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Architectures

Historically Currently
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Some Approaches

e Single-to-Single

o
o

Euclidean distance of feature points.
Correlation.

e Single-to-Many

o
o

(8]

Subspace method [Oja, 1983].

Eigenfaces (a.k.a. Principal Component Analysis,
KL-transform) [Sirovich & Kirby, 1987], [Turk & Pentland,
1991].

Linear/Fisher Discriminate Analysis, Fisherfaces
[Belhumeur et al., 1997].

Kernel PCA [Yang et al., 2000].
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Some Approaches

¢ Many-to-Many
@ Tangent Space and Tangent Distance - Tangent Distance
[Simard et al., 2001], Joint Manifold Distance [Fitzgibbon &
Zisserman, 2003], Subspace Distance [Chang, 2004].
© Manifold Density Divergence [Fisher et al., 2005].
© Canonical Correlation Analysis (CCA):

]
o

]

(4

Mutual Subspace Method (MSM) [Yamaguchi et al., 1998],
Constrainted Mutual Subspace Method (CMSM) [Fukui &
Yamaguchi, 2003],

Multiple Constrained Mutual Subspace Method (MCMSM)
[Nishiyama et al., 2005],

Kernel CCA [Wolf & Shashua, 2003],

Discriminant Canonical Correlation (DCC) [Kim et al., 2006],
Grassmann method [Chang et al., 20064a].
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A Quick Comparison

© Training/Preprocessing.
@ others — yes.

@ proposed — nearly none.

@ Geometry.

A

B

others — similarity measures
(e.g., maximum canonical

correlation in MSM and sum of
canonical correlations in DCC).

proposed — classification is done
on Grassmann manifold, hence
Grassmannian
distances/metrics.
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A Quick Comparison

© Training/Preprocessing.
@ others — yes.
@ proposed — nearly none.

@ Geometry.

@ others — similarity measures
(e.g., maximum canonical
correlation in MSM and sum of

S canonical correlations in DCC).
B

@ proposed — classification is done
on Grassmann manifold, hence
Grassmannian
distances/metrics.
By introducing the idea of Grassmannian, we are able to use
many existing tools such as the Grassmannian metrics and
Karcher mean to study the geometry of the data sets.
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Mathematical Setup

An r-by-c gray scale digital image corresponds to an r-by-c
matrix, X, where each entry enumerates one of the 256
possible gray levels of the corresponding pixel.

111101
1000010 1
110101 1
110101 1
101110 1
1111111
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Mathematical Setup

Realize the data matrix, X, by its columns and concatenate
columns into a single column vector, X.
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Mathematical Setup

That is,
X1
X2 1
X = [x1 X2 Xc| eR™*C — x=| | eR®*
Xc

Thus, an image J whose matrix representation, X, can be
realized as a column vector of length equaling J’s resolutions.

| IMAGE — MATRIX — VECTOR |
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Mathematical Setup

@ Now, for a subject i, we collect k distinct images, which

corresponds to k column vectors, xj(i) forj=1,2,...,k.
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Mathematical Setup

@ Now, for a subject i, we collect k distinct images, which
corresponds to k column vectors, xj(') forj=1,2,...,k.
@ Store them into a single data matrix X () so that

X“)[x(l‘) e xﬁ”}

Note that rank(X () = k with each xj(i) € R" being an
image of resolution n.
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Mathematical Setup

@ Now, for a subject i, we collect k distinct images, which
corresponds to k column vectors, xj(') forj=1,2,...,k.
@ Store them into a single data matrix X () so that

X“)[x(l‘) e xﬁ”}

Note that rank(X () = k with each xj(i) € R" being an
image of resolution n.

@ Associate an orthonormal basis matrix to the column
space of X () (obtained via, e.g., QR or SVD), R(X ).
Then R(X () is a k-dimensional vector subspace of R".
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Grassmann Framework

These k-dimensional linear subspaces of R" are all elements of
a parameter space called the Grassmannian (Grassmann
manifold), G(k,n), where n is the ambient resolution
dimension.

