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ABSTRACT

CLASSIFICATION OF PLACENTAL CHORIONIC SURFACE VASCULATURE

NETWORK FEATURES USING MACHINE LEARNING TECHNIQUES

FORMAT: USE ALL CAPS AND BOLD FONT

By

Hike Hambarsoomian

August 2017

The placenta is an organ that connects the fetus to the uterine wall of the mother. Analyzing

the Placental Chorionic Surface Vasculature Network (PCSVN) has found measurable anatomi-

cal indicators that appear to differentiate placentas associated with high and low risks for Autism

Spectrum Disorders (ASD). Since vessels and nerves share many guiding mechanisms when they

are created and with autism being a neurodevelopmental disease, the idea that the vasculature is

different in the case of autism is plausible. With this thesis, we aim to improve understanding of

the PCSVN factors which are visible already at birth or even earlier to identify children that are

associated with placentas at risk for ASD. Using an embedded feature selection method called

Elastic Net we were able to reduce the number of features by selecting the 16 most important of

the original 66 PCSVN features. Using Principal Component Analysis, the dimension of data set

was further reduced to five features (nodes, tortuosity, thickness, branching angle, and growth).

We then use these five features to cluster and classify the placentas into the high and low risk co-

horts. Because early diagnosis and treatment reduces the effects of ASD considerably, this thesis

can be used to identify the high-risk cluster earlier than before, allowing children to begin treat-

ment as soon as the placenta is classified.
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CHAPTER 1

INTRODUCTION

The Placenta

The placenta is a complex organ that connects the fetus to the uterine wall of the mother,

that plays a crucial role in the outcome of the pregnancy. Acting as an immune barrier to protect

the fetus from antigen attacks by the maternal system, the placenta is also responsible for oxygen

and carbon dioxide exchange, waste removal, and supplying nutrients to the fetus. Being the sole

provider of these essential substances for the fetus during its entire development in the womb,

the proper functioning of the placenta is not only crucial for a healthy pregnancy, but analyzing

placental properties gives hints about possible abnormalities of the fetus [1]. Figure 1 from [2]

shows the schematic view and structure of the placenta.

FIGURE 1. Schematic view of chorionic plate.

Since it contains both fetal and maternal blood, one method of using the placenta to identify

abnormalities is to analyze the placenta with respect to diseases in the blood such as rubella and

sickle cell disease in the mother. First indications of many other diseases and disorders show in
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the form of abnormalities in the placenta. These abnormalities of the placenta can range from

color and size to inflammation and lesions on the umbilical cord and to the amplification of the

placental tissue [3].

The placental chorionic surface vascular network (PCSVN) is a major aspect of the placenta

that has not been thoroughly studied due to the lack of reliability in the extraction of its features.

With manual extraction of the PCSVN features, issues such as arteries crossing over veins hin-

ders the ability to present exact extraction. A recent study [4], that has built the groundwork for

this thesis, used geometric figures on the PCSVN for their analyses. For example, by studying the

vascular structures of placentas, two measurable anatomical indicators that appear to differentiate

placentas associated with high and low risks for autism spectrum disorder were identified from

a general sample of placentas. The differences were seen in transport efficiency of the measured

venous/arterial network of the placenta and the relative transport efficiency ratio of the venous

network over the arterial network of the same placenta. Placentas with lower transport efficiency

were more likely to be a part of the at risk group [5]. It is known that vessels and nerves share

many guiding mechanisms when they were created and since autism is a neurodevelopmental dis-

ease, the idea that the vasculature is different in the case of autism appears plausible [4].

Autism Spectrum Disorder

First described by psychiatrists Kanner and Asperger in the early 1940s, Autism spectrum

disorders (ASD) are a heterogeneous group of lifelong neurodevelopmental disorders, comprising

of autism, Asperger syndrome, and pervasive developmental disorder not otherwise specified [6].

Those affected by ASD tend to show social and communicational deficits along with restrictive

and inappropriate repetitive behavior which usually start during the first three years of life [7],

with the severity varying with intellectual ability ranging from average to severely disabled [8].

The focus of this thesis work is to develop an improved understanding of the PCSVN factors

that are associated with placentas with a high-risk for ASD. Our experiments were conducted on
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two groups of placentas, one that is population based and another that consists of placentas that

are associated with families where there is already a child diagnosed with ASD as these children

are at a higher risk. While there is no known cure for autism spectrum disorders, early interven-

tion can help to at least reduce the effects considerably [9] and therefore substantially ease the

life of the affected person and family. Standard screening tests of autism based on behavioural

analysis can help to identify risks at the age of eighteen months [10] and a stable diagnosis is

usually possible from the age of 2 years [11], whereas it would be desirable to find biomarkers

for ASD which are visible already at birth or even earlier.

This thesis will proceed as follows. In Chapter 2, beginning on page 4, we will describe the

data sets considered in this work including the way PCSVN images were collected and the pro-

cess of measuring their respective geometric features. In Chapter 3, beginning on page 7, we an-

alyze the relationship between these features using machine learning techniques such as Elastic

Net for feature selection and Principal Component Analysis for dimensionality reduction. The ac-

companying MATLAB codes are provided in the appendix on page 33. We will show in Chapter

4, beginning on page 22, the prominent features resulting from the Elastic Net approach and Prin-

cipal Component Analysis. Placentas from both data sets were then clustered and classified into

subgroups based on further refined relationships.

The results generated in this thesis give promise to the potential of using PCSVN for early

assessment and detection of ASD risks. The simplicity of taking a digital photo of the placenta

hours after delivery makes this risk assessment method attractive in clinical setting as it bypasses

costly and cumbersome medical procedures; however, the lack of an automated vessel extraction

routine makes this method currently difficult to implement.
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CHAPTER 2

DATA

t

The placentas studied in this thesis came from two independently collected cohorts. The first

data set contains 89 placentas from the Early Autism Risk Longitudinal Investigation (EARLI)

that ”enrolls and follows a large group of mothers of children with autism at the start of another

pregnancy and document the newborn childs development through three years of age” [12]. Ac-

cording to a study conducted by the Baby Siblings Research Consortium, compared to the total

population, siblings of autistic children are at a higher risk (18.7%) of also being diagnosed with

ASD with the risk increasing (32.2%) if the child has more than one older sibling with ASD [13].

