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Preface

| wish to acknowledge Dr. Michael Kirby at Colorado State Wmsity for enlightening me with his
wisdom and philosophy in the wonderful field of geometricadamalysis. Without a proper training
with him, these lecture notes would not have been possible.

Although majority of the figures have been either recreategemerated by the author from codes
in MATLAB, you will find that the first three chapters of the estare nearly taken verbatim from
Kirby’s book entitled, Geometric Data Analysis — An Empirical Approach to Dimenality Re-
duction and the Study of Patterh®ieces of the notes are presented in a way that is mirroredgjn
my personal encounter of the materials in research. Witthéhe of appropriate citations, readers
should find it easy to locate the origin of the materials. Baneple, Chaptdrl4 is inspired by Mr.
Justin Marks’ Master Thesis titled “Discriminative Cancali Correlations: An Offspring of Fisher’s
Discriminant Analysis.” Chaptefs B 6, aind 7 follow rathkrsely with the book “Digital Image Pro-
cessing” by Rafael Gonzalez and Richard Woods with a hinDi$¢rete Wavelet Transformations”
by Patrick Van Fleet in ChaptEl 6.

These notes are intended as the primary source of inform&irdVIATH 521: Matrix Methods for
Data Analysis and Pattern Recognitias taught in California State University, Long Beach during
the 2012-2013 academic year. Seeing how widespread theigees of data analysis and pattern
recognition have become, it was seemingly impossible totifyea single textbook that will serve the
need for this course. Furthermore, while geometric petgem learning patterns in real data sets
is essential and almost inevitable, it is often overlookegractice. | want to make a strong point
in the importance of utilizing geometric tools for analygilarge data sets encountered in real life
applications.

The notes are indefinitely incomplete and almost certaiohtain errors. Any other use aside from
classroom purposes and personal research, please coetatjen-mei.chang@csulb.edu. Any sug-
gestion, comment, and error should also be sent to me. | vaaHipd these notes helpful in your
discovery of the wonderful realm of data analysis and pattecognition.






CHAPTER 1

Vector Spaces and Linear Transformation

This chapter starts by reviewing some basic vector and xatainipulations in Sectiopn 1 and then
goes on to cover materials concerning vector spaces, liresformations, and matrix algebra from
linear algebra and numerical linear algebra. Represendtta in terms of good coordinates requires
a change of basis. The ideas behind such linear transfamsasire described in Sectibh 2. Basic
operations on important subspaces are visited in Selctidrnd.fundamental notion of a projection
matrix is defined and developed in Sectidn 4 along with a beistussion on the one of the most im-
portant type of projection matrices, orthogonal projectioatrices. To place this material in context,
an application to discovering novelty in patterns is giienSectiori.b, we will review the basic com-
putations and facts concerning eigenvalues and eigenmgdtiat leads naturally to the discussion on
the theory of singular value decomposition in Secfkibn 6, @mimerous applications are presented.
We will follow the discussions irfd1] and closely throughout this chapter.

1. Vectors, Matrices, Angles, and Distances

In this section, we review some of the most fundamental toségl in geometric data analysis.

1.1. Vectors and Matrices. Pretending we know the definition ofveector, then one interpre-
tation of amatrix is simply a collection of vectors. Another definition of a mmatthat is more
commonly adapted treats a matrix as a rectangular arraytaf Bar example,

& 60
w_|® 00
0 O &
O & o

is a 4-by-3 (4x 3) matrix with four rows and three columns. In general, weelghe entries in a
matrix by its relative positive in the matrix as shown in Higid The entryag» (or agp) encodes the

m-by-n matrix

a; ncolumns NS
m

rows
a1 iz a3 ...

az,1 dz2 dzz ...

831 d32 di3z ...

FIGURE 1. Anillustration of am-by-n matrix.

value in the & row and 2'd column, i.e., row first, column second.
In order to develop mathematical properties of these cindles of data, we often represent these data
with numbers. For example, in digital photography a 8-béckl and white image of size+by-n

7



8 1. VECTOR SPACES AND LINEAR TRANSFORMATION

(a) blurred zero (b) true zero

FIGURE 2. Anillustration of matrix representation of black and tehimages.

is represented by a matrix of sinex n where entries in the matrix are integer numbers between 0
and 255 (8 bit= 28 = 256 possible intensity values, called grayscale.). Theesntvith value 0 are
completely black while the entries with value 255 are cornghjewhite. Color images can be repre-
sented using various formats. For example, the RGB fornsa¢stimages in three channels, which
represent their intensities on the red (R), green (G), aud btales (B), respectively. Mathematical
manipulations of matrices give visual changes to imagesekample, in a signal processing appli-
cation (image de-blurring), we are given a “mess-up” imafgjhe true image and asked to recover

the original image. The matrix representation of the “dirimage is given below and looks like
the one given in Figurlg 2(a).

2 215 234 89 131 141 186
255 255 225 29 10 200 206
255 255 1 102 229 255 78
255 136 214 255 201 255 10
135 10 255 255 255 255 135
135 10 192 255 255 201 122
198 135 255 229 145 136 255

1255 198 100 198 197 255 255

N
[l

NN PN
oo arNGO

The matrix representation of the true image is given hereitalodks like the image given in Fig-
ure2(b).

