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2 Overview

Computational methods in the field of biology have become a key factor since the advent of the human

genome project in 1990. Since then many other genomes have been sequenced, generating a wide variety of

sequence analysis problems. The sequencing of the human genome and the HapMap project have impacted

the study of human disease in significant ways and enabled many genome-wide association studies that aim

to elucidate the genetic component of complex diseases. The recent introduction of instruments capable of

producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics,

providing the ability to answer questions with heretofore unimaginable speed.

2.1 Introduction

DNA sequences are strings of letters from a four-letter alphabet called nucleotides (A, C, G, T). The length

of a sequence is variable and sometimes we require the alignment of lengthy and highly variable or extremely

numerous sequences. Hence, constructing algorithms to produce high-quality sequence alignments using

four letters becomes a real challenge. In general, computational approaches to sequence alignment are clas-

sified as either global or local alignments. By global alignment, we consider aligning the entire scope of all

query sequences against a reference sequence. On the other hand, the method of local alignment identifies

isolated regions of high similarity within the entire sequence, which makes the technique a better choice in

some situations but a more complex one in general.

A variety of computational algorithms have been constructed for the sequence alignment problem. Pair-wise

sequence alignment methods are used to find the best-matching piecewise (local or global) alignments of two
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query sequences. They are efficient to calculate and are often used for methods that do not require extreme

precision. Three common methods of producing pair-wise alignments are dynamic programming, dot-matrix

methods, and word methods. Multiple sequence alignment is an extension of pair-wise alignment that incor-

porates more than two sequences at a time but can also align pairs of sequences. One of the major challenges

in the alignment problem is that not all sequences are of the same length. For instance, DNA sequences can

have substitutions (change of one nucleotide for another), insertions and deletions (gain or loss of one or

more nucleotides) and therefore algorithms should include the possibility of gaps. There are some biological

assumptions about the start and the end of a sequence that are useful for algorithm development. However,

there could be gaps at these positions as well. The SOLiDTM next generation sequencing platform has imple-

mented a color-based approach leading to a two-base encoded type of data. The two-base encoding scheme

means that data is first collected in color space, in which the color provides information about two adjacent

bases to ease error detection and hence detecting SNPs with higher accuracy. Color-based data must then be

decoded into sequence data.

For the purpose of this study, we consider two dynamical programming techniques that are most frequently

used in the literature. Namely, the Needleman-Wunsch [4] and Smith-Waterman [5] algorithms for global

and local alignment, respectively.

2.2 Objective

The primary objective of the sequence alignment problem is to search for a new algorithm that facilitates the

use of two-base encoded data for large-scale re-sequencing projects. This algorithm should be able to per-

form local sequence alignment as well as error detection and correction in a reliable and systematic manner,

enabling the direct comparison of encoded DNA sequence reads to a candidate reference DNA sequence. In

the current report, we will first briefly review two well-known sequence alignment approaches in Sections 3.1

and 3.2 and provide a rudimentary improvement for implementation on parallel systems in Section 3.4. In

Section 4, we carefully examined a unique sequencing technique known as the SOLiDTM System that can be

implemented followed by the results from the global and local sequence alignment. Finally, we summarize

our findings in Section 5.
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3 Sequence Alignment

We start with the most basic sequence analysis task: Are two sequences related? DNA sequences are strings

from a 4-letter alphabet of nucleotides: adenine (A), thymine (T), guanine (G), and cytosine (C). Let us de-

note a DNA sequence as X = {x1,x2, ...,xn} and assume that a nucleotide x occurs at random with probability

qx, independent of all other nucleotides in the sequence. Then the probability of the occurrence of such a

sequence of length n is
n

∏
i=1

qxi

Other kinds of biological sequences are the protein sequences which are made of a 20-letter alphabet of amino

acids – alanine (ala, A), arginine (arg, R), asparagine (asn, N), aspartic acid (asp, D), cysteine (cys, C), glu-

tamine (gln, Q), glutamic acid (glu, E), glycine (gly, G), histidine (his, H), isoleucine (ile, I), leucine (leu, L),

lysine (lys, K), methionine (met, M), phenylalanine (phe, F), proline (pro, P), serine (ser, S), threonine (thr,

T), tryptophan (trp, W), tyrosine (tyr, Y), valine (val, V). Two sequences are strongly related if the number

of matched positions after alignment is greater than a learned threshold value and weakly related if otherwise.

It is worth noting that biological considerations need to be taken into account in determining whether a match

happens at random or by a sound relationship. In a very general framework the process includes three major

steps [3].

1. Alignment method. Given two sequences, what is the best way to align them against one another?

2. Scoring system, i.e., ranking. How to assess the quality of any given alignment?

3. Statistical analysis. Can the alignment be explained by chance, or is it due to a shared history between

the sequences, e.g., homology, relatedness or pure coincidence?

In summary, the purpose of sequence alignment is to measure sequence similarity with an appropriate form

of metric and this can be done either globally or locally. In short, a global alignment method seeks a region of

high similarity in the entire sequence scope while a local alignment method searches for segregated regions

of high similarity. The regions of low similarity are denoted as gaps in both cases. In the subsections that

follow, we will compare and contrast the difference between the two methods with Needleman & Wunsch [4]

and Smith & Waterman [5] Algorithms.
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3.1 Global Alignment

Let us start by defining two terms. A mutation is seen as a mismatch in the sequence alignment and indels

(insertions and deletions) are either insertions or deletions in either sequence. These are represented by gaps

in one of the sequences.