Thus, the EARLI group will represent the high-risk cohort of this thesis. The second data set con-

tains 201 placentas from the National Childrens Study (NCS) which is a ”long-term study of chil-

dren designed to study environmental influences on child health and development” [14]. The chil-

dren participating in this study participate without a bias towards risk and diagnoses in autism,

representing the normal population with pregnancies at unknown risk for ASD and in this thesis

are used as the low-risk cohort. The 290 observations, EARLI and NCS combined, will create the

rows of our data matrix X0.

For all studies, pictures of the fetal surface of the placentas were taken either at delivery or

upon pathology evaluation with fresh tissue, keeping a consistency between the two cohorts. The

placental chorionic surface vascular network on the surface was hand-traced with a protocol that

identified different colors and pencil sizes to different vessel thicknesses, as can be seen in Figure

2.

Each traced image was separated from the original image and fed through an automated al-

gorithm, written in MATLAB, that produced a skeleton graph of the network. From the skeleton

graph, 66 numerical values were calculated with eight being shape-related (e.g. area, perimeter),
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FIGURE 2. Traced vessels.

29 relating to the features of the arterial network (e.g., number of arterial branch points) and the

remaining to the features of the venous network (e.g., number of venous branch points). To avoid

redundancy in variables, such as the previous two examples, we will be focusing solely on the

eight shape-related variables and the 29 features related to the arterial network.

The remaining 37 numerical values will represent the columns of our data set, X1 with each

placenta being a separate row. The data set is then mean subtracted to remove any bias that could

have occurred in the data collection process. Some of these features include ”Surface Area” which

is the surface area of the arterial and venous networks as determined from the traced images such
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as Figure 2, measures of ”Thickness” such as the thickness of each placentas arterial/venous net-

works and values of ”Angles” which measure the branching angles of each new generation of

branches, as depicted in Figure 3 [15]. Since each of these features have multiple variables (e.g.,

mean, standard deviation) it is clear to see that some of the values are closely related.

FIGURE 3. Branching angles, surface area, thickness.

6



CHAPTER 3

METHODS

In this chapter, we will describe the methods used to improve understanding of the PCSVN

factors that are associated with placentas with a high-risk for ASD. We will use a feature selec-

tion method called Elastic Net on the data described in Chapter 2, with an aim to automatically

select a subset of the PCSVN features. We will apply Principal Component Analysis to the vari-

ables selected from Elastic Net, to select an even smaller set of variables that are linearly inde-

pendent. We will then study the placentas based on the results obtained from Principal Com-

ponent Analysis using K-Means clustering and identify the placentas at risk of ASD using K-

Nearest Neighbors.

FIGURE 4. Procedure outline.

Feature Selection

Feature selection, also known as variable selection, is a process of reducing or finding the

most meaningful inputs for processing and analysis. Feature selection helps to improve the pre-
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dictive nature of a classification algorithm by producing a list of core features that explains the

underlying process used to generate the data [16]. Feature selection retains a subset of features

by eliminating attributes from data that do not contribute to the accuracy, producing a data matrix

that is more interpretable than the original set [17]. Feature selection methods can be categorized

into three general categories: filter, wrapper, and embedded, depending on how the selections are

combined.

The filter method is the most direct of the three. This method is primarily used as a prepro-

cessing step as the selection of the prominent features is done independently from any machine

learning algorithms. Filter methods typically consider the relevance of features independently,

selecting features that are correlated and dependent [18]. This causes a selection of redundant

variables because the relationship between variables is ignored [19], creating an overfitting of the

data whilst failing to select the most useful features.

The second category of feature selection methods is the wrapper methods. In wrapper meth-

ods, a subset of features is used to train a model for feature selection. What is learned in the train-

ing set leads to features being added or removed from the subset, creating multiple combinations

that keep the best performing feature at each iteration, evaluated and compared to other combi-

nations. This ultimately reduces the problem to a search problem which, unlike filter methods,

identifies possible interactions between variables [20]. Though wrapper methods may provide the

most useful features, they are prone to overfitting and computationally expensive [18].

The final class is the class of embedded methods, which will be used in this thesis. Embed-

ded methods combine some of the qualities of the methods mentioned earlier. This class is simi-

lar to the wrapper methods but is less computationally expensive and less prone to overfitting the

dataset. Since algorithms perform the selection and classification simultaneously these methods

tend to learn which features best contribute to the data set while features are selected [18]. How-

ever, the disadvantage of embedded methods is that it is computationally expensive compared to
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filter methods. An example of an algorithm that falls into this class is the Elastic Net, which in-

corporates many aspects of the Ridge Regression and Least Absolute Shrinkage and Selection

Operator (LASSO) algorithms. We will discuss the Elastic Net algorithm in further detail next.

In summary, algorithms that use the filter approach are generally efficient and can be com-

bined with most learning algorithms while a wrapper approach can usually provide a good per-

formance for the learning algorithm and the embedded methods share the advantages of the filter

and wrapper methods.

Elastic Net

The Elastic Net feature selection method, developed by Zou and Hastie in 2005, ”produces a

space model with good prediction accuracy while encouraging a grouping effect” [21]. We begin

by considering the regression

y = β1x1 +β2x2 + ...+βpxp + ε (3.1)

where y is a classification label vector that provides the ground truth labels for the placentas in

the data set and the values x1,x2, ...,xp are given and represent the columns of the data where p is

the number of variables in the data set. Leaving the computation and minimization of the mini-

mization coefficients β1,β2, ...,βp.

To begin the understanding of how Elastic Net came to be, we must first look at the ordinary

least squares (OLS) method which finds the best-fitting curve to a given set of points by minimiz-

ing the sum of squares of the residuals. The OLS problem solves the minimization problem

F(β ) = argmin
β

‖y−Xβ‖2
2 =

N

∑
i=1

(yi−β0−
p

∑
j=1

xi jβ j)
2 (3.2)

for a given data matrix X where N is the number of observations, to estimate the unknown param-
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eters, βi, in equation (3.1). To solve this minimization problem,

F(β ) = argmin
β

‖y−Xβ‖2
2 = argmin

β

(y−Xβ )T (y−Xβ )

= argmin
β

yT y− yT Xβ −β
T XT y+β

T XT Xβ

= argmin
β

yT y−2XT yβ −+β
T XT Xβ

∂F
∂β

=−2XT y+2XT Xβ = 0

XT Xβ = XT y

β = (XT X)−1XT y

Thus, the optimal beta value is given by βOLS = (XT X)−1XT y. According to the Gauss Markov

theorem, OLS estimates have the smallest mean squared error among linear estimators. OLS of-

ten does poorly in both prediction and interpretation because a single outlier can weigh heav-

ily and affect the accuracy. Penalization techniques have been proposed to improve OLS; with a

trade-off of a little bias the estimator will result in a larger reduction in variance [17].

