of images.

It turns out that any attempt to construct a unitarily in-
variant metric on G(k, n) yields something that can be ex-
pressed in terms of the principal angles [8]. For conve-
nience, we include a recursive definition of the principal
angles here.

Definition 3.2. [9] Let U and V be subspaces in Rn such
that p = dim(U) ≥ dim(V ) = q ≥ 1. Then the principal
angles θk ∈ [0, π/2] for k = 1, . . . , q between U and V are
defined recursively by

cos(θk) = max
u∈U

max
v∈V
|uT v| = |uTk vk|

subject to ||u||2 = ||v||2 = 1, uTui = 0, and vT vi = 0 for
i = 1, . . . , k − 1.

To explain this definition more thoroughly, suppose we
are looking for the first principal angle, θ1. We must search
through all of U and V to find the unit vectors that maxi-
mize the projection |uT v|, or equivalently the vectors with
the smallest angle between them. These vectors will be u1
and v1. To find θ2, we again look for vectors in U and V
to maximize the projection, but now our search is restricted
to the orthogonal complement of u1 and v1 in U and V , re-
spectively (see e.g., Figure 3(b)). Thus, in general, in order
to find θk we must search in the orthogonal complements of
span{u1, . . . , uk−1} and span{v1, . . . , vk−1}, respectively.
Just as an angle is a measure of the separation between two
vectors, principal angles measure the separation between
two subspaces.

Algorithm 1 gives a numerically stable algorithm for
computing the cosine of the principal angles between two
subspaces R(A) and R(B) based on the recursive algo-
rithm given by Björck and Golub [9].
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Algorithm 1 [9] Large Principal Angles
Inputs: matrices A (n-by-p) and B (n-by-q).
Outputs: cosine of the principal angles between subspaces
R(A) andR(B), C.

1. Find orthonormal bases Qa and Qb for A and B such
that QTaQa = QTb Qb = I , R(Qa) = R(A), and
R(Qb) = R(B).

2. Compute the SVD ofQTaQb: Q
T
aQb = UCV T , so that

diag(C) = cos θ.

Table 1. Table of Grassmannian distances explored in the current
study.

Metric Name Mathematical Expression
Fubini-Study dFS(U, V ) = cos−1 (Πq

i=1 cos θi)
Chordal 2-norm dc2(U, V ) = ||2 sin 1

2
θ||∞

Chordal F-norm dcF (U, V ) = ||2 sin 1
2
θ||2

Geodesic dg(U, V ) = ||θ||2
Chordal dc(U, V ) = || sin θ||2
Projection 2-norm dp2(U, V ) = || sin θ||∞

Various Grassmannian distance measures are realized
when a different topology of the Grassmann manifold is
given along with the appropriate metric. For example,
if one restricts the usual Euclidean distance function on
Rn2+n−2/2 to the Grassmann manifold under the realiza-
tion

G(k, n) ⊂ Rn
2+n−2/2 (4)

via an embedding described in [10], then the appropriate
distance measure in this setting is the chordal distance, dc
(so called because the image of the Grassmann manifold
under (4) lies in a sphere, so that the restricted distance is
simply the distance along a straight-line chord connecting
one point of that sphere to another.), which in terms of the
principal angles, has the expression dc(U, V ) = ‖ sin θ‖2.

Table 1 lists the metrics investigated in the current study.
θ = (θ1, θ2, . . . , θq) denotes the principal angle vector
between vector spaces U and V with dim(U) = p ≥
dim(V ) = q. The results of using these metrics on a face
recognition problem under variation of illumination can be
found in [11].

Under this framework, we proposed two algorithms for
classifying handwritten digits on the Grassmann manifold.
The first is a single-to-many approach coined as vector-to-
subspace algorithm in the subsequent discussions. In this
point of view, we assume that each digit in the training set
{x1, . . . , xN} is associated with a subspace S(i) found by a
way discussed later. When an unknown digit, y, is presented
to the system, the principal angle between y and each S(i)

is found. y is then classified based on its pairwise angle
θ(y, S(i)) with the nearest neighbor classifier.

The second proposed algorithm further assumes that the
unknown digit y is also associated with a subspace S(y).
Classification of y is based on the Grassmannian distance,
d(S(y), S(i)), between the subspace associated with y and
the subspace associated with every point in the training set.
We consider this type of comparison as a many-to-many
paradigm and refer this algorithm as subspace-to-subspace.