Given two sequences X = {xi}n
i=1 and Y =

{
y j
}m

j=1 with lengths n and m, respectively, let c be the total

length of the alignment we have, i.e.,

max(n,m)≤ c≤ n+m.

The alignment is represented by a 2× c matrix, A(X ,Y ), where the rows are the sequences and the columns

are matches and indels.

Example: Let X = {G A A T T C A G T T A} and Y = {G G A T C G A}. Here n = 11 and m = 7

and one possible arrangement can be defined as

A(X,Y) =
G A A T T C A G T T A

G G A − T C − G − − A

It is clear that there are different ways of arranging the sequences and find mismatches and indels, so we are

interested in the best possible arrangement. This can be done with a scoring function and it can be defined

as follows. Let xi and yi be the symbols appearing in the ith position of their respective query sequence in

a given alignment. A scoring function between xi and yi is denoted σ(xi,yi). Notice that xi and yi could

possibly be gaps. This one-to-one correspondence gives rise to a final score of

G =
c

∑
i=1

σ(xi,yi).

There are numerous ways to define σ depending on the applications of interest. For instance, a simple scoring

function can be defined in terms of penalties and awards such as−1, indels and mismatches

+1, matches.

Thus, for all xi 6= yi, σ(−,yi) = σ(xi,−) = σ(xi,yi) = −1 and σ(xi,yi) = 1 for all xi = yi. Notice that this

definition of the scoring function does not guarantee a unique alignment. Furthermore, the “best” alignment
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σ(·, ·) action

match +1

mismatch 0

gap −1

Table 1: An example scoring function.

depends on the choice of the scoring function and the values assigned to the penalties and awards. Any

biological constraint can be translated to an appropriate scoring function. Conversely, any choice of the

scoring function corresponds to some biological interpretation of the results.

3.1.1 Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm performs a global alignment on two query sequences and is used widely

in bioinformatics to align protein or nucleotide sequences. We will briefly describe the steps of the algorithm

next.

Given two sequences X = {xi}n
i=1 and Y =

{
y j
}m

j=1, their similarity matrix, G, will be of size (n+1)× (m+

1). Entries in the first row can be found according to the following rule

G1, j =
j

∑
k=1

σ(−,yk) (1)

while entries in the first column can be found according to the rule

Gi,1 =
i

∑
k=1

σ(xk,−) (2)

For example, if we follow the assignment in Table 1,

then Figure 1 a) shows the result of the similarity matrix after the first step.

Next, we compute each entry from the upper left corner using the following recursive relation

Gi, j = max


Gi−1, j +σ(xi,−) gap in sequenceY

Gi, j−1 +σ(−,y j) gap in sequenceX

Gi−1, j−1 +σ(xi,y j) match or mismatch
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a) b) c) d)

e) f) g) h)

Figure 1: An iterative procedure for calculating a similar matrix between the sequences AACCCTA and AGC-

CTT using Needleman-Wunsch algorithm and the scoring function described in Table 1.

Figures 1 b), c), d), e), f), g) show a sample of results at the selected iteration while Figure 1 h) gives the final

similarity matrix, G, based on the penalty and award criteria in Table 1.

Once the G matrix is computed, note that the maximum score for any alignment resides in the lower right

hand corner of the matrix. The last step in the sequence alignment problem is to extract the alignment infor-

mation by tracing the similarity score in the decreasing fashion. To do this, one can start from the bottom

right cell, and compares the value with the three possible sources (its immediate left, immediate top, upper

left diagonal) to see which it came from. A general rule of thumb is to follow the diagonal path whenever

possible in the case of a tie. If the next step lands on an upper left diagonal cell, then xi and y j are aligned, if

it is the immediate left cell, then xi is aligned with a gap, and in the case of immediate top, y j is aligned with a

gap. Note that several choices may have the same value in general, leading to alternative optimal alignments.

In the example used above, if we trace back the highlighted path in Figure 2, then the result of the alignment

(with a score of 3) is given below.
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A A C C C T A

A G C C T T –

Figure 2: The highlighted entries on the diagonal traced from lower right hand corner (high similarity score) to

upper left hand corner (low similarity score) describes how to align the two sequences.

3.2 Local Alignment

Global alignments, which attempts to align every entry in the query sequences, are most useful when the

sequences in the query set are similar and of roughly equal size. On the other hand, local alignments are

more useful for dissimilar sequences that are suspected to contain regions of similarity. With sufficiently

similar sequences, there is no difference between local and global alignments. See, for example, Table 2 for

an illustration of this point.

Adopting the notations used in Section 3.1, we will describe next a general local alignment technique con-

structed by Temple Smith and Michael Waterman in 1981 [5].

3.2.1 Smith-Waterman Algorithm

Like the Needleman-Wunsch algorithm, Smith-Waterman [5] is a dynamic programming algorithm that has

the desirable property that it is guaranteed to find the optimal local alignment with respect to the scoring sys-

tem being used. The main difference between Smith-Waterman and Needleman-Wunsch algorithms is that

negative scoring matrix cells are set to zero, thus allowing a “fresh start” in the search. Back tracing starts at
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Global F T F T A L I L L A V A V

| | | | | | | | |

F – – T A L – L L A – A V

Local F T F T A L I L L – A V A V

| | | | | | | |

– – F T A L – L L A A V – –

Table 2: An illustration of global and local alignments. Notice the gappy quality of global alignment when

sequences are sufficiently dissimilar.

the highest scoring matrix cell and proceeds until a cell with score zero is encountered, yielding the highest

scoring local alignment.