In 1970, Hoerl and Kennard [22] proposed that the potential instability in the OLS estima-

tor, such that βOLS could be improved by shrinking the regression coefficients by adding a small

constant value, resulting in the Ridge regression estimator

R(β ) = argmin
β

‖y−Xβ‖2
2 +λ‖β‖2

2 (3.3)

where λ ≥ 0 acts as a parameter that controls the amount of shrinkage in the regression coef-

ficients by imposing a penalty on their size; the larger the value of λ , the greater the amount of
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shrinkage [17]. An equivalent way to write the Ridge regression estimator

R(β ) = argmin
β

N

∑
i=1

(yi−β0−
p

∑
j=1

xi jβ j)
2 +λ‖β‖2

2 (3.4)

From OLS we know, XT Xβ = XT y. We use this to find the minimizer β for Ridge regression by

setting X∗ =

 X
√

λ I

 and y∗ =

y

0

 so that

R(β ) = argmin
β

(y−Xβ )T (y−Xβ )+λβ
T

β

= argmin
β

(y∗−X∗β )T (y∗−X∗β )

X∗T X∗β = X∗T y∗

(XT X +λ I)β = XT y

β = (XT X +λ I)−1XT y

βRidge = (XT X +λ I)−1XT y

Ridge regression minimizes the residual sum of squares subject to a bound on the L2-norm of the

coefficients. As a continuous shrinkage method, ridge regression achieves its better prediction

performance through a biasvariance trade-off making it a preferred method to the OLS method.

However, it cannot produce a desired level of selection since variables are not removed, even

if deemed unimportant [21]. This is where Least Absolute Shrinkage and Selection Operator

(LASSO) becomes the preferred method.

The LASSO technique, developed by Tibshirani in 1996 [23], uses an L1 since minimization

of the L1 norm involves taking values of the minimization coefficient vector to zero, instead of

the Euclidean norm in Ridge regression (3.4). The new estimator is given by the optimization

problem

11



L(β ) = argmin
β

N

∑
i=1

(yi−β0−
p

∑
j=1

xi jβ j)
2 +λ‖β‖1 (3.5)

The optimization problem can be cast in the equivalent form

L(β ) = argmin
β

‖y−Xβ‖2
2 +λ‖β‖1 (3.6)

with the same properties of λ from Ridge regression. This subtle but important change penalizes

the absolute values of the coefficients, introducing the ability for a sparse solution with some co-

efficients being shrunken all the way to zero unlike Ridge regression. With the penalty perform-

ing a sort of continuous variable selection using the L1-norm for shrinkage it is intuitive why the

method is called ”Least Absolute Shrinkage and Selection Operator”.

The minimization of (3.6) can be done similarly to that of (3.4) with a penalty term. We as-

sume orthonormal columns in X , i.e., XT X = I. With this,

L(β ) = argmin
β

‖y−Xβ‖2
2 +λ‖β‖1

= argmin
β

yT y− yT Xβ −β
T XT y+β

T XT Xβ +λ

p

∑
j=1
|β j|

=
p

∑
j=1

argmin
β

(yT y) j− (yT X) jβ j−β j(XT y) j +β
2
j +λ |β j|

=

 argminβ (y
T y) j−2(XT y) jβ j +β 2

j +λβ j β j > 0

argminβ (y
T y) j−2(XT y) jβ j +β 2

j −λβ j β j < 0

β j =


XT y− 1

2
λ β j > 0

XT y− 1
2

λ β j < 0

βLASSO j =


XT y− 1

2
λ β j > 0

XT y− 1
2

λ β j < 0
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LASSO improves prediction accuracy of OLS by shrinking or setting some coefficients to zero

and acts as a variable selection to isolate the most influential subset of variables, making it typi-

cally a more effective method than Ridge Regression.

LASSO does have its share of shortcomings. First, for p > N LASSO selects at most N vari-

ables making it a possibility that some important variables are not selected. Second, in the case

where there are correlations within variables, LASSO tends to blindly select only one variable

from the group with the possibility of not selecting an important one. Lastly, for N > p situations,

if correlations between variables exist, Ridge regression dominates LASSO [17, 21]. Because

of these shortcomings, Ridge regression is the ideal choice for our correlated data. But, a more

effective method than both LASSO and Ridge Regression, especially when the predictors are

highly correlated, is Elastic Net.

Zou and Hastie made a compromise between Ridge Regression and LASSO with Elastic

Net. Similar to the LASSO, Elastic Net simultaneously does automatic variable selection and

continuous shrinkage, but can select groups of correlated variables [21]. For any fixed nonnega-

tive λ1 and λ2, the optimal parameter is obtained via the optimization problem

E(β ) = argmin
β

‖y−Xβ‖2
2 +λ1‖β‖1 +λ2‖β‖2

2 (3.7)

By defining an artificial data set, (y∗,X∗) such that y∗ =

y

0

 and

X∗ =
1√

1+λ2

 X
√

λ2I

 Elastic Net can be written as a LASSO estimate

E(β ∗) = argmin
β ∗
‖y∗−X∗β ∗‖2

2 + γ‖β ∗‖1 (3.8)
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by performing,

E(β ) = argmin
β

‖y−Xβ‖2
2 +λ1‖β‖1 +λ2‖β‖2

2

= argmin
β

‖y−Xβ‖2
2 +‖0−λ2β‖2

2 +λ1‖β‖1

= argmin
β

‖

y

0

−
 X
√

λ2I

β‖2
2 +λ1‖β‖1

= argmin
β

‖

y

0

− 1√
1+λ2

 X
√

λ2I

√
1+λ2β‖2

2 +
λ1√

1+λ2
‖
√

1+λ2β‖1

= argmin
β ∗
‖y∗−X∗β ∗‖2

2 + γ‖β ∗‖1

using where γ =
λ1√

1+λ2
and β ∗ =

√
1+λ2β which could be minimized similar to the LASSO

minimization above.