[255 255 255 87 136 136 186
255 255 225 29 10 200 206
255 255 1 102 229 255 78
255 136 214 255 255 255 10
135 1 255 255 255 255 135
135 1 255 255 255 201 122
198 135 255 229 145 136 255
(255 198 100 198 197 255 255

NNNNDNDEPEDN
o100 A~DNOO

The mathematics that goes into recovering the true imagesndis heavily on the properties of the

image matrix and results from (numerical) linear algebfasTs why we are interested in the analysis
of matrices.



1. VECTORS, MATRICES, ANGLES, AND DISTANCES 9

A simple way to compare two vectors is to compare their noriiee most commonector norms
are

n
Xl = Zl|xi| 1-norm
i=

n

X2 = lelz 2-norm or Euclidean norm
i=

[[X|c = max|x| max-norm
1<i<n

The 2-norm is the generalization of the standard Euclidastamce inR3 to R". All three norms
defined here are special cases of prenorm:

Ko = (iixip)l/p'

Associated with the Euclidean vector norm is theer productbetween two vectors andy in R",
which is defined

(xy) =x"y.
Generally, avector normis a mappindR" — R with the properties

PROPERTY1.1. For vectors,y € R" anda a constant,

(1) ||x|| > O for all x

(2) ||¥||=0ifand only ifx=0

(3) [lax][ = [al[IX]|. a € R

(4) |[x+YyI| > ||x||+|y]|, the triangle inequality

In data mining applications, it is common to use tosine of the anglbetween twaeal vectors as
a distance measure:

-
X'y
cosO(X,y) = —————.
X112/ 1¥1]2
With this measure two vectors are close if the cosine is dosme andk andy are orthogonalif
x'y =0, i.e., angle between themig'2. If x andy are two nonzero vectors i@", then the angle
betweerx andy is defined to be

1 YX

Z(X,y) :=co0Ss" .
) W2

What if we want to compare a collection of data to anotherembibn of data? This is considered
as a many-to-many (set-to-set) classification paradigm. [B&L( for a detailed discussion on this
classification structure.

1.2. Angles Between Subspace#n r-by-c gray scale digital image corresponds toraly-c
matrix where each entry enumerates one of the 256 posséyderels of the corresponding pixel.
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18 --- 128 0
17 19 40 29
14 16 --- 26

Now, realizeX by its columns and concatenate columns into a single colwsuotor.
X=[x | x | | x]er™

Thus, an imagéd can be realized as a column vector of length equal to the ptaJ’s resolutions.
Now, for a subject, we collectk distinct images (which correspondsk@olumn vectors) and stack
them into a single data matrix so that

(4 | | | 4]

with rank(X () = k. Then the column space ¥f) gives ak-dimensional subspace .
For subspaces, we have a similar but recursive way to mepauxeise distances.

DEFINITION 1.1. Principal Angles. (Real case) {2 and%  are two vector subspaces&f such
that Z(X) = 2, Z(Y) = %, andp = dim(X) > dim(Y) = q > 1, then theprincipal angles 6
[0,7],1 < k < gbetweenZ” and?#  are defined recursively by

1 cog 6) = maxmax|u'v| = [u}

(1) S6) = maxmax|u’v| = |y

subject to||u||2 = ||v||2=1,uTui =0 andv’v; = 0 fori = 1,2,...,k— 1. The vectorguy, U, .. ., Ug)
and(vy, Vo, ...,Vq) are called the left and right principal vectors of the paisalbspaces, respectively.

To visualize this recursive definition, consider Figlure BeTirst (minimum) principal angle between
subspaces?” and % is found by finding a directiow in the span of%Z(X) and a directiorv in
the span ofZ(Y) whose angle is the smallest compared to angles between ey cimbination.
These direction vectors that give rise to the minimum ppatangle are called the first left and right
principal vectors respectively. Once the first angle is found, the seconcjp@h angle is computed
in the orthogonal complements of the spaces spannedibyyv found previously. The smallest angle
arises from all possible linear combinations of the vecbors2” — u)* and (% —v)* is called the
second principal angle. The process continues until it out®f dimension to search.

A numerically stable algorithm that computes the principagjles between subspacésandY is
given in the following Theorend]. This algorithm is accurate for large principal anglesi0~®).

THEOREM 1.1. Assume that the columns 0@ R™P and Qs € R"™9 form orthonormal bases for
two subspaces” and% of R" with q< p. Let M= Q>T(Qy and the SVD of this g g matrix be

M=UCV', C=diag(ay,...,0q),
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FIGURE 3. An illustration of principal vectors between two subsgmc

where U'U =VTV =VVT =1, If we assume that; > 0, > --- > g, then the principal angles and
the principal vectors associated with this pair of subsgaae given by

2) costk = gk(M), L=QxU, R=QwV.