Given two sequences X = {xi}m
i=1 and Y =

{
y j
}n

j=1 (e.g., X = AACCCTA and Y = AGCCTT), the follow-

ing recursive formula gives the scoring matrix that is then used to find the optimal alignment between X and Y .

Li, j = max



Li−1, j +σ(xi,−) gap in sequenceY

Li, j−1 +σ(−,y j) gap in sequenceX

Li−1, j−1 +σ(xi,y j) match or mismatch

0 to allow a “fresh start”

With this definition and the scoring function given in Table 1, the entire first row and first column of the

similarity matrix, L, will attain a value of zero. Figures 3 b), c), d), e), f), g) show a sample of results at the

selected iteration while Figure 3 h) gives the final similarity matrix, L, based on the penalty and award criteria

in Table 1.

Once the L matrix is computed, note that the maximum score for any alignment resides in the lower right

hand corner of the matrix. To extract the alignment information, one starts from the bottom right cell, and
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a) b) c) d)
L A A C C C T A

a a a a a a a a
A a 1 1 a a a a 1

G a a 1 1 a a a a
c a a a 2 2 1 a a
c a a a 1 3 3 2 1

T a a a a 2 3 4 3

T a a a a 1 2 4 4

e) f) g) h)

Figure 3: An iterative procedure for calculating a similar matrix between the sequences AACCCTA and AGC-

CTT using Smith-Waterman algorithm and the scoring function described in Table 1.

compare the value with the three possible sources (its immediate left, immediate top, upper left diagonal) to

see which it came from. A general rule of thumb is to follow the diagonal path whenever possible in the case

of a tie. If the next step lands on an upper left diagonal cell, then xi and y j are aligned, if it is the immediate

left cell, then xi is aligned with a gap, and in the case of immediate top, y j is aligned with a gap. If we trace

back the highlighted path in Figure 4, then the result the alignment (with a score of 3) is given below.

A A C C C T A

| | | | | |

A G C C – T T
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Figure 4: The result of a local sequence alignment between AACCCTA and AGCCTT. The highlighted entries

on the diagonal traced from lower right hand corner (high similarity score) to upper left hand corner

(low similarity score) describes how to align the two sequences.

3.3 Implementation

Let X = x1x2...xM be a reference sequence and Y = y1y2...yN be a test sequence whose similarity matrix has

the following structure 

x1 x2 x3 · · · xM

y1

y2
...

yN


.

Furthermore, let σ(l1, l2) be the scoring function (matrix) between l1 and l2. In the following pseudo codes,

A gives all possible pairs of the best global (or local) alignments of the sequence X and Y . Specifically, the

first column of A gives the re-ordering of X while the second column of A gives the re-ordering of Y after

alignment; S is the similarity matrix calculated based on σ ; D is the direction matrix that contains information

about how to trace back.
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3.3.1 Global Alignment

Function: [A] = GlobalAlignment(X , Y, σ)

Description: Given the weighting matrix, and two sequences X and Y , find all possible pairs of the best global alignments of the

sequences X and Y .

Pseudo code:

Step-1. Find the score matrix S and direction matrix D.

[S, D] = GlobalScore(X , Y, σ)

Step-2. Get A (all possible pair of alignments of the sequence X and Y ).

[A] = GlobalTraceBack(X , Y, S, D)
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Function: [S, D] = GlobalScore(X , Y, σ)

Description: Given the weighting matrix, and two sequences X and Y , find the global similarity matrix and the global direction matrix

for the best score alignment.

Pseudo code:

Step-1. Initialization.

M=length of the sequence X

N=length of the sequence Y

S0,0 = 0

Step-2. Initialize the first row of the score matrix.

for j = 1 : N

S0, j = S0, j−1 +σ(′−′, y j ),

save the trace back direction(′LEFT ′) into D0, j ,

end

Step-3. Initialize the first column of the score matrix

for i = 1 : M

Si,0 = Si−1 ,0 +σ(xi,
′−′),

save the trace back direction(′UP′) into Di,0,

end

Step-4.

for i = 1 : M

for j = 1 : N

s diag = Si−1, j−1 +σ(xi, y j);

s le f t = Si, j−1 +σ(′−′, y j);

s up = Si−1, j +σ(xi,
′−′);

Si j = max(s diag, s le f t, s up);

save all possible trace back directions which give the maximum value Si, j into Di, j

end

end
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Function: [A] = GlobalTraceBack(X , Y, S, D)

Description: Given two sequences X and Y and corresponding direction matrix, find all possible pairs of the best global alignments

of the sequences X and Y .

Pseudo code:

Step-1. Initialization.

x alignment =′′; y alignment =′′;

x index = N; y index = M;

A = [x alignment, y alignment];

A index = [x index, y index];

Step-2. While there exist rows in A index such that A indext,1 > 0 or A indext,2 > 0, repeat Step-3; otherwise, STOP.