Elastic Net could be written as

E(β ) = argmin
β

‖y−Xβ‖2
2 +λ ((1−α)|β |1 +α|β |22 (3.9)

where α =
λ2

λ1 +λ2
for α ∈ [0,1] with (1−α)|β |1 +α|β |22 being called the penalty of Elastic

Net. The first term of the penalty encourages a sparse solution, while the second term encour-

ages highly correlated features to be averaged. When α = 0 the E(β ) reduces to L(β ) and with

α = 1 the E(β ) reduces to R(β ). The improved estimator (3.9) can be used to balance out the

strengths and overcome the deficiencies set forth by either LASSO or Ridge Regression. This

allows Elastic Net to have a better prediction performance than either of the methods in the pres-

ence of highly correlated predictors [21].

This proves particularly important when working with our sub data set, X1, with N = 290
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and p = 37, since the variables of the vascular network tend to exhibit strong correlations as de-

scribed in Chapter 2. Applying Elastic Net for feature selection will provide weights for each

minimization coefficient in equation (3.9) for each of the 37 variables in our data set. The LASSO

aspect of Elastic Net will help zero out variables, leaving the most prominent features in a new

sub data matrix X2. These results are described in further details in Chapter 4.

Feature Extraction

In this thesis, we distinguish between feature extraction from feature selection. Even though

both methods seek to reduce the number of attributes or dimension of the data space , feature

extraction methods do so by creating a new combination of attributes as opposed to feature se-

lection methods that exclude variables that did not make the cut. Many of the features extracted

from Elastic Net remain correlated, making it difficult to interpret the important underlying in-

formation. We will be performing a linear transformation with Principal Component Analysis to

reduce the collinearity of those selected variables.

Principal Component Analysis

Principal Component Analysis (PCA) represents and compresses data by finding an orthog-

onal coordinate system that preserves the maximum amount of variance as possible. It is used

to find a lower-dimensional representation of the data distribution that preserves dominant and

linearly uncorrelated features. These linearly uncorrelated features are used to create the scaled

feature vectors called principal components. The principal components can be found by finding

the eigenvector decomposition of the covariance matrix

C =
1

n−1
XT X (3.10)

or by finding the singular value decomposition of the data matrix.

The covariance matrix measures the variance of the variables where the eigenvectors repre-

sent the principal components. To find the principal components we first diagonalize C. Since the
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XXT is square symmetric it is diagonalizable; hence, we have

XT X = SΛS−1

where Λ is a diagonal matrix of XT X and S is a matrix of eigenvectors of XT X in its columns.

Since XT X is symmetric, the eigenvectors are orthonormal. So, S an orthogonal matrix with

S−1 = ST . By choosing a new orthogonal coordinate system given by the principal components,

the change of coordinates is accomplished by applying the linear transformation

Y = ST X .

Now, the covariance matrix of Y is

CY =
1

n−1
YY T

=
1

n−1
(ST X)(ST X)T

=
1

n−1
ST (XXT )S

=
1

n−1
(ST SΛS−1S)

CY =
1

n−1
Λ

In this new coordinate system, the covariance matrix is a diagonal matrix, meaning that all cor-

relation between the variables has been eliminated. The eigenvalues on the diagonal of Λ are or-

dered from the largest to the smallest such that the largest eigenvalue corresponds to the dimen-

sion that has the strongest correlation in the dataset.

The other way to perform PCA is through Singular Value Decomposition (SVD) on X . SVD

is a factorization of a matrix into a number of constitutive components. A real m x n matrix X

with rank r where m≥ n, has the decomposition,

X =UΣV T (3.11)
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where U (m x m) and V (n x n) are orthogonal matrices and Σ (m x n) is a diagonal matrix with

nonnegative singular values, σi, on its diagonal. Suppose the matrices U , Σ, and V exist such that

X = UΣV T , then the two positive-definite symmetric matrices XXT and XT X can be written as

follows

XXT =UΣV TV ΣUT =UΣ
2UT (3.12)

XT X =V ΣUTUΣV T =V Σ
2V T (3.13)

Multiplying the decompositions (3.14) and (3.15) on the right by U and V , respectively, gives the

two self-consistent eigenvalue problems.

XXTU =UΣ
2 (3.14)

XT XV =V Σ
2 (3.15)

The values on the diagonal of Σ2 are ordered from the largest to the smallest, where σ1 ≥ σ2 ≥

≥ σn ≥ 0. These values are the eigenvalues, such that σi is the ith largest eigenvalue, of equa-

tions (3.14) and (3.15). Finding the normalized eigenvectors of (3.16) and (3.17) will give the

orthonormal column vectors for U and V [24]. The columns of U will be used to create the prin-

cipal components for Principal Component Analysis. Principal components have a particular or-

dering with each principal component pointing in the direction of maximal variance, orthogonal

to the previous principal components, accounting for the maximal amount of variance not already

accounted for by the previous principal components. These directions turn out to be precisely the

eigenvectors of XT X [25].

To perform PCA with SVD, we can decompose X , our data set, by using (3.11), such that,

X =UΣV T . By using (3.12) and defining the transformed variable

Y =UT X ,
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we can rewrite the covariance matrix

CY =
1

n−1
YY T

=
1

n−1
(UT X)(UT X)T

=
1

n−1
UT ∗XXT )U

=
1

n−1
(UTUΣ

2UTU)

CY =
1

n−1
Σ

2

This shows the connection between the two methods, since Λ = Σ2.

Though both eigenvector decomposition of the covariance matrix and SVD of X can be used

to perform PCA, SVD will be the tool of choice in dimensionality reduction. This is because the

cost of computing the covariance matrix and its eigenvalue decomposition, O(p2n+ p3), is much

more than using SVD with a cost of O(min(p2n,n2 p)) for n observations and p variables. In our

case, this translates to a saving of p3.

With PCA, we aim to eliminate data collinearity. Recall that X2 is the sub data matrix after

performing Elastic Net in our experiments. By factoring X2 into its singular value decomposition,

X2 = UΣV T , the columns of U , after scaling by the singular values, give the principal compo-

nents. The singular values, diagonal entries of Σ, are ordered from the largest to the smallest and

are all nonnegative. The first singular value corresponds to the first principal direction and cap-

tures the most variance of the data set. The variances are found through the singular value, with

the first term in the diagonal matrix being the largest. Since our data is mean subtracted to re-

move bias, the first principal component will travel along the most varying direction in the data

space. To transform the data X2 onto the new feature subspace, we will create the projection ma-

trix X3.
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Clustering

Clustering is a form of machine learning that groups data points in such a way such that ob-

jects in the same cluster are more similar to each other than to those in different clusters [26].