These two algorithms are cast under the Grassmann
framework, thus it is natural to assume that each data point
is associated with a subspace. However, an interesting ques-
tion that arises is that which subspace is appropriate for
the handwritten digit recognition problem? For example,
if data points {xi}’s are relatively nearby when measured
with the metric d(·, ·), then a subspace, S(i), associated
with xi can be formed by taking the linear span of the
points that fall within a fixed distance around xi, i.e., S(i) =
span{z | d(z, xi) ≤ d0} for a given constant threshold d0.
On the other hand, if data points are not nearby by, we can
manually create a subspace about a data point by taking the
linear span of all data points obtained via a set of allowable
transformations. We describe how this is done next.

Let r(x, θ) denote the resulting image of rotating x coun-
terclockwise by θ, s(x, α) denote the resulting image of
scaling x by a factor of α 6= 0, h(x, β) denote the result-
ing image of translating x horizontally by β pixels, and
v(x, γ) denote the resulting image of translating x verti-
cally by γ pixels. These four operations make up what we
mean by allowable transformations. Now, for a pattern y,
r(y) = {z | z = r(y, θ) for some θ1 ≤ θ ≤ θ2} is the
set of points obtained when y is rotated by an angle within
a specified range. Similarly, we can obtain a set of trans-
formed images around y for each of the other three oper-
ations; namely, s(y), h(y), and v(y). Finally, a subspace
that is associated with y is then the linear span of the set
r(y)∪s(y)∪h(y)∪v(y). Note that the threshold values used
in the experiments are θ1 = −π/8, θ2 = π/8, α1 = 0.8,
α2 = 1.2, β1 = −5, β2 = 5, γ1 = −5, and γ2 = 5. In
particular, we allow ten transformations of each kind, i.e.,
|r(y)| = |s(y)| = |h(y)| = |v(y)| = 10.

Algorithms 2 and 3 provide a full description of how
the two algorithms are implemented in Section 4. Since
we perform a total of 40 transformations to construct X(i)

and X(P ), their sizes are both 784× 40 resulting in the use
of 40 principal angles in calculating the distance between
subspaces.

It is worth noting that the transformed images of the
training digits as well as their orthornormal basis can be
computed a-prior off-line to increase algorithm efficiency.
In such cases, only Steps 3–4 of Algorithm 2 are done dur-
ing an on-line classification routine. The similar strategy
goes for Algorithm 3.

Int'l Conf. IP, Comp. Vision, and Pattern Recognition |  IPCV'11  | 39



Algorithm 2 vector-to-subspace Algorithm
Inputs: An unknown pattern, P ; θ1, θ2, α1, α2, β1, β2, γ1,
and γ2.
Outputs: Classification of P as one of the digits in C =
{“0”, . . . , “9”}, i.e., φ(P ).

1. For each xi in the training set T = {x1, . . . , xN}, find
r(xi) = {z | z = r(xi, θ) for some θ1 ≤ θ ≤ θ2},
s(xi) = {z | z = s(xi, α) for someα1 ≤ α ≤ α2},
h(xi) = {z | z = h(xi, β) for someβ1 ≤ β ≤ β2},
and v(xi) = {z | z = v(xi, γ) for some γ1 ≤ γ ≤ γ2}.

2. Let X(i) be the vector quantization of the set
r(xi) ∪ s(xi) ∪ h(xi) ∪ v(xi), i.e, X(i) =
[r(xi)|s(xi)|h(xi)|v(xi)]. Find orthonormal basis Qi
such thatR(Qi) = R(X(i)) andQTi Qi = I .

3. Calculate the principal angle, θ(P,X(i)), between P
andR(X(i)) using Algorithm 1.

4. φ(P )← φ(x′i) if θ(P,X(i′)) < θ(P,X(i)) for all 1 ≤
i ≤ N , i′ 6= i.

Algorithm 3 subspace-to-subspace Algorithm
Inputs: An unknown pattern, P ; k, number of principal
angles used; d, the Grassmannian distance chosen; θ1, θ2,
α1, α2, β1, β2, γ1, and γ2.
Outputs: Classification of P as one of the digits in C =
{“0”, . . . , “9”}, i.e., φ(P ).

1. For P and each xi in the training set T =
{x1, . . . , xN}, find their corresponding sets of trans-
formed images as shown in Step 1. of Algorithm 2
and form the corresponding matrix of transformation
X(i) and X(P ), respectively.

2. Find orthonormal basis Qi for xi and QP for P such
that R(Qi) = R(X(i)) &QTi Qi = I and R(QP ) =
R(X(P )) &QTPQP = I .

3. Calculate the principal angles θ = (θ1, . . . , θk) be-
tween R(X(P )) and R(X(i)) using Algorithm 1 and
their Grassmannian distance d(P, x(i)).