Step-3. For i = 1 : number of rows in A, do the following

x alignment = Ai,1; y alignment = Ai,2;

x index = A indexi,1; y index = A indexi,2;

if x index = 0 && y index > 0,

add y index copies of ′−′ at the beginning of x alignment;

copy y1...yy index to the beginning of y alignment;

Ai,: = [x alignment, y alignment];

x index 0; y index n = 0

if x index > 0 && y index = 0,

add x indexcopies of ′−′ at the beginning of y alignment;

copy x1...xx index to the beginning of x alignment;

Ai,: = [x alignment, y alignment];

x index 0; y index n = 0

if x index > 0 && y index > 0,

d =all trace back directions in Dx index,y index

num direction=total number of trace back directions in d;

for the first trace back direction (say d1), find the letters be added to alignment of X and Y , and also find the x index and y

index of next alignment step by the function TraceOneBit().
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[x letter, y letter, x index n, y index n]

= TraceOneBit(xx index, yy index, x index, y index, dk);
append x letter to the beginning of the x alignment;

append y letter to the beginning of the y alignment;

Ai,: = [x alignment, y alignment];

for k = 2 : num direction,

[x letter, y letter, x index n, y index n]

= TraceOneBit(xx index, yy index, x index, y index, dk);
add x letter to the beginning of the x alignment;

add y letter to the beginning of the y alignment;

A = [A; x alignment, y alignment]; ( add one more row to the Alignment matrix A).

A index = [A index; x index n, y index n];

end

17
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Function:
[x letter, y letter, x index n, y index n]

= TraceOneBit(x, y, x index, y index, direction);
Description: Given current location (x index n, y index n) of the similarity matrix S and corresponding x, y letters, find the letters

be added to alignment of X , Y , and the x index and y index of the score matrix S for the next alignment step.

Input:

x: letter at the given index of the sequence X ;

y: letter at the given index of the sequence Y ;

x index: index in x direction of the current step;

y index: index in y direction of the current step;

direction: one direction of the alignment at the give spot;

Output:

x letter: letter to be added to the alignment of X ;

y letter: letter to be added to the alignment of Y ;

x index n: index in x direction for next alignment step;

y index n: index in y direction for next alignment step;

Pseudo code:

if ( direction =′ LEFT ’ )

x letter =′ −′; y letter = y; x index n = x index−1; y index n = y index−1;

if(direction =′ UP′)

x letter = x; y letter =′ −′; x index n = x index; y index n = y index−1;

if ( direction=′ DIAGONAL′ )

x letter = x; y letter = y; x index n = x index−1; y index n = y index−1;

if ( direction =′ STOP′ )

x letter = x; y letter = y; x index n = 0; y index n = 0;
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3.3.2 Local Alignment

Function: [A] = LocalAlignment(X , Y, σ)

Pseudo code:

Step-1. Find the score matrix S and direction matrix D.

[S,D] = LocalScore(X , Y, σ)

Step-2. Get A (all possible pair of alignments of the sequence X and Y ).

[A] = LocalTraceBack(X ,Y,S,D)
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Function: [S,D] = LocalScore(X , Y, σ)

Description: Given the weighting matrix, and two sequences X and Y , find the local score matrix and the local direction matrix for

the best score alignment.

Pseudo code:

Step-1. Initialization.

M=length of the sequence X

N=length of the sequence Y

S0,0 = 0

Step-2. Initialize the first row of the score matrix.

for j = 1 : N

S0, j = 0,

save the trace back direction(′STOP′) into D0, j ,

end

Step-3. Initialize the first column of the score matrix

for i = 1 : M

Si,0 = 0,

save the trace back direction(′STOP′) into Di,0,

end

Step-4.

for i = 1 : M

for j = 1 : N

s diag = Si−1, j−1 +σ(xi, y j);

s le f t = Si, j−1 +σ(′−′, y j);

s up = Si−1, j +σ(xi,
′−′);

Si j = max(s diag, s le f t, s up, 0);

save all possible trace back directions which give the maximum value Si, j into Di, j

end

end
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Function: [A] = LocalTraceBack(X ,Y,D,S)

Description: Given two sequences X and Y and corresponding direction matrix, find all possible pairs of the best local alignments of

the sequences X and Y .

Pseudo code:

Step-1. Find all index pairs of the maximum value of the score matrix S. For each pair of the index (x index, y index), do Step 2 to

Step 4:

Step-2. Initialization.

x alignment =′′; y alignment =′′;

A = [x alignment, y alignment];

A index = [x index, y index];

Step-3. While there exist rows in A index such that A indext,1 > 0 and A indext,2 > 0, repeat Step-4; otherwise, STOP.

Step-4. For i = 1 : number of rows in A, do the following

x alignment = Ai,1; y alignment = Ai,2;

x index = A indexi,1; y index = A indexi,2;

d =all trace back directions in Dx index,y index

num direction=total number of trace back directions in d;

for the first trace back direction ( say d1), find the letters be added to alignment of X and Y , and also find the x index and y

index of next alignment step by the function TraceOneBit().

[x letter, y letter, x index n, y index n]

= TraceOneBit(xx index, yy index, x index, y index, dk);
append x letter to the beginning of the x alignment;

append y letter to the beginning of the y alignment;

Ai,: = [x alignment, y alignment];

for k = 2 : num direction,

[x letter, y letter, x index n, y index n]

= TraceOneBit(xx index, yy index, x index, y index, dk);
add x letter to the beginning of the x alignment;

add y letter to the beginning of the y alignment;

A = [A; x alignment, y alignment]; ( add one more row to the Alignment matrix A).

A index = [A index; x index n, y index n];

end

3.4 A Parallel Approach

With a simple test using a reference sequence of lengths 15, 20, and 25 and a test string of length 5, we

notice that the time it takes to compute the sequence alignment grows exponentially, as illustrated in Table 3.