In this thesis, we will be using clustering to group similar observations, based on the principal

features extracted from PCA. Since clustering is an unsupervised learning method, we will not

consider the groundtruth of our data. We will be using a centroid-based clustering method called

K-Means to group data points based on the distances from centroids.

K-Means Clustering

K-Means aims to partition observations into a predetermined number of clusters, k, where

each observation belongs to the cluster with the nearest mean. Given a set of N points {xn ∈

X3}N
n=1, the idea is to group points which are close to the same cluster, where closeness is de-

fined in terms of the Euclidean distance, so we can summarize each cluster by the points of their

centroid.

The central idea behind K-Means can be described in simple steps. Having predetermined

the number of clusters that is needed based on prior knowledge of the data, randomly select k

points as cluster centroids. Calculate the distance from each centroid to each data point and group

each data point to the closest centroid. Recalculate the cluster centroids under new memberships.

The algorithm converges when there is no longer any update on centroid assignment. The algo-

rithm improves the clusters and centroids iteratively by minimizing the cost function in each iter-

ation,

J =
N

∑
n=1

K

∑
k=1
‖xn−µk‖2 (3.16)

with respect to the parameter µk, where µk is the arithmetic mean of the points in cluster k when

J is minimized. Thus, J is the sum of the distances between input points and their cluster centers

[4].

Though K-Means is NP-hard in general Euclidean space d, even for 2 clusters [27], it is still
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low in cost compared to other clustering methods, O(ndk) with n being the number of observa-

tions, d being the dimensions, and k being the number of clusters. K-means is, thus, one of the

more efficient clustering methods. But, K-Means has its downfalls, including picking a k value

and difficulty in clustering complex data sets. Because we know how many clusters are in our

data set, selecting the value for k is not an issue. Performing feature and dimension reduction,

using Elastic Net and PCA, simplifies the data set making it easier to cluster. This gives us the

ability to visualize how the observations are grouped based on the features from PCA. To see

whether these observations are in the correct clusters, we need to use a method of classification.

Classification

Classification gives the ability to identify which class a new observation belongs to based on

previous instances, which is found in a training set whose class is known. Classification is con-

sidered an instance of supervised learning, where a labeled training set is available [28]. In this

thesis, classification with k-Nearest Neighbors will be implemented to identify which placentas

are being classified correctly.

K-Nearest Neighbors

k-Nearest Neighbors is a classification method that consists of the k closest training exam-

ples to output a class membership. An observation is classified to the class that the majority of its

k nearest neighbors from the training set could be found in, using Euclidean distance as the dis-

tance metric because of the popularity in machine learning community. The training observations

are randomly selected in the same feature space, the one that was found from PCA.

To understand how to choose the k in k-Nearest Neighbors, it is best to understand what in-

fluence k has in the algorithm. Cross-validation can be used to obtain estimates for parameters

that are unknown. The idea of cross-validation is to randomly divide the data into disjoint sub-

sets. Then for a fixed values of k, apply K-Nearest Neighbors to make predictions on each seg-

ment, and evaluate the accuracy. For various k, the steps above are repeated and the value with
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the highest classification accuracy is selected as the optimal value for k. As k increases to the

number of observations, the training set finally becomes one complete class depending on the

total majority

To implement k-Nearest Neighbors, we divide X3 into a training and testing set. For each

of the point in the testing set, xi ∈ X3Test , using the ”majority voting” of its k neighbors from the

training set X3Train to classify in which class each observation fits. However, a more frequent class

of training points is likely to be common among the k nearest neighbors which tends to domi-

nate the prediction of the test point. Thus, a downfall to ”majority voting” occurs when there

is a skewness in class distribution. [29]. Since we only have two classes and the difference in

the number of observations is not too drastic, this does not become an issue for us. And so, k-

Nearest Neighbors allows us to see which of the test points are accurately put in the correct class

and which low risk placentas are considered to be high risk.
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CHAPTER 4

RESULTS

This chapter presents the results of the methods described in Chapter three in four sections.

Section one presents the results gathered with Elastic Net for feature selection. It will show the

subset of the prominent features and give a basic understanding of each of them. In Section two,

we will be showing how these variables are grouped for dimension reduction by describing each

of the principal components from Principal Component Analysis. Section three shows how the

placentas are clustered using K-Means and gives a visual representation of the centroids. Sec-

tion four will display the classifications of placentas in either a high or low risk cohort. To begin

we started with our original data matrix X0 with 290 observations and 66 variables. To remove

repetitive variables and improve accuracy we strategically removed variables associated with the

venous network leaving a new sub data matrix X1 with 290 observations but just 37 variables. We

will use this data matrix as our data matrix for Elastic Net.

Feature Selection

As discussed in the the Chapter 3, the privilege of implementing the Elastic Net algorithm

would be to benefit from both Ridge regression and LASSO. The alpha parameter sets the de-

gree of mixing between Ridge regression and LASSO. Elastic net is the same as LASSO when

α = 0 and as α approaches 1, Elastic Net approaches Ridge regression. Values in between these

extremes will give a result that is a blend of the two with α = 0.5 giving a solution that is evenly

affected by Ridge Regression and LASSO. As was described in Chapter 3, we would ideally use

Ridge regression for a dataset with more observations than variables. But, with Ridge regression

incapable of zeroing out features we use Elastic Net. Using the built-in MATLAB function for

Elastic Net flips the (1−α) and α coefficients from equation (3.11) thus by setting α = 0.001 it

becomes closely similar to Ridge regression. Using the minimization of LASSO, maximizes the

positive regularization parameter lambda in equation (3.11). As the λ increases, the number of
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nonzero regression coefficients, βi, decreases. We empirically decided to select the sixteen most

prominent features of the data set which was resulted when λ = 134.8143. The sixteen features

are listed and briefly described in Table 1. These sixteen features are listed and ranked on the

magnitude of the regression coefficients in Table 1. The sixteen features will serve as the columns

of X2.

