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Some Approaches

• Single-to-Single
1 Euclidean distance of feature points.
2 Correlation.

• Single-to-Many
1 Subspace method [Oja, 1983].
2 Eigenfaces (a.k.a. Principal Component Analysis,

KL-transform) [Sirovich & Kirby, 1987], [Turk & Pentland,
1991].

3 Linear/Fisher Discriminate Analysis, Fisherfaces
[Belhumeur et al., 1997].

4 Kernel PCA [Yang et al., 2000].
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Some Approaches

• Many-to-Many
1 Tangent Space and Tangent Distance - Tangent Distance

[Simard et al., 2001], Joint Manifold Distance [Fitzgibbon &
Zisserman, 2003], Subspace Distance [Chang, 2004].

2 Manifold Density Divergence [Fisher et al., 2005].
3 Canonical Correlation Analysis (CCA):

Mutual Subspace Method (MSM) [Yamaguchi et al., 1998],
Constrainted Mutual Subspace Method (CMSM) [Fukui &
Yamaguchi, 2003],
Multiple Constrained Mutual Subspace Method (MCMSM)
[Nishiyama et al., 2005],
Kernel CCA [Wolf & Shashua, 2003],
Discriminant Canonical Correlation (DCC) [Kim et al., 2006],
Grassmann method [Chang et al., 2006a].
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A Quick Comparison

1 Training/Preprocessing.
others — yes.
proposed — nearly none.

2 Geometry.

B 

E

D
C 

A 

others — similarity measures
(e.g., maximum canonical
correlation in MSM and sum of
canonical correlations in DCC).

proposed — classification is done
on Grassmann manifold, hence
Grassmannian
distances/metrics.

By introducing the idea of Grassmannian, we are able to use
many existing tools such as the Grassmannian metrics and
Karcher mean to study the geometry of the data sets.
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Mathematical Setup

An r -by-c gray scale digital image corresponds to an r -by-c
matrix, X , where each entry enumerates one of the 256
possible gray levels of the corresponding pixel.
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Mathematical Setup

Realize the data matrix, X , by its columns and concatenate
columns into a single column vector, x.
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Mathematical Setup

That is,

X =



x1 | x2 | · · · | xc



 ∈ R
r×c −→ x =











x1

x2
...

xc











∈ R
rc×1

Thus, an image J whose matrix representation, X , can be
realized as a column vector of length equaling J ’s resolutions.

IMAGE → MATRIX → VECTOR
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Mathematical Setup

Now, for a subject i , we collect k distinct images, which
corresponds to k column vectors, x(i)

j for j = 1, 2, . . . , k .

Store them into a single data matrix X (i) so that

X (i) =



x(i)
1 | x(i)

2 | · · · | x(i)
k



 .

Note that rank(X (i)) = k with each x (i)
j ∈ R

n being an
image of resolution n.

Associate an orthonormal basis matrix to the column
space of X (i) (obtained via, e.g., QR or SVD), R(X (i)).
Then R(X (i)) is a k-dimensional vector subspace of R

n.
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Grassmann Framework

These k-dimensional linear subspaces of R
n are all elements of

a parameter space called the Grassmannian (Grassmann
manifold), G(k , n), where n is the ambient resolution
dimension.

),( nkG Definition

The Grassmannian G(k,n) or the
Grassmann manifold is the set of
k-dimensional subspaces in an
n-dimensional vector space K n for
some field K , i.e.,

G(k , n) = {W ⊂ K n | dim(W ) = k} .
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Principal Angles [Björck & Golub, 1973]

It turns out that any attempt to construct an unitarily invariant
metric on G(k , n) yields something that can be expressed in
terms of the principal angles [Stewart & Sun, 1990].

Definition

(Principal Angles) If X and Y are two subspaces of
R

m, then the principal angles θk ∈
[

0, π
2

]

, 1 ≤ k ≤ q
between X and Y are defined recursively by

cos(θk ) = max
u∈X

max
v∈Y

uT v = uT
k vk

s.t. ‖u‖ = ‖v‖ = 1, uT ui = 0, vT vi = 0 for
i = 1, 2, . . . , k − 1 and
q = min {dim(X ), dim(Y )} ≥ 1.
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SVD-based Algorithm for Principal Angles

[Knyazev et al., 2002] For A ∈ R
n×p and B ∈ R

n×q.
1 Find orthonormal bases Qa and Qb for A and B such that

QT
a Qa = QT

b Qb = I and R(Qa) = R(A),R(Qb) = R(B).

2 Compute SVD for cosine: QT
a Qb = YΣZ T ,

Σ = diag(σ1, . . . , σq).
3 Compute matrix

B =

{

Qb − Qa(QT
a Qb) if rank(Qa) ≥ rank(Qb);

Qa − Qb(QT
b Qa) otherwise.