With the computing resources available nowadays, we are well positioned to consider a parallel approach

that capitalizes both time and resources. To this end, we describe our initial attempt to tackle this issue in
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Reference Sequence Length Global (sec)

15 25

20 726

25 7481

Table 3: A sample of computational time for a sequence alignment of various lengths with Needleman-Wunsch

algorithm. These computations were done using MATLAB on a Windows workstation with 2GB RAM

and a 2.4 GHz processor.

the following paragraphs. We remark that in this model, practical implementation issues are ignored for

simplicity.

As stated before, these sequence alignments are computationally challenging. Each DNA sequence has

approximately 2− 3 billion base pairs and the reference sequence is about several hundreds of thousands

base pairs. In order to process a completed matrix, G or L, the required processing time is on the order of

days. To reduce the computation time, we introduce a parallel processing method to split the computations

amongst the many different computers available. It is worth noting that using this method, the number of

computations remains the same while the computation time is reduced.

Let M(n+1)×(m+1) be the matrix that we will compute using either the local (L) or the global (G) algorithm.

Using Equations (1) and (2), we are able to define the first column Mi,1 and the first row M1, j of M. The

remaining entries in the matrix will vary depending on the algorithm used. Figure 5 a) shows the M9×19

matrix with the first row and first column shaded in gray. The value, ?, is found using the chosen algorithm,

G or L. Pictorially, ? is dependent upon the upper, left, and upper-left values.

Without a parallel approach, computation of each subsequent value relies on the values of its three adjacent

neighbors. However, once ? is found, as illustrated in Figure 5 b), we can proceed to find the values to the right

and below ? simultaneously, as illustrated in Figure 5 c). Proceeding in this manner, we can simultaneously

compute three cells in the next time stamp and four cells in the next stamp and so on, as shown in Figures 5

d), e), and f). Using this pattern to our advantage, we assign to each computer a column, as illustrated in

Figure 6. The idea is to have one computer start off then update the information for the second computer to

use. In the next time step, while the first computer works on the second value, the second computer will be

working on the first value. On the third time step, the second computer will again update this information for
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Figure 5: In a), the matrix, M9×19, with the first column and row shaded in gray. These values are found using

Equations (1) and (2) respectively. The value ? can be found once the upper, left, and upper-left

values, with respect to ?, are known. b) through f) are cropped regions within the bold lining of a).

P1 through P5 represent the five different computers. The first time step is shown in b), the second in

c) and so on until the fifth time step in f).

the third computer. At this time the first computer will be working on the third value, the second computer

will be working on the second value and the third computer will be working on the first value and so on. This

process is repeated until the maximum number of available CPUs is reached.

With this method, it is possible to find values horizontally, across the matrix, or vertically, down the matrix.

However, when dealing with matrices that are extremely wide, the vertical direction is the optimal choice

and vice versa. Let us consider the case of five computers and sequences of length 6 against 15, therefore a

wide matrix. Furthermore, assume it takes one time unit (tu) to compute each element in M. If we compute

horizontally, at some point the first five rows will be completed and there will only be one computer working

on the last row. The time in which the number of computers working is less than maximum number of

computers, we define that as the lag time. In this case, the lag time is 14 tus but if we work vertically, the lag

time is only 4 tus.
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Figure 6: An M9×19 matrix with the first column and first row shaded in gray. P1-P5 represents five distinct

CPUs. The downward arrows show the subsequent pattern in which one computer will start right

after the other.

We seek to compare the time it takes to compute the scoring matrix of two finite length sequences with and

without parallelization. For a matrix Mn×m, the regular approach will take nm seconds. As a side note, M

initially is of dimension (n + 1)× (m + 1), but when counting the time we only worry about the area in the

matrix which have not yet been determined, which is of dimension n×m. To count the time for the parallel

method, notice that in the first tu only one computer is working, in the second tu two computers are working,

in the third tu three computers are working and so on until the maximum number of computers is reached.

Towards the end, the same schematic, as previously described, occurs. The remaining elements within the

matrix are all computed using the maximum number of computers as shown in Figure 7. With this in mind,

we are able to derive Equation (3) which calculates the time it takes to calculate matrix G or L with the help

of parallel computing. In this equation, f is dependent upon n, m, and k which represent the number of rows,

columns, and computers respectively. However, Equation (3) only works under the assumption that k divides

mn.

f (n,m,k) = 2(k−1)+

mn−2
k−1

∑
i=1

i

k
(3)

If this condition is not met, then the approximate amount of time it costs under this implementation is given

by Equation (4). Notice that the terms in Equation (4) must satisfy the divisibility condition established
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Figure 7: A similarity matrix of sequences of length 9 and 19 is first reduced to M8×18 by eliminating the first

row and first column. If the maximum number of computers is five and ?, +, �, and N represent the

values calculated in the first, second, third, and fourth tu, then there will be five cells calculated at a

time at each time step that follows until it reaches the end.

previously in Equation (3). Taking a closer look, we see that if m/k is not an integer then we can find

a remainder, r, so that k | m− r where Equation (3) can be applied. This leaves a portion of the matrix

unaccounted. However, we can employ Equation (3) again to find the remaining time by forcing the number

of computers to be r and now the number of column is also r so the limiting condition is met. The sum

of these two terms as shown in Equation (4) will compute the minimum time it takes to process all of the

elements.

f (n,m,k) = f (n,m− r,k)+ f (n,r,r) (4)