PROOF [6]. SinceM =UCVT, we haveUTMV = C. It is known that the singular values and
singular vectors of the matriM can be characterized by

ok(M) = max max u' Mv = u} My,
[lul2=1|v|]2=1

subjecttouTu; =VvTvj=0forj=1,....k—1. If we letl = Qxu € Z(Qx), r = Qyv € Z(Qy), then
it follows that

M= lullz, Irll2= V2. uTuj=1T15, vy =rTH.
Now, sinceu™Mv = u" QxQyv = (Qxu)T(Qyv) =1Tr, so

ok(M) = max max|Tr=1[r,
[[H]2=11]r]]2=1

subject tolTlj = rTrj =0 for j = 1,...,k— 1. EquatiorR follows directly from the definition of
principal angles and vectors. O

An example is overdue at this point.

EXAMPLE 1.1. Let2" be thexy-plane and? theyzplane inR3. Notice that2” = spar{i, j} and
% = spanj,k}. Let

SVD of M gives

=15 oo of[o
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Thus, co®; = 1 and co$, = 0, which then give®; = 0 and6, = 11/2. The ordered left principal
vectors are the column vectors of

10 [0 -1

L—QwU =10 1 {_01 _01}: “1 0|,
00

and the ordered right principal vectors are the column veab

0 0 [0 O
1 0
R:@Vzlo{ }:—10.

Notice that the principal angles make sense, since two sp@ee a dimension (thyeaxis), which
explains the minimal principad, being 0.

A sine-based algorithm for calculating small principal k&sgis available inl35]. This algorithm,
presented in Algorithril 1, is often used to ensure precisfaheominimum principal angles.

Algorithm 1 Small and Large Principal AngleS8%
This algorithm computes the principal angles between tviosgaces given by the real matricés
andY, whereX is in R™P andY is in R™9. Principal angles are defined to be between O =i
and listed in ascending order.
Input: matricesX (n-by-p) andY (n-by-q).
Output: principal angle®) between subspaceg(X) = 2" andZ(Y) = %'.
(1) Find orthonormal basé&3, andQy for 2" and#/ such that

UU=Q Q=1 and 2(Q)=2.%2(Q)=%.
(2) Compute SVD for cosineQ] Q, = HZZT, whereZ = diag(ay, .. ., 0g).
(3) Compute matrix
v o d Q- QQxQy) ifrank(Qy) > rank(Qy);
Q- Qy(QJQx)  otherwise

(4) SVD for sine:[H,diag(Uy, . . ., Hg),Z] = svd(Y).
(5) Compute the principal angles, fee=1,...,0:

_ Jarccogoy) if oZ<3;
| arcsin(u) if p2<i

If you are a little rusty about the definitions of linear inéaplence of vectors and rank of a matrix,
please refer to AppendixIA.

1.3. Distances Between Subspaceklow that we have a way to compute angles between sub-
spaces, we introduce a class of metrics that are used tdaialclistances between them.
Recall that the (realfsrassmann manifolor Grassmanniafof k-planes im-space) is the s&(k, n)
of k-dimensional vector subspacesit (for fixedk < n). The (differential) topology oG (k, n) can
be described in several ways: First, as a quotient (homagsrsgpace) of the orthogonal group,
3) G(k,n) =0O(n)/O(k) x O(n—Kk).
Next, as a submanifold of projective space,

(4) G(k,n) c P(AKR") = P()-L(R)
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via the Plucker embedding. Finally, as a submanifold oflidean space,
(5) G(k,n) c R(MP+n-2)/2

via a projection embedding described recentlylifj [

While the manifold structures 0@(qg, m) obtained from these three constructions are equivaleiat (di
feomorphic), they naturally lead to different geometriagtee Grassmannian. The standard invariant
Riemannian metric on orthogonal matric®n) descends vigd{3) to a Riemannian metric on the
homogeneous spa€gk,n). The resultinggeodesialistance functiorly (arc length on the Grass-
mannian in terms of the principal anglés ..., 6, betweernX, Y € G(k,n), is (see, e.g./16])

‘ 1/2
dg(X,Y) = (;eﬁ> =16]l2.

If one prefers the realizatiohl(4), then the Grassmanniagrits a Riemannian metric from the Fubini-
Study metric on projective space (see, eZf]), and the resulting-ubini-Studydistancedg s is given
in terms of the principal angles by

k
des(X,Y)=cos? | [Tcosb | .
o4

Finally, one can restrict the usual Euclidean distancetfanonR(™+1-2)/2 tg the Grassmannian via
(®) to obtain theprojection For chordaldistanced; (so called because the image of the Grassmannian
under [b) lies in a sphere, so that the restricted distansiniply the distance along a straight-line
chord connecting one point of that sphere to another{EHgWhich, in terms of the principal angles,
has the expression

k

1/2
de(X,Y) = <_Z(sine}.)2> = ||sind||.

This projection F distancd; has recently been used in the context of sphere-packinigigdladeory
in the Grassmannian, where it is significantly more effictban the “standard” geodesic distarge
[11], [2]. As a slight variation on the last formula, we may also cdasthe so-called¢hordal Frobe-
niusdistancedcr, given in terms of the principal angles by

1
der(X,Y) = H25|n§9||2.

See [16] for additional details.