TABLE 1. 16 Prominent Features from Elastic Net
Rank Variables Definition Beta Value

1 ’A MeanThickness’ Mean thickness of the arterial network -2.3043
2 ’A MurrayL1FitError’ Mean error in terms of how far

(motherexp− (dexp
1 +dexp

2 )) is from 0
-2.2071

3 ’A StdThickness’ Standard deviation of the thickness -1.9395
4 ’A NumEndPoints’ Total number of arterial end points 1.1369
5 ’A NumBranchPoints’ Total number of arterial branch points 1.1300
6 ’A MurrayBranchesUsed’ Branches without endpoint 1.1300
7 ’A NumGenerations’ Max number of times an artery branches 1.1183
8 ’A MaxTortuosity’ Max of all the tortuosities 0.8201
9 ’A MeanTortuosity’ Mean of all the tortuosities 0.7374

10 ’A MeanAngle’ Mean of all the branching angles 0.6348
11 ’A StdDevTortuosity’ Standard deviation of all the tortuosities 0.5727
12 ’A Volume’ Volume of the arterial network -0.4729
13 ’A ArcLength’ Arc length of the arterial network 0.4260
14 ’A MedianAngle’ Median of all the branching angles 0.2947
15 ’A KurtosisTortuosity’ Kurtosis of all the tortuosities of arterial

branches
0.1048

16 ’A MeanDistEndPointTo’ Kurtosis of all the tortuosities of arterial
branches

0.0383

Feature Extraction

Implementing PCA on the set of sixteen features extracted five principal components (PC)

that captured 66.26% of the datas variances. These five PCs are shown in Table 2. The elements

in each of the principal components with the largest magnitude are linearly independent from any

of the other principal components. These principal components will be used to create the new

data set X3 with 290 observations and 5 columns which will be used for clustering and classifica-
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tion.

TABLE 2. Principal Components
Rank Features PC1 PC2 PC3 PC4 PC5

(Variance Captured) 18.82% 14.53% 14.03% 10.56% 8.32%
1 MeanThickness 8.0900 -0.2576 -13.7455 1.2831 -0.1504
2 MurrayL1FitError 11.4156 -0.8427 -10.7496 -0.1051 0.3620
3 StdThickness 7.9417 -1.2600 -13.8620 0.3306 1.3209
4 NumEndPoints -16.2302 -2.1996 -2.7430 1.4168 0.9118
5 NumBranchPoints -16.2478 -2.1843 -2.7652 1.3696 0.9080
6 MurrayBranchesUsed -16.2478 -2.1843 -2.7652 1.3696 0.9080
7 NumGenerations -12.1303 -1.1140 -2.2685 2.7161 -2.6842
8 MaxTortuosity -5.3928 14.9208 -2.9881 -4.4932 -0.7518
9 MeanTortuosity -0.6993 13.4199 -1.5856 -0.1646 2.9513
10 MeanAngle 2.2398 7.7866 2.0259 13.1834 1.4548
11 StdDevTortuosity -1.6064 15.7747 -2.1969 -3.7158 0.5720
12 Volume -3.4578 -2.4526 -15.0841 2.8693 1.3643
13 ArcLength -13.9789 -2.6781 -5.4785 1.6854 2.2004
14 MedianAngle 2.1530 7.0529 2.4646 13.8830 1.2744
15 KurtosisTortuosity -6.3551 9.6260 -3.3273 -5.4349 -2.7048
16 DistEndPointToPerim -0.6021 1.1053 -2.6975 3.5703 -15.8686

Principal Component 1 (PC1) - Nodes

Each vascular network has two types of nodes. The first is an end node which is the terminal

point of the vessel. The second is a branch node which splits into multiple vessels. The three ele-

ments with the largest magnitude of the first principal component were ”Number of Endpoints”,

”Number of Branch Points”, and ”Murray Branches Used”. As was defined in Table 1, the ele-

ment ”Number of Endpoints” and ”Number of Branch Points” are the total number of end and

branch nodes in the vascular system of each placenta, respectively. ”Murray Branches Used” is

the number of branches that do not have an end node which could be evaluated by taking the dif-

ference between the total number of branches and the number of end nodes. Thus all three of

these elements have a relation to either branch of end nodes in the vascular network.

Principal Component 2 (PC2) - Tortuosity
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Tortuosity is defined as the measure of how much a curve twists which is given by the ratio

between the length of the curve (arc length) and the distance between the starting and end points

of the curve [30]. The three elements with the largest magnitude of the second principal com-

ponent were ”Max Tortuosity”, ”Mean Tortuosity” and ”Standard Deviation of Tortuosity”. By

the definition in Table 1, these elements give the maximum, mean, and standard deviation of the

arterial tortuosities in the vascular network, respectively.

By definition, tortuosity has no relation to the number of nodes in the vascular network mak-

ing this principal component independent to any of the elements of Principal Component 1.

Principal Component 3 (PC3) - Thickness

The word thickness here is being treated as the diameter of the vessels. The three elements

with the largest magnitude of the third principal component were ”Mean Thickness”, ”Standard

Deviation of Thickness”, and ”Volume”. By the definition in Table 1, these elements give the

mean and standard deviation of the vascular thickness and volume gives the sum of all the arterial

vessel volumes. Treating the vessels as cylinders, volume of each artery can be calculated by

Volume = π(
N
∑

i=1
(
diameteri

2
)2 ∗ (arclength)i)

where N is the number of branches in the network.

The three variables in this principal component have no relation to the number of nodes or

tortuosity in the arterial network,making this principal component independent to both Principal

Components 1 and 2.

Principal Component 4 (PC4) - Branching Angle

A branching angle is used to capture the instantaneous growth of each branch node. The two

elements with the largest magnitude of the fourth principal component were ”Mean Angle” and

”Median Angle”. By the definition in Table 1, these elements give the mean and median branch-

ing angles of all the arterial vessels. Branching angle is defined as the angle between line seg-

ments created between the branch node and the fourth pixel of each branched vessel. The fourth
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pixel was an empirical decision used to give a better interpretation of the instantaneous change

compared to using the end node of the branches. The calculation of branching angle is indepen-

dent to a Principal Components 1, 2 and 3.

Principal Component 5 (PC5) - Growth

The element with the single largest magnitude of the fifth principal component is ”Mean

Distance from End Point to Perimeter.” By the definition in Table 1, this element gives the aver-

age distance between the end point to the nearest point on the placental chorionic surface bound-

ary. This variable calculates the growth such that the larger the value, the further away the vas-

cular network is to the boundary. This element can be calculated independently from any of the

previously mentioned principal components. The five principal components are linearly indepen-

dent.