Definition

The Grassmannian G(k,n) or the
Grassmann manifold is the set of
k-dimensional subspaces in an

n-dimensional vector space K" for
some field K, i.e.,

G(k,n) = {W c K" | dim(W) =k} .
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Principal Angles [Bjorck & Golub, 1973]

It turns out that any attempt to construct an unitarily invariant
metric on G(k, n) yields something that can be expressed in
terms of the principal angles [Stewart & Sun, 1990].

Definition
(Principal Angles) If X and Y are two subspaces of
R™, then the principal angles 6 € [0,5],1 <k <q
between X and Y are defined recursively by

cos(fy) = max max u'v = uy v

st |lull = |lv]=1,uTu; =0, vTv; =0 for
i=1,2,....k —1and
g = min {dim(X),dim(Y)} > 1.
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SVD-based Algorithm for Principal Angles

[Knyazev et al., 2002] For A € R"*P and B € R"*4.
© Find orthonormal bases Q, and Qy, for A and B such that

QiQa=QfQp=1 and R(Qa) = R(A),R(Qp) = R(B).
© Compute SVD for cosine: QI Q, =YXZzT,

Y =diag(o1,...,0q)
© Compute matrix

B — Qv — Qa(Q-arQb) ifrank(Qa) > rank(Qp);

Qa— Qp(QQa)  otherwise.

@ Compute SVD for sine: [Y, diag(y1, - . - , q), Z] = svd(B).
© Compute the principal angles, fork =1,...,q:

_ Jarccos(oy)  ifof <
arcsin(uy ) ifu < 3.
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Grassmannian Distances [Edelman et al., 1999]

| Metric | Mathematical Expression |
Fubini-Study des (X,)) = cos™ (H cosH)
Geodesic (Arc Length) dg (X, ) = 10]l,
Chordal (Projection F-norm) | d¢ (X,Y) = ||sind|,
Projection 2-norm dp2 (X,Y) = |Isind]|
Chordal 2-norm de2 (X,Y) = ||2sin %9
F
Chordal F-norm der (X,Y) = ||2sin %0
2
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Various Realizations of the Grassmannian

© First, as a quotient (homogeneous space) of the
orthogonal group,

G(k,n) =0(n)/O(k) x O(n — k). (@)
@ Next, as a submanifold of projective space,
G(k,n) c P(AR") = P)-1(R) )

via the Pliicker embedding.
@ Finally, as a submanifold of Euclidean space,

G(k,n) c R(M+n-2)/2 (3)

via a projection embedding described in [Conway et al.,
1996].
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The Corresponding Grassmannian Distances

© The standard invariant Riemannian metric on orthogonal
matrices O(n) descends via (1) to a Riemannian metric on
the homogeneous space G(k,n). We call the resulting
geodesic distance function on the Grassmannian the arc
length or geodesic distance and denote it dg.

@ If one prefers the realization (2), then the Grassmannian
inherits a Riemannian metric from the Fubini-Study metric
on projective space (see, e.g., [Griffiths & Harris, 1978]).

© One can restrict the usual Euclidean distance function on
R(M+n-2)/2 {5 the Grassmannian via (3) to obtain the
projection F or chordal distance dc.
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Grassmannian Semi-Distances

@ Often time, the data set is compact and fixed.

@ First few principal angles contain discriminatory
information and are less sensitive to noise.

@ Thus, it is natural to consider the nested subspaces.
Define the ¢-truncated principal angle vector
0 .= (01,05, ...,0,). Then we have example /-truncated
Grassmannian semi-distances:

¢
dg = (6“2, dfg :=cos ' [ [ cos¥i,
i—1

di == |sind,  d& :=|2sin 36°..
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Separation Gap & Grassmann Separable

Given a set of image sets P = {X1, X2, ..., Xm}, where
X; € R"*k and each X; belongs to one of the subject class C;.

@ Let cardinality of a set of images be the number of distinct
images used.