Now, the set-to-set classification problem can be trangédrto a problem o1 (k, n) if we realize
the linear span of a set &fimages as &-dimensional vector subspace of the space of all possible
images at a given resolution. Our objective is to match anheiedsetof images by comparing its
associated point with a collection of given points@(k,n). As a consequence of the encoding of
sets of images as points on a Grassmann manifold we may avaéloes of a variety of well-known
distance measures between points on the manifold as destabsve.

Note that the standard distance between subspaces thaemspresented in linear algebra is de-
termined by the largest angle between the two subspaces. igriores the geometric information
associated with the smaller angles. We have observed thadiy instances it is in fact the smallest
(not largest) principal angle that carries the most sigaificnformation.

2. Linear Transformation and Matrices

The empirical scientific approach for the investigation ghgsical system consists of the following
basic steps:
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e Data collection
e Model building
e Prediction

The passage from data collection to model building is a Samt step, which involves extracting
information from the data to permit a characterization efpnocess. The goal of this modeling phase
is to provide knowledge that was not available in the raw datdf. This general approach permits
us to learn and deepen our understanding of complicatedopiema. For example, the apparent
order observed in financial markets and weather systemsd@®ample evidence that our ability to
understand, manipulate, predict and control patterngismmely important and potentially rewarding.
The naturally question to ask then: how can massive quesiiiti data be distilled into a few basic
facts, or laws, which serve to describe a process? It hasdizaved that there is a tendency in na-
ture for physical systems self-organizeln a very general sense, this tendency for self-orgamizati
is revealed by the formation of patterns, the essence ofiwikiceflected by a coherence, or correla-
tion, of measurable physical quantities. Furthermtre,formation of patterns appears to reduce
the dimension of the space required to characterize the sysin. One premise of this course is that
systems that exhibit self-organization may be investdateexploiting the reduced dimension of re-
sulting patterns. The primary tool for accomplishing tlsi&n appropriate coordinate transformation,
i.e., one that reveals the reduction in dimension assatyaitéy coherent structures, or patterns. Thus,
this course is essentially about discovering useful tiansétions, i.e., transformations that help us
reveal underlying processes that are hidden in large dtgagery often data sets are large because
their coordinate systems are too general. Good coordilyateras — or equivalently, good bases
— may be obtained by incorporating some knowledge of the. dA& will be primarily concerned
with exactly how to transfer the knowledge from the data todbordinate system. When carried out
effectively, this program replaces massive data sets byageable ones which retain the information
essential to understanding the process or phenomenon.

With that, let us now review the necessary machinery thatwip us in obtaining those dimensionality-
reducing mappings. First, the notion of linearity and nio@dirity in mappings.

DEFINITION 2.1. A mapping (transformatiorf): U — V is said to bdinear if
flax+By) = af(x)+Bf(y)
forall x,y e U anda, 8 € R. A mapping is said to baonlinearif it is not linear.

The prototype linear mapping can be considered as a matritipfization, since ifA € R™" is an
m-by-n matrix, then the mappinga : R" — R™ that is given byLa(u) = Au is a linear mapping
that takes a vectan in R" to R™. While it is not surprising that matrix multiplication is aéar
mapping, it is notable that every linear transformatiomissn finite-dimensional vector spaces may
be represented as multiplication of a vector by an apprteoneatrix. This representation is achieved
by the introduction of a coordinate system, or basis, foisfhece. For example, tlrecolumn vectors

e = (1,0---,07
e? = (0,1,---,07

e = (0,0,---,1)7

form a basis foiR" known as thestandard basis
Thus anyu € R" can be written as

u= ale(l) + aze(z) 4t ane(n)‘
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Then-tuple (a1, a9, ...,a,) determines theoordinatesof the pointu with respect to the standard
basis. We emphasize the dependence of the coordinatesmtthe choice of basis. For example,

given another basi# for R" consisting of the vector%v(l),v(z), v } we may represent as

u= X]_V(l) + X2V(2) 4.4 XnV(n) .

Now then-tuple(x1, X2, ..., X,) determines the coordinates of the pairwith respect to the new basis
2. A central issue in analyzing patterns in data is deterngiaimd utilizing the good basis for a given
set of data. Indeed, a central theme of this course is thercation of empirical bases which are very
effective for representing specific data sets. Motivatethioy; we now develop the basic mechanics
of changing coordinate systems.

Change of Basis.
To start, Iet{v(‘)}in:l and {W(U}in:l both be bases fdk", called %, and %., respectively. Leti be
an arbitrary element ak". Thus in terms of the basi#; we write

u=xvV +3v@ ... 4 xv(™,
and in terms of%, we write

u=yw® +yw®@ ... pyw,
giving the representation, or coordinates,

Uz, = (X1 Xn)"

with respect ta%1, and

Uz, = (Y1---¥n)T
with respect ta%,. Equivalently, we may write

U=Vug, =Wug,,
whereV andW are the matrices of basis vectors f#§ and.%,, respectively.

EXAMPLE 2.1. Given that the basis vectors definizg are

w_ (1 @ _ (1
\Y _(O) and v _(1)

and that the basis vectors definiagy are

find ug, given

Plugging intoVu g, =Wug,, we have
11\ 2\ _ (0 1),
0 1)\1) " \0o —1)"%

from which it follows that

One of the most important types of matrices for our purposésa orthogonal matrix.
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DEFINITION 2.2. A real square matrid is said to beorthogonalif

u'u =1.