A few remarks are in order. If k | mn then k | n or k | m, the numerator in Equation (3) will always be

positive because n,m is much greater than k, and we can force k to be r in Equation (4) because the remainder

is never greater than the divisor. To better understand how these equations work, take an example where

n = 8,m = 18,k = 5. We first compute f (n,m− r,k) = f (8,15,5) using Equation (3). Then we calculate

f (n,r,r) = f (8,3,3) also using Equation (3). We can use Equation (3) in both cases because the limiting

condition is met since 5 | 15 and 3 | 3. This results in f (8,18,5) = 28+14 = 42. Therefore, it takes roughly

42 tus to complete this matrix via parallelization and nm = 144 tus with the regular method. We see that our
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solution is logical because with five computers the time it takes to compute the score for each element of the

matrix using parallel computing should be roughly one-fifth of what it takes without parallelization plus the

lags. In this case we calculated the maximum theoretical time so we expect it to be a bit more than one-fifth.

As expected, the solution is approximately 29% of the regular time.

From a theoretical standpoint, this method can significantly speed up the processing time. However, the

communication time between nodes is neglected in this framework. This issue, as well as the viability of

the analysis, will be explored in a future investigation. In any regard, the method of parallel computing will

significantly improve the efficiency of large-scale sequence alignment problems in computational biology.

4 Two-base Color Coding

Single nucleotide polymorphisms (SNPs) are single nucleotide variations of DNA base pairs that can be

used as genetic markers in disease studies. Variations in the DNA sequences can also tell us about response

to pathogens, chemicals, drugs, vaccines, and other agents. SNPs are also thought to be key enablers in

realizing the concept of personalized medicine. Third generation DNA sequencing technology like Applied

Biosystems SOLiDTM , generates sequence data at a super large scale up to 4Gb in a single run. This creates

computational challenges and one of the top ones is the sequence alignment process as it intends to map

individual sequence read (lengths 25, 35 or 50) to a reference genome. The SOLiDTM system uses a 2-base

encoding algorithm that represents a single data point using two adjacent bases that are meant to detect SNPs

with higher accuracy. A single nucleotide may be changed in which case we have substitution, or can be

removed having a deletion or also added leading to insertions to the polynucleotide sequence.

4.1 Introduction

The SOLiDTM system uses four fluorescent dyes to encode for the sixteen possible two-base combinations.

This scheme represents DNA as a sequence of overlapping dimers, with each dimer corresponding to one

of four colors based on a degenerate coding scheme. See Figure 8 for an illustration of this color-coding

scheme.

A single strand of DNA can be sequenced using the color scheme by identifying the first base and then the

subsequent colors. For our convenience, we introduce a table of numbers which are equivalent to the colors as

demonstrated in Figure 9. Then, for instance, the sequence ATCAAGCCTC can be written as A321023022
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Figure 8: The colors are assigned by these rules for each dimer.

using the rules just described. Note that the identification of the first base is crucial, as using only a sequence

of colors does not uniquely identify a strand of DNA.

Figure 9: A numerical equivalence of Figure 8

4.2 Mathematics of Di-base Sequencing

Furthermore, we can think of the color as an operation on a previous base, which transforms it to the following

base. Motivated by Figure 9, we observe the following rules of the transformation.

1. Color 0 is the identity transformation (Since f0(b) = b for every base b).

2. Color 1 interchanges A and C, G and T.

3. Color 2 interchanges A and G, C and T.
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4. Color 3 interchanges A and T, C and G.

These operations define an Abelian group which is isomorphic to the Klein-4 group with addition table given

by Table 4, since 0 is the identity element as 0⊕b = b for all b ∈ {0,1,2,3}, every element is its own inverse,

b⊕b = 0 for all b, and we have the following addition 1⊕2 = 3,2⊕3 = 1, and 3⊕1 = 2.

⊕ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Table 4: Addition rules for colors.

4.3 Application to SNPs Detection

The group structure of the colors is helpful in detecting true isolated single-base variants while identifying

sequencing errors. To analyze this, we consider a simple example given in Figure 10.

Figure 10: A typical SNP.

Here D 6= E are mismatched bases. In order for the colors u,v,w,x to be consistent, they must satisfy the

following properties.

c.1 u 6= w since we have assumed that D 6= E.

c.2 u⊕ v = w⊕ x since both uv and wx transform B to F .

c.3 v 6= x follows from 1 and 2.
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Thus, for a general SNP, we must have a color mismatch both before and after the base in question (c.1 and

c.3) and using the addition rules specified in Table 4 we must have that u⊕ v = w⊕ x (c.2). To make this

point even clearer, we further examine a concrete example in Figure 11. Here the dot indicates the isolated

single base variant (SNP). Notice that the transition before and after the SNP are unequal (1 6= 2 and 3 6= 0,

respectively) in the reference and read sequences, but we do have that 1⊕ 3 = 0⊕ 2 = 2 which is the color

that takes base G to base A.

Figure 11: An illustration of how the Klein-4 algebra used to detect a SNP.

If one of these three conditions is not satisfied, then we have a sequencing error rather than a SNP. This

process can be summarized generally with the following theorem.

Theorem. [2] Let c = c1c2 . . .ck be a k-color substring of a read aligned with a the corresponding color

reference r = r1r2 . . .rk. Then c encodes an isolated (k− 1)-base change if and only if the base position

preceding c is not a variant, and the following two equations hold under the color addition table:

k

∑
j−1

c j =
k

∑
j−1

r j (5)

i

∑
j−1

c j 6=
i

∑
j−1

r j ∀i = 1,2, . . . ,k−1 (6)

For interested readers, see [1, 2] for a detailed proof.