@ The distances between different realizations of subspaces
for the same class are called match distances while for
different classes they are called non-match distances.

o W, = {j | X; € i}, the within-class set of subject i, and
Bi = {j | Xj ¢ Ci}, the between-class set of subject i.
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Separation Gap & Grassmann Separable

@ Let M be the maximum of the match distances

M = max maxd (X, Xj)
1<i<m jeW,;

and m be the minimum of the non-match distances

m = _min mind(X;, Xy),
1§|§mk€B|

then define the separation gap to be gs = m — M.
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Separation Gap & Grassmann Separable

@ Let M be the maximum of the match distances

M = max maxd (X, Xj)
1<i<m jeW,;

and m be the minimum of the non-match distances

m = min mind (X, X
1<i<mKkeB; (X3, Xio),
then define the separation gap to be gs = m — M.

@ Then we say the set P is Grassmann separable if the
separation gap is positive. i.e.,

gs > 0 & P is Grassmann separable
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A Graphical Example
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Measure of Classification Rates

@ False accept rate (FAR) is the ratio of the number of false
acceptances divided by the number of identification
attempts.
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Measure of Classification Rates

@ False accept rate (FAR) is the ratio of the number of false
acceptances divided by the number of identification
attempts.

@ Falsereject rate (FRR) is the ratio of the number of false
rejections divided by the number of identification attempts.
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Measure of Classification Rates

@ False accept rate (FAR) is the ratio of the number of false
acceptances divided by the number of identification
attempts.

@ Falsereject rate (FRR) is the ratio of the number of false
rejections divided by the number of identification attempts.

@ Given match and non-match distances for a set of classes,
the false accept rate (FAR) at a zero false reject rate
(FRR) (defined, e.g., in [Mansfield & Wayman, 2002]) is
the ratio of the number of non-match distances that
are smaller than the maximum of the match distances
divided by the number of non-match distances.

| zero percent FAR at a zero FRR <> gs > 0|
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Empirical fact

Images of a single person seen under variations of illumination
appear to be more difficult to recognize than images of different
people [Zhao et al., 2003].

Can you tell
who this is?

Subject 1 Subject 2
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Geometric facts - 1

The set of m-pixel monochrome images of an object seen
under general lighting conditions forms a convex polyhedral
cone (illumination cone) in R™ [Belhumeur & Kriegman, 1998].
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Geometric facts - 2

The illumination cone can be approximated by a 9-dimensional
linear subspace [Basri & Jacobs, 2003], i.e., the illumination
cone is low-dimensional and linear.

AS10ud dApEMWND)

12 3 4 5 B 7T & 9 101 1213

Singular values
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Grassmann Set-up
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Yale Face Database B (YDB)

10 subjects, 64 illumination conditions, 9 poses
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Classification Result [Chang et al., 2006a]

FAR at 0 FRR
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CMU-PIE

We fix the frontal pose, neutral expression and select the “illum”
and “lights” subsets of CMU-PIE (68 subjects, 13 poses, 43
lightings, 4 expressions) [Sim et al., 2003] for experiments.

(a) lights: 21 illumination conditions with background lights on.
(b) illum: 21 illumination conditions with background lights off.
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Classification Result [Chang et al., 2006a]
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Patch Collapsing [Chang et al., 2007Db]

If the data set is Grassmann The data set is still
separable using subject Grassmann separable using
illumination subspaces of this subject illumination

kind of image [Chang et al., subspaces of this kind of

2006a]: image [Chang et al., 2007Db]:
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Patch Projection [Chang et al., 2007c]

If the data set is Grassmann The data set is still
separable using subject Grassmann separable using
illumination subspaces of this subject illumination

kind of image [Chang et al., subspaces of this kind of

2006a]: image [Chang et al., 2007c]:
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Patch Projection [Chang et al., 2007c]

If the data set is Grassmann The data set is still
separable using subject Grassmann separable using
illumination subspaces of this subject illumination

kind of image [Chang et al., subspaces of this kind of

2006a]: image [Chang et al., 2007c]:
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Patch Projection [Chang et al., 2007c]

If the data set is Grassmann The data set is still
separable using subject Grassmann separable using
illumination subspaces of this subject illumination

kind of image [Chang et al., subspaces of this kind of

2006a]: image [Chang et al., 2007c]:
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Potential Use: Low-Res. lllumination Camera

Large private databases of facial imagery can be stored at a
resolution that is sufficiently low to prevent recognition by a
human operator yet sufficiently high to enable machine
recognition.
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@ How should we choose subject subspace representations
given a set of images?
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Karcher Mean

@ How should we choose subject subspace representations
given a set of images?