Note that the requirement thit be square means that an orthogonal mdtrixs invertible with

inverse

ul=uT.

Thus, one of the obvious attractions of an orthogonal madtrilkat its inverse is easy to compute. An
orthonormal set of vectors may be used to construct an ootiredgnatrix. An orthogonal matrix acts
as a very useful change of basis in that it preserves Eudidiséances (norms). U is an orthogonal
matrix, we have

lUx|lz = (Ux)TUx
= x'UTUx
= Xx'x
= |IXIl5

Because the Euclidean norms are preserved, the mappiageferred to as airsometry Note that
distances in thé&-norm are not preserved. In addition, if the determinantobehogonal matrix is
one, then we may view the transformation geometrically agid rotation of the space.

Other Classes of Transformations and Homogeneous Coordines.

In the 2-dimensional case, there are a few matrices we sleuiamiliar with which are given here.
(1) Scaling matrices.

(2) Shearing matrices. A shear parallel to x&xis:

ol
Msa: |:%)( Sy— .
If sx=sy, then it’s a uniform scaling. Otherwise, it is non-uniformamisotropic.

1 A

MSX: |:O 1

and a shear parallel to tlyeaxis: _
10

Msx: [)\ l} .

(3) Reflection matrices are computed based on the Househadasformation. Two common

ones are reflection about tlkeaxis

1 0
MFX: |:O o :|
and the reflection about thyeaxis
-1 0

In general, to reflect a vector about a line tigaes through the originlet < Iy, ly > be a
vector in the direction of the line, then

1 NIE-1g 24y
TR 2y 12-12)

Note that this technique only works if the plan runs througg origin. If it does not, we
need to use aaffine transformation
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(4) Rotation matrix (about the origin).

Mrt:{

wheref is measured counterclockwise.

(5) Translation matrix does not have a nice matrix repregemt in the Euclidean coordinates.
It can be given easily in theomogeneous coordinates

(6) Projection matrices is the heart of our discussion ia thiapter, we will, therefore, delay it
until Sectiorl 4.

For example, to rotate a vectpr= [xy]" in thexy-plane 45 counterclockwise about the origin, we

perform the operation
V-1 gl

In practice (image processing applicatiog)mogenous coordinatedlow affine transformations

be easily represented by a matrix. Also they make calcuiatpmssible in projective space just as
Cartesian coordinates do in Euclidean space. Thereforajilv@escribe these transformations using
the homogeneous coordinates next. Before that, a few defisitire in order.

cosB@ —sinf
sin@ cosf

DEFINITION 2.3. A similarity transformationis a conformal (angle-preserving) mapping whose
transformation matriXA can be written in the form

A=PBP 1
whereP is an invertible square matrix.
Examples of similarity transformation include scalingslation, and rotation.

DEFINITION 2.4. In geometry, a@ffine transformatioror affine mapbetween two vector spaces
consists of a linear transformation followed by a translati.e.,

X— Ax+b

Examples of affine transformation include similarity treommation and shearing.

Another important category of transformation is {herspective projection (projective transforma-
tion) that is of great importance in 3D computer graphics. Whepaaallel projections are used to
project points onto the image plane along parallel lines, glrspective projection projects points
onto the image plane along lines that emanate from a singié, g@lled the center of projection.

This means that an object has a smaller projection when atriaway from the center of projection

and a larger projection when it is closer.

DEFINITION 2.5. Theprojective spacgenerated from a particular vector spates denoted
PV = {1 - dimensional subspaces\¢} .

The case whelV = R? or V = R3 are theprojective lineand theprojective plane respectively.
Alternatively,
P" = {1 dimensional subspaces§f*} .

DEFINITION 2.6. Thehomogeneous coordinate$ a projective pointp € P2 is [x :y: Z], where
v=(x,2)" is any vector in the 1-dimensional subspace which defines

Note that the homogeneous coordinates are not unique: amgrvan that line can be used to define
the homogeneous coordinates.Thus, we have the followotg:fa

PROPOSITION2.1. Let pe P2,
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(1) Any three real numbersy, and z which are not all zero can be the homogeneous codetina
of a point of the projective plane.
(2) [x:y:Z =[X:y :Z]ifand only if there isA # 0such thatk=Ax,y =Ay,and Z= Az.

In general, the homogeneous coordinates of a point of pregespace of dimension are usually
written as[x:y:z:---:wj, arow vector of lengtim+ 1. Two sets of coordinates that are proportional
denote the same point of projective space: for any non-zealaisc from the underlying fieldK,
[cx:cy:cz:---:cw denotes the same point. Therefore this system of coordirate be explained
as follows: if the projective space is constructed from amespacé/ of dimensiom+ 1, introduce
coordinates iV by choosing a basis, and use thes®(\ ), the equivalence classes of proportional
non-zero vectors iN.