4 Compute SVD for sine: [Y , diag(µ1, . . . , µq), Z ] = svd(B).
5 Compute the principal angles, for k = 1, . . . , q:

θk =

{

arccos(σk ) if σ2
k < 1

2 ;

arcsin(µk ) if µ2
k ≤ 1

2 .
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Grassmannian Distances [Edelman et al., 1999]

Metric Mathematical Expression

Fubini-Study dFS (X ,Y) = cos−1

(

k
∏

i=1

cos θi

)

Geodesic (Arc Length) dg (X ,Y) = ‖θ‖2
Chordal (Projection F-norm) dc (X ,Y) = ‖sin θ‖2
Projection 2-norm dp2 (X ,Y) = ‖sin θ‖∞

Chordal 2-norm dc2 (X ,Y) =

∥

∥

∥

∥

2 sin
1
2

θ

∥

∥

∥

∥

F

Chordal F-norm dcF (X ,Y) =

∥

∥

∥

∥

2 sin
1
2
θ

∥

∥

∥

∥

2
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Various Realizations of the Grassmannian

1 First, as a quotient (homogeneous space) of the
orthogonal group,

G(k , n) = O(n)/O(k) × O(n − k). (1)

2 Next, as a submanifold of projective space,

G(k , n) ⊂ P(Λq
R

n) = P
(n

k)−1(R) (2)

via the Plücker embedding.
3 Finally, as a submanifold of Euclidean space,

G(k , n) ⊂ R
(n2+n−2)/2 (3)

via a projection embedding described in [Conway et al.,
1996].
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The Corresponding Grassmannian Distances

1 The standard invariant Riemannian metric on orthogonal
matrices O(n) descends via (1) to a Riemannian metric on
the homogeneous space G(k , n). We call the resulting
geodesic distance function on the Grassmannian the arc
length or geodesic distance and denote it dg.

2 If one prefers the realization (2), then the Grassmannian
inherits a Riemannian metric from the Fubini-Study metric
on projective space (see, e.g., [Griffiths & Harris, 1978]).

3 One can restrict the usual Euclidean distance function on
R

(n2+n−2)/2 to the Grassmannian via (3) to obtain the
projection F or chordal distance dc .
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Grassmannian Semi-Distances

Often time, the data set is compact and fixed.

First few principal angles contain discriminatory
information and are less sensitive to noise.

Thus, it is natural to consider the nested subspaces.
Define the ℓ-truncated principal angle vector
θℓ := (θ1, θ2, . . . , θℓ). Then we have example ℓ-truncated
Grassmannian semi-distances:

d ℓ
g := ‖θℓ‖2, d ℓ

FS := cos−1
ℓ
∏

i=1

cos θi ,

d ℓ
c := ‖ sin θℓ‖2 d ℓ

cF := ‖2 sin 1
2θℓ‖2.
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Separation Gap & Grassmann Separable

Given a set of image sets P = {X1, X2, . . . , Xm}, where
Xi ∈ R

n×ki and each Xi belongs to one of the subject class Cj .

Let cardinality of a set of images be the number of distinct
images used.

The distances between different realizations of subspaces
for the same class are called match distances while for
different classes they are called non-match distances.

Wi =
{

j | Xj ∈ Ci
}

, the within-class set of subject i , and
Bi =

{

j | Xj /∈ Ci
}

, the between-class set of subject i .
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Separation Gap & Grassmann Separable

Let M be the maximum of the match distances

M = max
1≤i≤m

max
j∈Wi

d(Xi , Xj)

and m be the minimum of the non-match distances

m = min
1≤i≤m

min
k∈Bi

d(Xi , Xk ),

then define the separation gap to be gs = m − M.

Then we say the set P is Grassmann separable if the
separation gap is positive. i.e.,

gs > 0 ⇔ P is Grassmann separable
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A Graphical Example
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Measure of Classification Rates

False accept rate (FAR) is the ratio of the number of false
acceptances divided by the number of identification
attempts.

False reject rate (FRR) is the ratio of the number of false
rejections divided by the number of identification attempts.

Given match and non-match distances for a set of classes,
the false accept rate (FAR) at a zero false reject rate
(FRR) (defined, e.g., in [Mansfield & Wayman, 2002]) is
the ratio of the number of non-match distances that
are smaller than the maximum of the match distances
divided by the number of non-match distances.

zero percent FAR at a zero FRR ⇐⇒ gs > 0
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Empirical fact

Images of a single person seen under variations of illumination
appear to be more difficult to recognize than images of different
people [Zhao et al., 2003]. C a n y o u t e l lw h o t h i s i s ?S u b j e c t 1 S u b j e c t 2
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Geometric facts - 1

The set of m-pixel monochrome images of an object seen
under general lighting conditions forms a convex polyhedral
cone (illumination cone) in R

m [Belhumeur & Kriegman, 1998].