Clustering

Implementing K-Means on the data points in the projected space allows us to cluster similar

data points regardless of them being classified as high-risk for ASD or not. This combines ob-

servations most similar to each other based on branching, thickness, tortuosity, branching angle,

and growth. Though clustering is done in a 5-dimensional space, in order to visualize the clusters

Figure 6 will be shown in a 3D plot using the first three principal components.

The centers of the clusters are given as [1.6663,−0.0099,−0.0375,−0.0485,0.0366] for

low-risk and [−1.9399,0.0115,0.0437,0.0565,−0.0426] for high-risk shown in green. The pla-

centa pictured in Figure 6(a) is the closest to the centroid of the low-risk ASD group on the plot

with a Euclidean distance of 0.8515. The placenta in Figure 6(b) is the closest to the high risk

centroid on the plot with a Euclidean distance of 1.1840.

As we can see there are differences between the placentas for each of the principal compo-

nent. The traced placenta associated with low-risk for ASD has slimmer arteries that curve less

(Thickness=-0.0375, Tortuosity=-0.0099), than that of the high-risk (Thickness=0.0437, Tortu-
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FIGURE 5. Cluster plot in first 3 principal components.

osity= 0.0115). The tracing of a PCSVN associated with high-risk for ASD has arteries grow-

ing to the edge of the placenta with larger branching angles (Growth=-0.0485, Branching An-

gle=0.0565) compared to the low-risk (Growth=-0.0426, Branching Angle=0.0565).

TABLE 3. k-Means Clustering
Class Classified as NCS Classified as EARLI Accuracy
NCS 117 84 58.21%

EARLI 17 72 72.72%

This table shows that k-Means correctly clustered 65.17% of the observations. The remain-

ing 34.83% represent those observations that were more closely related to the opposing class.

27



(a) Low risk centroid. (b) High risk centroid.

FIGURE 6. Centroids of each cluster.

Classification

Implementing K-Nearest Neighbors would classify our observations as discussed in Chapter

3. Since our data was skewed to have more NCS data points than EARLI, the testing sets would

likely consist of more points from NCS. A distance-weight was added to offset this where train-

ing points further from the testing point had a smaller weight in deciding the class of said testing

point

We chose to use 1 nearest neighbor to perform our Classification since a huge improvement

did not occur using larger values of k. Using 70% of a randomly permutated data, 203 observa-

tions as our training set and 87 observations as our testing set, 74% - 82% of the data points were

correctly classified as compared to its nearest neighbors. Table 4 shows the result of the best per-

formance. With cross-validation, k=7 yielded the best results and performed with an average ac-

curacy of 75% per 100 runs.

TABLE 4. k-Nearest Neighbor Example
Class Classified as NCS Classified as EARLI Accuracy
NCS 57 5 91.94%

EARLI 9 16 56.25%
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Performing classification on the original data with all of the shape and arterial network re-

lated features had results ranging from 61-77% with an average of 69% per hundred runs. Imple-

menting k-Nearest Neighbors the data set after only performing Elastic Net had results ranging

from 62-80% with an average of 70% per hundred runs. While classification of the data set af-

ter only performing PCA had results ranging from 61-81% with an average of 74% per hundred

runs.

So, using both Elastic Net and PCA has a slight improvement on these classifications show-

ing that both feature selection and feature extraction was necessary.

We then decided to use the result from K-Means to see if we can classify the results that

were assigned to the incorrect cluster. The green points in Figure 7 were originally high-risk

but identified as low-risk, and vice versa, were set as the testing points whereas the red and blue

points of Figure 7 were correctly clustered and set as our training set.

TABLE 5. k-Nearest Neighbor with k-Means Classification
Class Classified as NCS Classified as EARLI Accuracy
NCS 26 40 39.39%

EARLI 19 1 5%

With a 31.76% accuracy, it is clear to see that these points are still difficult to classify. These

points represent placentas that have values closer to the mean for each of the principal compo-

nents. Figure 7 represents 2 of the placentas in the cluster of green points.

Notice that these two placentas are very similar in each of the principal components and dif-

ficult to classify by observation. The green points in Figure 6 tend to be the ones that are incor-

rectly classified in most testing sets. We can interpret the green points as the placentas with the

highest risk for ASD in the low-risk cluster and the lowest risk for ASD in the high-risk cluster.
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FIGURE 7. Cluster plot with incorrectly clustered points.
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(a) Incorrectly classified NCS.
(b) Incorrectly classified EARLI.

FIGURE 8. Commonly incorrectly classified placenta tracings.
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CHAPTER 5

DISCUSSION

A major contribution of this thesis is the ability to distinguish between placentas that are in

a high-risk ASD group and a low-risk group based on features of the placental chorionic surface

vascular network. We began with our original data set X0 with 290 observations and 66 variables.

To simplify the data set by removing redundency and improving accuracy, we created a sub data

matrix X1 which was used in Elastic Net regression to find a reduced set of features that consisted

of 290 observations and 37 shape and artery related features. Elastic Net for selected the sixteen

most prominent features from X1 which were used as the columns of the new sub data matrix

X2. We then found, through Principal Component Analysis, five features that accounted for 66%

of the variance in the data. These were used to project the data onto a smaller space. This pro-

jection created a data matrix X3 with 290 observations and 5 columns, which allows the k-mean

clustering method to group the classes based on their most prominent features. An classification

accuracy ranging from 74% to 82% was achieved using k-nearest neighbor classification.

As can clearly be seen in Table 5, only one of the incorrectly clustered EARLI points was

classified correctly using K Nearest Neighbors. Since EARLI consists of those observations that

are considered to be at-risk of developing an ASD, it can be concluded that those classified in-

correctly are less likely to develop a disorder on the spectrum than the rest of the observations in

that class. On the contrary, those observations classified incorrectly that are part of NCS should

be watched closely by medical professional as they are the most likely, in the class, to develop

an ASD. This study helps identify the level of risk each child has of developing ASD, while tak-

ing into consideration just five factors, nodes, thickness, tortuosity, branching angle, and growth.

These five components captured 66% of the variance in the data set with only twelve variables

being used. This helps cut down on calculations of 66 variables and those involved in the study

can focus on the remaining twelve variables used in the principal components discussed in Chap-
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ter 4.