The idea of a projective space relates to perspective, memsely to the way an eye or a camera
projects a 3D scene to a 2D image. All points which lie on aqmipn line (i.e., a “line-of-sight”),
intersecting with the focal point of the camera, are pr@danto a common image point. In this case
the vector space 3 with the camera focal point at the origin and the projectivace corresponds
to the image points. See Figlire 4 for an illustration.

projection line
— (line of sight)

common image

FIGURE 4. lllustration ofP? and perspective geometry.

Let p=[x:y:Z € P2 Recall that this represents the lineR3 passing through the origin and the
point (x,y,z). If this line is not in thexy-plane, that is, iz # 0, then using the scaling property of
homogeneous coordinates we see that
Xy
= = |—,— 1 .
p=lxiy:d = |5 L1]
This gives anormal formfor such points, in that it is a unique representation of trenfla: b : 1]
since

[a:b:1]=]c:d:1] ifandonlyif a=bandc=d.

The points of? that this does not work for are exactly the poiptsy : 0], where the homogeneous
z coordinate is zero. In terms of the linesi®t, these are the horizontal lines in tkgplane.

In this way we see that for many of the points of the projectilaneP?, we have associated two
real numbers. Geometrically, we can think of this as follovet H be the plane ifR® defined by
z=1. Every line through the origin that is not parallel to thiarne will meetH in a unique point.
Conversely, every point di may be joined to the origin by a unique line. In this way we have
correspondence between the points of the Euclidean plaaed the points oP?, except thez =0
points.
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Since the plane is naturally &7, we have a natural pairing
R? — P2

which associates an ordered p@irb) in R? to the point[a: b: 1] in P2. The inverse mapping sends
a point[x: y: Z € IP? to the ordered paifx/z y/z) € R?. This inverse map is not defined at the points
wherez = 0. What about those points wher= 0? It is useful to “step down” one dimension to
get a feeling for this concept. Suppose that instead of stgdire space of lines through the origin
in R3, we study the lines through the origin B?. We all know that each of these lines may be
described by a real number — its slope. If a line through thgirocontains the pointx,y), then its
slope ism=y/x. This associates a single real number to each line throwgbrigin,except for the
vertical line Indeed, the slopen = y/x can be viewed as thecoordinate of the intersection of the
line with the vertical linex =1, in complete analogy with the situation described aboviea¥ghould
we associate to that one missing line, the vertical line? Slbpe construction clearly indicates that
we should think of the vertical line as having “infinite” skpTherefore a reasonable model for the
set of lines through the origin iR? is the set of real numbers (including the slope of the liples
one extra infinite point:

lines though 0 inR? = R U co.

One important feature of this point of view is that the “infefipointe is approached by either letting
the slope valuen go to positive infinity, or by going to negative infinity. Thedore, this infinite point
is somehow a “two-sided” infinity, being approached fronhertvery large positive slope numbers
and from very large negative slope numbers. Similarly, ibeasider a poinix: y : z] € P? with z+# 0,
and letzapproach 0, what do we find?2#~ 0, then we have a point of the Euclidean plarez,y/z).

As z approaches 0, keepingandy fixed, we see that this Euclidean point has coordinates going
infinity. Therefore we conclude that the pointskf with z= 0 are somehow “at infinity” when we
think of them in relation to the Euclidean plane points wieted. We can also see this geometrically,
using thez= 1 planeH: as a line inR3 through the origin moves and approaches a horizontal lisie, i
intersection withH is a point which is moving away from he origin, and its cooed@s are going to
infinity. This convinces us that the extra pointsf8f— R? should be considered as being “at infinity”.
Now, we will give matrix representatives for the similartiansformation in homogeneous coordi-
nates. It is strongly recommended that you verify the effe€these matrices yourselves.

e Scaling matrix.

sx 0O
S=|0 s O
0O 0 1
e Translation matrix.
1 0 ty
0 01

e Rotation matrix.

cosf@ —sinB O
R= |sin6@ cos6 0.
0 0 1

See Appendix]3 for a discussion on the registration probleiiace recognition using these linear
transformations.
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3. Subspaces

Because data sets lie initially within large vector spadeas,important to be able to decompose, or
analyze , such spaces into smaller ones. In this sectionmfeefudevelop our tools for decomposing
patterns into especially useful subspaces. One of the measito be developed is that of the projec-
tion matrix, but first, we examine the general problem of aegosing a vector space into the sum of
independent subspaces. To begin, we recall the basic dw&finita subspace of a vector space.

DEFINITION 3.1. Asubspace Wf a vector spac¥ is a subset of vectors such that

(1) (W is closed.) Ifw,w € W anda,b € R thenaw +bw’' € W.
(2) (W contains the zero vectoQ)e W.

PROPOSITION3.1. The set of vectors

w=<{w:w=Y av
=gt}
that is spanned by the vecto{y(i)} is a subspace.

ExamPLE 3.1. Any line through the origin dR" is a one-dimensional subspace. Any space spanned
by a collection ok < nindependent lines through the origin formk-dimensional subspace B&f'.

An important parameter space whose elements are subspadied the Grassmann manifold.

DEFINITION 3.2. TheGrassmannian G(k,mr the Grassmann manifole the set ok-dimensional
subspaces in amdimensional vector spad¢€’ for some fieldK, i.e.,

G(k,n) = {W c K" | dim(W) =k} .
PrROPOSITION3.2. If Wy and W are both subspaces, then so is their intersectigmWb.