@ Patch collapsing (e.g., low res. images) and projections
(e.g., lip and nose feature patches) provide one way of
compression. In particular, compression in n for points in
G(k,n).
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@ How should we choose subject subspace representations
given a set of images?

@ Patch collapsing (e.g., low res. images) and projections
(e.g., lip and nose feature patches) provide one way of
compression. In particular, compression in n for points in
G(k,n).

@ What about compression in the other parameter, k?
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Karcher Mean

@ How should we choose subject subspace representations
given a set of images?

@ Patch collapsing (e.g., low res. images) and projections
(e.g., lip and nose feature patches) provide one way of
compression. In particular, compression in n for points in
G(k,n).

@ What about compression in the other parameter, k?

@ To this end, we will use another geometric concept,
Karcher mean, on the Grassmann manifold to accomplish
this.
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Notions of Mean

@ For a set of points {x() x®) ... x(P)} € R, its Euclidean
mean is the x that minimizes the sum squared distance

ot ).

where d is the straight-line distance defined by the vector
2-norm.
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Notions of Mean

@ For a set of points {x() x®) ... x(P)} € R, its Euclidean
mean is the x that minimizes the sum squared distance

ot ).

where d is the straight-line distance defined by the vector
2-norm.

@ Given the points py,...,pm € G(k,n), the Karcher mean is
the point g* that minimizes the sum of the squares of the
geodesic distance between g* and p;’s, i.e.,

q* —argmln— d (d,pj),
qeG(k,n) 2M Z )

where d(q, p) is the geodesic distance between p and g on
G(k,n).
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Descent Algorithm [Rahman et al., 2005]
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An SVD-based Algorithm [Begelfor & Werman, 2003]

For points p1,p2,...,Pm € G(k,n) and ¢ (machine zero), find
the Karcher mean, q.

© Setqg =ps.
@ Find

A= zm: Log, (pi)-
i3
@ If [|A|| <, return g, else, go to step 4.
© Findthe SVDUXVT = A and update
q — gV cos(X) + Usin(X).

Go to step 2.

Note: the map in step 4 is the Exponential map that takes
points from the tangent space back to the manifold.
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An Example Result

Compress data with k-d Karcher mean and compare the
recognition result to results obtained using k raw images.

[ Database ]
I
[ Subject 1 ]
=
2 ( ( N
s > points are > points are
5’ chosen to form 7, chosen to form O,
2
=1
= < A k-dimensional left principal
2 vector is produced.
!
g
& This principal vector is considered as a
&
Y \ point on GR(k, n) | represented by /;.
Vi Szt

—~—

t
Find the Karcher mean Of{li }i:l , denoted by </ >,
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An Example Result

@ 16 images used for gallery pts; 3 images used for probes.
@ Lip patch on the CMU-PIE “lights” data set.

o0g ‘ : :
—E— KM far The fact that using a 1-d
801 =—— K.M.NN |
—O— Sets f .
ol —— e | Karcher representation
achieves a perfect
g% . .
% sl recognition result while
Q
g wl using 1 raw image in the
5 sl gallery does not indicates
. that Karcher representations
1 are able to pack useful
= B 3 o < " information more efficiently.
2 3 4 5 6 7

cardinality/dimension of Karcher representation
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Conclusions

@ A novel geometric framework for a many-to-many
architecture — Grassmann framework.
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@ Empirical results and new insights.
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Conclusions

@ A novel algorithm for Karcher compression.
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