The children in the data set are too young to be diagnosed with ASD. The data is too new

to actually know if those observations classified in EARLI have developed ASD. Since it takes

years for the symptoms and diagnosis to come up in the children we can not truthfully state that

these variables are the most important. As time passes and more observations are made and diag-

nosed, it will be easier to classify. In the future, this project should improve on classification of

placentas with high risk of ASD and help diagnose, or at least monitor, children who are at risk of

being diagnosed with an ASD.
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APPENDIX

MATLAB CODES
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MATLAB CODES

Elastic Net

The following Elastic Net code, Elastic Net.m, is used for feature selection. This code utilizes the

MATLAB built-in LASSO function to perform Elastic Net. The built in function takes in an X , y,

and al pha to perfrom Elastic Net. The X is the mean subtracted data set with dimensions (290 x

37) where the rows represent each placenta and each column represents one of the 37 shape and

artery related features. The binary classification label vector y has dimension (290 x 1) with each

element representing a row of X associating 1 with low risk and 0 with high risk. This built in

functions outputs the regression coefficients in a matrix, Beta, and information of the matrix,

FitInfo, including how many features each column vector has and the λ of each. We use FitInfo

to find the sixteen prominent features and the λ used. Finally we sort the data to rank the sixteen

coefficients in descending order based on the magnitude of the coefficients.

1 [ Be ta F i t I n f o ] = LASSO(X, y , ’ Alpha ’ , a l p h a ) ;

2 i = f i n d ( F i t I n f o . DF==16) ;

3 lambda= F i t I n f o . Lambda ( max ( i ) ) ;

4 [ s o r t B e t a , IB ] = s o r t ( abs ( Beta ( : , max ( i ) ) ) , ’ de scend ’ ) ;
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Principal Component Analysis

The following Principal Component Analysis code, PCA.m, is used for feature extraction. This

code takes the mean subtracted data set of the sixteen prominent features from Elastic Net, X , as

an input. Performs SVD of X and uses u from SVD to output the first five principal components

(PC), v from SVD to create the projection matrix (proj) and s from SVD for the variance of each

of the principal component (var).

1 f u n c t i o n [ PC , p r o j , v a r i a n c e ] = PCA(X)

2 [ ˜ , n ] = s i z e (X) ;

3

4 [ u , s , v ] = svd (X) ; %SVD does e v e r y t h i n g

5

6 PC = ( u ( : , 1 : 5 ) ’∗X) ’ ; %p r i n c i p a l components

7 p r o j = X∗v ( : , 1 : 5 ) ; %p r o j e c t i o n m a t r i x

8

9 e i g e n v a l u e = d i a g ( s ) ;

10

11 f o r i =1 : n

12 v a r i a n c e ( i ) = e i g e n v a l u e ( i ) / sum ( e i g e n v a l u e ) ;

13 end

14

15 v a r i a n c e = v a r i a n c e ’ ;

16 end
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K-Means

The following K-Means code, K Means.m, is used for clustering. This code takes the projection

matrix from PCA, X , and a value k for the number of clusters as inputs. It randomly labels the

obsevations of X , finds the center of each of the initial clusters and continues to improve cluster

predictions as long as the new label is different than the previous label of predictions. Each

observation is newly labeled to the cluster that has the closest center, measured by Euclidean

Distance. This code outputs the label in which cluster each item belongs in (label) and the center

point for each center (cent).

1 f u n c t i o n [ l a b e l , c e n t ] = K Means (X, k )

2 n = s i z e (X, 2 ) ; %s i z e o f d a t a

3 l a b e l = c e i l ( k∗ r and ( 1 , n ) ) ; %l a b e l o b s e r v a t i o n s i n t o a random

c l u s t e r

4 l a b e l n e w = l a b e l ∗0 ; %used f o r w h i l e loop

5 u = [ 1 : k ] ; %c l a s s l a b e l s

6 w h i l e any ( l a b e l ˜= l a b e l n e w )

7 im = s p a r s e ( 1 : n , l a b e l , 1 ) ; %t r a n s f o r m l a b e l i n t o i n d i c a t o r

m a t r i x

8 c e n t = X∗ ( im∗ s p d i a g s ( 1 . / sum ( im , 1 ) ’ , 0 , k , k ) ) ; %compute

c e n t e r s

9 l a b e l n e w = l a b e l ; %r e l a b e l f o r w h i l e loop

10 f o r j = 1 : k

11 f o r i = 1 : n

12 J ( j , i ) = norm (X ( : , i ) − c e n t ( : , j ) , 2 ) ; %o b s e r v a t i o n

m a t r i x

13 end
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14 end

15 [ ˜ , l a b e l ] = min ( J , [ ] , 1 ) ; %a s s i g n o b s e r v a t i o n s t o new

c l u s t e r

16 end

17 end
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K-Nearest Neighbors

The following K-Nearest Neighbors code, K Nearest Neighbor.m, is used for classification. This

code takes a testing and training set (test,train), the classes of the training set (labels) and a k for

the number of nearest neighbors as inputs. It measures the distance of each training point from

the ith testing point and sorts the data. Finally performing a majority vote count at the end and

classifying the ith test point to the class that occurs the most in the first k training points with the

smallest distance. Finally output the predictions of which class each training set belongs in

(predictions).

1 f u n c t i o n [ p r e d i c t i o n s ] = K N e a r e s t N e i g h b o r ( t e s t , t r a i n , l a b e l s , k )

2 f o r i = 1 : s i z e ( t e s t , 1 )

3 m = s i z e ( t r a i n , 1 ) ;

4 B = repmat ( t e s t ( i , : ) , m, 1 ) ; %r e p l i c a t e t h e o r i g i n a l

i n p u t m t i m e s

5 d i f f = t r a i n − B ; %c a l c u l a t e t h e d i s t a n c e o f each column

6 d i s t = s q r t ( sum ( ( d i f f . ∗ d i f f ) ’ ) ) ;

7 [ ˜ , i d x ] = s o r t ( d i s t ) ; %n e a r e a s t n e i g h b o r

8 i d x = i d x ( 1 : k ) ;

9 % make a p r e d i c t i o n

10 i f sum ( l a b e l s ( i d x ) == 1) > k / 2 %m a j o r i t y v o t i n g

11 p r e d i c t i o n s ( i ) = 1 ;

12 e l s e

13 p r e d i c t i o n s ( i ) = −1;

14 end

15 end

16 p r e d i c t i o n s = p r e d i c t i o n s ’ ;
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17 end
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