DEFINITION 3.3. Thesumof the vector subspacé¥, andW is written asWw =W, +W, and is
defined to be the set

WL +Wo = {w1+wyo :wy € Wy, wp € Wol.
PROPOSITION3.3. The sum of two subspaces is a subspace.

The fact that the sum of two subspaces is a subspace prowdeghua nice way to decompose a
vector, viz., ifx e W andW =W, +W5, we can always writex = wy +wo wherew; € W. After a
little bit of experimenting with this decomposition it is@grent that it is not unique. This ambiguity
will generally be undesirable, but can be avoided by restgche relationship betwea; andW,
as described below.

Independence of Subspaces.

To make the decomposition of a vector unique we require bestibspaces be independent.

PROPOSITION3.4. If W1 and W are independent subspaces and=W\, +Ws, wy € Wi, wo € Wh,
then the decomposition gfc V given by

X=W1+W>

is unique.
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Direct Sum Decompositions.

From above we see that the decomposition is unique if thepsuwgles are independent and we can
distinguish the decomposition from the mere addition ofspalces by writing

W =W, &W,

as thedirect sum decompositioof W. These ideas may be extended to the case of more than two
subspaces. A special but important instance of indeperstdspaces is orthogonal subspaces.

DEFINITION 3.4. A vectorv €V is said to beorthogonalto a subspac®/ C V if v is orthogonal to
everyw € W. Two subspaceds andW, are said to be@rthogonal subspacesevery w, € Wy and
wo € W5 the inner product satisfigsvy, w,) = 0.

Given a subspad®/ of the vector spac¥, the space of all vectors orthogonaMbin V is called the
orthogonal complemeraf W, writtenW-.

EXAMPLE 3.2. LetV = R3. Then thex-axis and thg-axis are orthogonal subspacesR5t Also, the
orthogonal complement of the-plane is thez-axis.

An important special case of the direct sum decompositienigovhen the subspaces are orthogonal.
In this situation we distinguish the notation by writifg

PROPOSITION3.5. If two subspaces are orthogonal, then they are independent.
Important Subspaces.

In this section, we describe the basic subspaces that willf hese in what follows. It is implicit,
unless otherwise stated, thiats anm x n matrix.

DEFINITION 3.5. Therangeof A, denotedZ(A), is the set of all vectorg such thav = Ax, i.e.,
ZA)={veR™:v=Ax forsome xecR"}.
The expressiom = Ax may be rewritten
v = [@P]a@)]...]aM"]
= xa® +3a@ 4 ... £ xam.

This expression reveals thaties in the span of the columns 8f Hence the range o, Z(A), is
also referred to as thelumn spacef A.

DEFINITION 3.6. Thenull spaceof A, denoted /" (A), is the set of all vectorg such thaly =0, i.e.,
N (A)={yeR": Ay =0}.

DEFINITION 3.7. Therow spaceof A, denotedZ(AT), is the set of all vectors such that = ATv,
i.e.,
Z(AT)={xeR":x=ATv forsome veR™}.

DEFINITION 3.8. Theleft null spaceof A, denoted.# (AT), is the set of all vectors such that
Alv=0,ie.,
N (AT)={veR™: ATv=0}.

PROPOSITION3.6. For any mx n matrix A one has

AN (A) LZ(AT),
i.e., they are orthogonal subspacesrdf, and

N (AT) LZ(N),
i.e., they are orthogonal subspacedro?.
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The range, or column space, of anx n matrix A determines a subspace &f". The number of
independent vectors in this subspace, i.e., its dimengamyvery special and useful quantity for a
matrix known as itsank.

We have a very useful counting rule:

PROPOSITION3.7. Let A be an nx n matrix. Then
r+dim.(A) =n,
where r is the rank of A.

From this relationship between the dimensions it follownat the spacest (A) and%(AT) decom-
poseR", i.e.,

R" =¥ (A)SZ(AT).
An analogous statement holds true for the decompositi@i'bi.e.,

r+dim.# (AT) =m

and _

R™= 4 (AN)&Z(A).

4. Projection Matrices and Orthogonal Projections

The direct sum provides a framework within which a vectorcgpanay be systematically split into
subspaces that provide a unique expression for the decaiopas any vector in the space. In this
section we describe a mapping, referred to asogector, or projection matrix which takes a vector
and executes this decomposition.

DEFINITION 4.1. A matrixP is said to be grojection matrixif
P? =P.
Such matrices are said to lmeempotent

EXAMPLE 4.1. It is easy to verify that the matrix

(4

is a projection matrix. Note that it has rank 1 and that

%(}P):{a@ :aeR}.

See Figur€ls for possible actions of a projection matrix.
Invariant Subspaces

DEFINITION 4.2. LetV be a vector space amda linear operation oW. If W is a subspace of, we
sayW isinvariantunderL for eachw € W we haveLw € W. In order words| (W) CW.