4. φ(P ) ← φ(x′i) if d(P, x(i
′)) < d(P, x(i)) for all 1 ≤

i ≤ N , i′ 6= i.

4. Empirical Results

We tested the proposed vector-to-subspace and
subspace-to-subspace methods on the MNIST database [3]
along with the SVD- and tangent space-based models for
comparison. MNIST is a database of handwritten digits

Table 2. Results of proposed algorithms on MNIST database
benchmarked with a SVD-based and a tangent space-based model.
CR reported here is averaged over ten trials along with the average
standard deviation, σ.

Algorithm CR σ Time (sec)
SVD [4] 87.74% 1.95% 0.0007
Tangent Space [1] 80.36% 2.06% 0.5749
vector-to-subspace 90.07 % 0.80% 0.0305
Fubini-Study 42.12% 1.94% 0.7134
Chordal 2-norm 51.20% 1.24% 0.7134
Chordal F-norm 82.00% 1.54% 0.7134
Geodesic 81.84% 1.62% 0.7134
Chordal 82.48% 1.46% 0.7134
Projection 2-norm 51.72% 1.68% 0.7134

collected by Yann LeCun of the Courant Institute at New
York University and Corinna Cortes of Google Labs, New
York. See Figure 4 for a sample of images from the MNIST
training set.

Figure 4. Sample digits from MNIST’s training set.

The database consists of 60, 000 training digits and
10, 000 testing digits, each with a uniform size of 28 × 28
pixels and centered based on image’s center of mass. No
other preprocessing was applied to the images besides from
the two just mentioned. In order to produce classification
results in a timely manner, we randomly select 50 images
of each digit from the training set to form a smaller train-
ing set. We then test the algorithm on the first 50 images
of each digit in the testing set. Overall, we are using 500
images from the training set and testing against 500 from
the testing test. The measurement used to determine the
effectiveness of the algorithms is the commonly used Clas-
sification Rate (CR), defined to be

CR =
Number of True Positives

Number of Classifications
.

Each algorithm is repeated ten times to compile statis-
tics, each time using a different set of images for training
while keeping the same testing set across algorithms. In Ta-
ble 2, we report the average CR of each algorithm along
with the corresponding average standard deviation and the
time it takes to classify one digit in seconds. The algorithms
were executed on a platform with a 2GHz CPU and 1GB of
RAM.
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Since a primary goal of this paper is to provide an al-
ternative platform for classifying handwritten digits, no sig-
nificant efforts were made to optimize algorithm efficiency
in the smaller scale. Rather, the experiments designed dur-
ing this study are meant to serve as a proof-of-concept in
demonstrating the feasibility of the proposed algorithms.
Having said that, the classification rate reported here for
the tangent space model was obtained under no further pre-
processing; however, it is strongly recommended in [1]
and [5] that one preprocesses the images with a smoothing
filter, particularly in the Tangent Space algorithm, in order
to achieve a more desired classification outcome. Further-
more, transformations beyond the ones used in the current
study were also implemented to achieve the results reported
in [1]. It is worth mentioning that the tangent space model
was shown to be successful in handing other types of data
set such as face images acquired under variations of illumi-
nation [12].

While the SVD-based algorithm achieves the best over-
all time, the proposed vector-to-subspace accomplishes the
best accuracy without compromising much in speed. With
the advent of cloud computing, it is fair to say that accu-
racy is more likely to outweigh speed in the determination
of future algorithm designs. And the practices described
here serves as a jumping-off point for pattern classification
problems that are natural with a set-to-set paradigm.

5. Summary and Future Work

This paper presents a novel platform for classifying
handwritten digits. The success of the work builds on the
notion that variations in the state of an object can pro-
vide discriminatory information. In particular, the nature
of this information arises from local features that possess
their own special characteristics under a variation of state.
We proposed two algorithms in the Grassmann framework
from which one achieves the best overall efficiency on the
MNIST database when compared to two existing geometry-
driven approaches. The work accomplished here serves as
a blueprint for object recognition problems where families
of patterns reside in their own characteristic subspaces.

It is reasonable to conjecture that an improved classifi-
cation rate will be observed if we include a wider range
of transformations when associating digits with a sub-
space structure; however, future research will be empha-
sized on improving the representation of points on the digit
manifold in the context of Grasmann framework. Ideas
such as the Karcher mean on the Grassmann manifold
can be used to compute a reduced representation of the
gallery points while still maintaining original classification
outcome. With this representation our current vector-to-
subspace algorithm would enjoy an on-line process time
comparable to that of the SVD-based routine.
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