5 Conclusions

DNA and protein sequence alignment algorithms have been repeatedly studied in molecular and compu-

tational biology for a variety of reasons. There is yet a new motivation to re-visit such algorithms: next
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generation sequencing technologies. In the past, two or more sequences not so different in length were com-

pared for similarity analysis. However, a typical re-sequencing experiment using next-generation sequencing

technology such as AB SOLiDTM system generates millions of short sequence reads with an average length

of 35 bases. These reads are expected to be aligned to a reference genome whose length is huge compared to

the usual read length. The human genome reference sequence, for example, could be about 3.1 billion bases

in length. Performing the alignment under these conditions needs to be adapted in such a way that we are still

able to maximize a similarity score and to use a combination of weights for gaps and penalties, but doing so

in a reasonable amount of time and with efficient use of computing resources.

In this report, the team presents an explanation of the algorithms for color space sequence data from the

high-throughput re-sequencing technology and a theoretical parallel approach to the dynamic programming

method for global and local alignment [5]. The combination of the di-base approach and dynamic program-

ming provides a possible viewpoint for large-scale re-sequencing projects. We anticipate the use of distributed

computing to be the next-generation engine for large-scale problems like such. Further investigation on ways

to parallelize the problem will be highly valuable and beneficial.
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7 Appendix

7.1 MATLAB Implementations

7.1.1 generateString.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This code generates a sequence of length n (specified %%

%% by user) of random choice of nucleotide A, C, G, and T.%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function Outstr = generateString(n)

x = round(3*rand(n,1)) + ones(n,1)

%% This line can be commented out if user has a

%% pre-specified string

for i = 1:n

if x(i) == 1

Outstr(1,i) =’A’;

elseif x(i) == 2

Outstr(1,i) =’C’;

elseif x(i) == 3

Outstr(1,i) =’T’;

elseif x(i) == 4

Outstr(1,i) =’G’;

end

end

7.1.2 L2N.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This code convert the sequence X into its corresponding %%

%% numerals (A, C, G, and T). %%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x = L2N(XL)

m = length(XL) ;

x = zeros(1,m);

for i = 1:m

if XL(i) == ’A’,

x(i) = 1;

elseif XL(i) == ’C’,

x(i) = 2;

elseif XL(i) == ’T’,

x(i) = 3;

elseif XL(i) == ’G’,

x(i) = 4;

end

end

32



Claremont Colleges

Math-in-Industry Workshop

7.1.3 W.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This code defines the penalty and award for match, %%

%% mismatch, and gap between 2 sequences. f = match, %%

%% g = gap, m1 = bad mismatch, m2 = good mismatch. %%

%% This functon takes in (f,g,m1,m2) and returns a 5x5 %%

%% scoring matrix. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function weight = W(f,g,m1,m2)

weight(4,4) = f; weight(1,1) = f; weight(2,2) = f;

weight(3,3) = f; weight(5,5) = inf; weight(5,1) = g;

weight(5,2) = g; weight(5,3) = g; weight(5,4) = g;

weight(2,1) = m1; weight(3,1) = m2; weight(4,1) = m1;

weight(1,2) = m1; weight(1,3) = m2; weight(1,4) = m1;

weight(1,5) = g; weight(2,3) = m1; weight(2,4) = m2;

weight(2,5) = g; weight(3,2) = m1; weight(3,4) = m1;

weight(3,5) = g; weight(4,2) = m2; weight(4,3) = m1;

weight(4,5)=g;
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7.1.4 TraceBack.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Inputs: seq_x:sequence in x direction, seq_y:sequence %%

%% in y direction direction: direction matrix. Outputs: %%

%% tracecell: two columns, multiple rows, each row %%

%% represent one alignment of seq_x and seq_y %%

%% column#1-x alignment, column#2-y alignment. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [tracecell] = TraceBack(seq_x, seq_y, direction)

global X Y D

X = seq_x;

Y = seq_y;

D = direction;

xlen = length(X); ylen = length(Y);

tracecell = cell(1,2);

traceinf = zeros(1,3);

traceinf(1,1) = xlen;

traceinf(1,2) = ylen;

traceinf(1,3) = 1; %1-continue 0-stop

trace_num = 1; continue_num = 1;

while (continue_num > 0)

clear new_tracecell;

new_trace_num= 0 ;

new_continue_num = 0;

for curr_trace = 1:trace_num

curr_tracecell_x = tracecell{curr_trace,1};
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curr_tracecell_y = tracecell{curr_trace,2};

curr_traceinf = traceinf(curr_trace,:);

[split_tracecell,split_traceinf,split_num,

split_continue_num] = split_trace(curr_tracecell_x,

curr_tracecell_y,curr_traceinf);

new_continue_num = new_continue_num + split_continue_num;

new_trace_num = new_trace_num + split_num;

if curr_trace == 1

new_tracecell = split_tracecell;

new_traceinf = split_traceinf;

else

new_tracecell = [new_tracecell;split_tracecell];

new_traceinf = [new_traceinf;split_traceinf];

end

end

tracecell = new_tracecell;

traceinf = new_traceinf;

trace_num = new_trace_num;

continue_num = new_continue_num;

end

function[split_tracecell,split_traceinf,

split_num,continue_num] = split_trace(curr_tracecell_x,

curr_tracecell_y,curr_traceinf);

global X Y D

split_num = 0;

continue_num = 0;
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if (curr_traceinf(3) == 0 )

tmp_tracecell = cell(1,2);

tmp_tracecell{1,1} = curr_tracecell_x;

tmp_tracecell{1,2} = curr_tracecell_y;

split_tracecell = tmp_tracecell;

split_num = split_num + 1;

split_traceinf = curr_traceinf;

else

x_id = curr_traceinf(1);

y_id = curr_traceinf(2);

x_i = X(x_id);

y_j = Y(y_id);

direction = D(y_id,x_id);