Illumination Cone
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Geometric facts - 2

The illumination cone can be approximated by a 9-dimensional
linear subspace [Basri & Jacobs, 2003], i.e., the illumination
cone is low-dimensional and linear.Cumulativeenergy S i n g u l a r v a l u e s
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Grassmann Set-up1I
2I1I
2I1I
2I 9-D linear subspace

9-D linear subspaceIII
9-D linear subspacep r o b e
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Yale Face Database B (YDB)

10 subjects, 64 illumination conditions, 9 poses
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Classification Result [Chang et al., 2006a]
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CMU-PIE

We fix the frontal pose, neutral expression and select the “illum”
and “lights” subsets of CMU-PIE (68 subjects, 13 poses, 43
lightings, 4 expressions) [Sim et al., 2003] for experiments.

(a) lights: 21 illumination conditions with background lights on.

(b) illum: 21 illumination conditions with background lights off.
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Classification Result [Chang et al., 2006a]

Errorclassificationrate( %) N u m b e r o f p r i n c i p a l a n g l e s u s e d
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Patch Collapsing [Chang et al., 2007b]

If the data set is Grassmann
separable using subject
illumination subspaces of this
kind of image [Chang et al.,
2006a]:

The data set is still
Grassmann separable using
subject illumination
subspaces of this kind of
image [Chang et al., 2007b]:
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Patch Projection [Chang et al., 2007c]

If the data set is Grassmann
separable using subject
illumination subspaces of this
kind of image [Chang et al.,
2006a]:

The data set is still
Grassmann separable using
subject illumination
subspaces of this kind of
image [Chang et al., 2007c]:
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Potential Use: Low-Res. Illumination Camera

Large private databases of facial imagery can be stored at a
resolution that is sufficiently low to prevent recognition by a
human operator yet sufficiently high to enable machine
recognition.
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Karcher Mean

How should we choose subject subspace representations
given a set of images?

Patch collapsing (e.g., low res. images) and projections
(e.g., lip and nose feature patches) provide one way of
compression. In particular, compression in n for points in
G(k , n).

What about compression in the other parameter, k?

To this end, we will use another geometric concept,
Karcher mean, on the Grassmann manifold to accomplish
this.
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Notions of Mean

For a set of points {x (1), x (2), . . . , x (P)} ∈ R
n, its Euclidean

mean is the x that minimizes the sum squared distance

P
∑

i=1

d2
(

x − x (i)
)

,

where d is the straight-line distance defined by the vector
2-norm.
Given the points p1, . . . , pm ∈ G(k , n), the Karcher mean is
the point q∗ that minimizes the sum of the squares of the
geodesic distance between q∗ and pi ’s, i.e.,

q∗ = arg min
q∈G(k ,n)

1
2m

m
∑

j=1

d2(q, pj),

where d(q, p) is the geodesic distance between p and q on
G(k , n).



GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS

Notions of Mean

For a set of points {x (1), x (2), . . . , x (P)} ∈ R
n, its Euclidean

mean is the x that minimizes the sum squared distance

P
∑

i=1

d2
(

x − x (i)
)

,

where d is the straight-line distance defined by the vector
2-norm.
Given the points p1, . . . , pm ∈ G(k , n), the Karcher mean is
the point q∗ that minimizes the sum of the squares of the
geodesic distance between q∗ and pi ’s, i.e.,

q∗ = arg min
q∈G(k ,n)

1
2m

m
∑

j=1

d2(q, pj),

where d(q, p) is the geodesic distance between p and q on
G(k , n).



GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS

Descent Algorithm [Rahman et al., 2005]

 !
 !

 !
 !

0

v0

θ(t1)

θ(t)

Tp0
M

p(t1)

M

p0 = p(0)
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An SVD-based Algorithm [Begelfor & Werman, 2003]

For points p1, p2, . . . , pm ∈ G(k , n) and ǫ (machine zero), find
the Karcher mean, q.

1 Set q = p1.
2 Find

A =
1
m

m
∑

i=1

Logq(pi).

3 If ||A|| < ǫ, return q, else, go to step 4.
4 Find the SVD UΣV T = A and update

q → qV cos(Σ) + U sin(Σ).

Go to step 2.

Note: the map in step 4 is the Exponential map that takes
points from the tangent space back to the manifold.
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An Example Result

Compress data with k-d Karcher mean and compare the
recognition result to results obtained using k raw images.D a t a b a s eS u b j e c t 1A k ¸ d i m e n s i o n a l l e f t p r i n c i p a lv e c t o r i s p r o d u c e d . 2N p o i n t s a r ec h o s e n t o f o r m mQT h i s p r i n c i p a l v e c t o r i s c o n s i d e r e d a s ap o i n t o n , r e p r e s e n t e d b y .),( nkG R il

2NRep eatttimestop roducethesets
p o i n t s a r ec h o s e n t o f o r m T m

 !
tiil 1
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An Example Result

16 images used for gallery pts; 3 images used for probes.

Lip patch on the CMU-PIE “lights” data set.
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The fact that using a 1-d

Karcher representation

achieves a perfect

recognition result while

using 1 raw image in the

gallery does not indicates

that Karcher representations

are able to pack useful

information more efficiently.
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Conclusions

A novel geometric framework for a many-to-many
architecture — Grassmann framework. ),( nkG
Empirical results and new insights.
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Conclusions

A novel algorithm for Karcher compression.
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