Bin_D = dec2bin(D(y_id,x_id),4);

direction = find(Bin_D == ’1’);

num_direction = length(direction);

split_tracecell = cell(num_direction,2);

split_traceinf = zeros(num_direction,3);

for k = 1:num_direction

[x_bit,y_bit,x_id_p,y_id_p] =

TraceOneBit(x_i,y_j,x_id,y_id,direction(k));

split_tracecell{k,1} = strcat(x_bit,curr_tracecell_x);

split_tracecell{k,2} = strcat(y_bit,curr_tracecell_y);

split_traceinf(k,1) = x_id_p;

split_traceinf(k,2) = y_id_p;

split_num = split_num + 1;
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if ( x_id_p == 0 )

split_tracecell{k,1} = ...

strcat(repmat(’-’,1,y_id_p),split_tracecell{k,1});

split_tracecell{k,2} = ...

strcat(Y(1:y_id_p),split_tracecell{k,2});

split_traceinf(k,3) = 0;

else

if ( y_id_p == 0 )

split_tracecell{k,1} = ...

strcat(X(1:x_id_p),split_tracecell{k,1});

split_tracecell{k,2} = ...

strcat(repmat(’-’,1,x_id_p),split_tracecell{k,2});

split_traceinf(k,3) = 0;

else

split_traceinf(k,3) = 1;

continue_num = continue_num + 1;

end

end

end

end

function [x_bit,y_bit,x_id_p,y_id_p] = ...

TraceOneBit(x_i,y_j,x_id,y_id,direction);

D_DIAG = 3; D_UP = 4;

D_LEFT = 2; D_STOP = 1;

switch direction

case D_UP
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x_bit = ’-’;

y_bit = y_j;

x_id_p = x_id;

y_id_p = y_id-1;

case D_LEFT

x_bit = x_i;

y_bit = ’-’;

x_id_p = x_id-1;

y_id_p = y_id;

case D_DIAG

x_bit = x_i;

y_bit = y_j;

x_id_p = x_id-1;

y_id_p = y_id-1;

otherwise

error(’wrong input’);

end
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7.1.5 SMAT.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Function SMAT takes in sequences X, Y, z for global or %%

%% local, f for the match score, g for the gap score, m1 %%

%% and m2 for the bad and good mismatch score. S is the %%

%% output similarity matrix, D is the directional vector. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [tracecell,S,D] = SMAT(X,Y,z,f,g,m1,m2)

m = length(X)+1;

n = length(Y)+1;

S = zeros(m, n); D = zeros(m-1, n-1);

weight = W(f,g,m1,m2);

Xnum = L2N(X);

% convert the sequence X into it’s corresponding numerals

Ynum = L2N(Y);

% convert the sequence Y into it’s corresponding numerals

%for global scoring matrix

if ( (z==’g’) || (z==’G’))

for i = 2:n %populate the first column

S(1,i) = (g)*(i-1);

end

for i = 2:m %populate the first row

S(i,1) = (g)*(i-1);

end

for i = 2:m
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for j = 2:n

V = [S(i-1,j) + weight(Xnum(i-1),5),S(i-1,j-1) + ...

weight(Xnum(i-1),Ynum(j-1)),S(i,j-1) +

weight(5,Ynum(j-1))];

S(i,j) = max(V);

r1 = find(V == max(V));

r2 = zeros(1,3);

r2(1,r1) = 1;

x11 = strcat(num2str(r2(1,1)),num2str(r2(1,2)),

num2str(r2(1,3)));

D(i-1,j-1) = bin2dec(x11);

end

end

elseif ( (z==’l’) || (z==’L’) )

Xnum = L2N(X);

% convert the sequence X into its corresponding numerals

Ynum = L2N(Y);

% convert the sequence Y into its corresponding numerals

for i = 2:m

for j = 2:n

V = [S(i-1,j) + weight(Xnum(i-1),5), S(i-1,j-1) + ...

weight(Xnum(i-1),Ynum(j-1)),S(i,j-1) +

weight(5,Ynum(j-1)),0];

S(i,j) = max(V);

r1 = find(V == max(V));

r2 = zeros(1,4);

r2(1,r1) = 1;

x11 = strcat(num2str(r2(1,1)),num2str(r2(1,2)),

num2str(r2(1,3)));
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D(i-1,j-1)=bin2dec(x11);

end

end

end

tracecell = TraceBack(X,Y,D’);
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7.1.6 main.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This code outputs the time it takes to complete a sequence %%

%% alignment between reference sequences of length 15, 20, 25 %%

%% and a test sequence of length 5 using the local alignment. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

count = 1;

for n = 15:5:25;

reference = generateString(n);

test = generateString(5);

tic;

SMAT(reference, test, ’l’, 1, 1, 0, 0);

t(count) = toc;

count = count + 1;

end
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