Furthermore, i, andW, are subspaces invariant undefwhereA is the matrix that corresponds
to the linear operatdr) with V =W, &W,, then we saA is reducedor decomposetly W, andWs.
We now show that a projection matrix naturally decomposesciov space into a pair of invariant
subspaces, i.e.,

V=2%P)aZ(l -P).
First, any vector € V may be decomposed into elementsgfP) andZ(l —P) via

V=Pv+ (I —P)v.
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Pu

R(P)
@ (b)

FIGURE 5. (a) A nonorthogonal, asbliqueprojection. (b) An orthogonal projection.

Note that the mapping — IP is also a projection matrix (known as tlsemplementary projection
matrix) since

(I-P)? = | —2P+P?
= | -2P+P
= |I-P
We may also employ the notatiéh= | — P to represent the projection matrix onto the null space. The

subspaceZ(P) is invariant under the action @& may be concluded from the following proposition:
PrROPOSITION4.1. v € Z(P) if and only ifPv = v.

PROOF. Firstassume € Z(P), i.e.,v=Px for somex € R". SoPv = P?x = Px = V. Conversely,
assume thabPv = v. It follows directly thatv € Z(P). O

Similarly, it may be argued that the spa@€l — P) is invariant under the action of the projector P.
It is left to show that the subspaces are independent.

ProPOSITION4.2. Z(P)NZ(l —P) = {0}.

PROOF. Letv e Z(l —P), i.e.,v = (I —P)x for somex. SoPv = 0. But, by Proposition 41,
v € Z(P) if and only if Pv = v; hence we conclude that= 0 is the only element common to both
Z(P) andZ (I —P). O

Lastly, we make a connection between the range of a complamygorojector and the null space of
the associated projector.

PrROPOSITION4.3. The range of the complementary projector is the same as thepace of the
projector, i.e.,

Z(l —P) =N (P).

PROOF Letr € Z(P), i.e.,
r=(—-P)v.

Projecting this vector gives

Pr = Pv—P?v =0.
Thus, ifr € Z(1 —P), thenr € 4/ (P). Since this is true for an arbitrary it follows thatZ (1 — P) C

A (P). Conversely, ifr € A4 (P), thenPr =0, i.e., (I —P)r =r. Sor € Z(l —P). Hence the
result. O
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From these results it is now clear that a projection matrpasates a space into the sum of two
independent subspaces

V=2%P)® ./ (P).
It follows from this discussion that for every splitting

V=W, &oW,
there exists a projection operaf®dsuch that

Z(P) =W,
and

N (P) =W,

All that is required is to determin® givenW;. We will describe a method for doing this in the
following discussions.

Orthogonal Projection Matrices

We have seen that projection matrices permit the decomposif a space into invariant subspaces.
The most useful application of this idea is when the resglsinbspaces are orthogonal, i.e., when the
projection matrix and its complement produce orthogonetors. We begin with a basic definition.

DEFINITION 4.3. Letx =wq +wy andw; € Wy, wy € Wo with W, L Wh. The vectow, is called the
orthogonal projectiorof x onto W, andws is called theorthogonal projectiorof x ontoWs.

Associated with an orthogonal projection is the operatdrictv we now refer to as an orthogonal
projection matrix, which performs the projection descdbe the definition above. (Note that the
orthogonal projection matrix should not be confused witloehogonal matrix.)

DEFINITION 4.4. If the subspace#(IP) and.# (P) are orthogonal, then the projection matfixs
said to be amrthogonal projection matrix

If P is an orthogonal projection matrix, then we may write thedisum decomposition of the space
as

V =2Z(P)dN (P).
Best Approximations and the Projection Theorem

Suppos&V; andW, are subspaces of an inner product spaceich thaV =W, +W,, and letx € V
be an arbitrary vector. The notion bést approximationo x by a vector in\; is made explicit as
follows:

DEFINITION 4.5. A best approximation to by vectors iV is a vectoiw, € W such that
[ —wa|| < [[x—wi]l
for all w} € Wi.

In other words, for eack € V, we seek a vectaw; € Wy such that the norrfjx —wsz|| is a minimum.
We shall assume, unless otherwise stated, that the Euclit@an is to be employed. The theory is
of course valid for norms in general.

THEOREM4.1. The Projection Theorem. Of all decompositions of the form
X = W] +W)

with wy € Wy, the orthogonal projection provides the best approxinmatio x. Equivalently, the
orthogonal projection minimizes the nofifws||. (See Figur€lp)
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"W

FIGURE 6. The best approximation to a points the orthogonal projection;. Every
other projectiorw; has a larger residual,.

PROOFE We rewrite
Ix—wy|[? =[x —wy 4wy —wy|[?
= <x—w1+wl—w1',x—wl+w1—w1’>
= <x—wl,x—wl+wl—wl/>+<wl—wl/,x—w1+wl—wll>
= (X—Wl,X—W1)+(Wl—Wll,Wl—W1/>+2(X—W1,W1—W1/>
=[x wal P g — w2+ 2 (x = wa,wi —wy')

Observe thax —w; = w, € W, and thatwy —Wl' eWy. If Wy LW, i.e., the projection is orthogonal,
then it follows that

(x — W1, Wq — Wl/) =0.
From this we have

X —wy || > [[x = wa %
in other wordsw; = w is abest approximatioro x. Note that||wy || = ||x — w4 || is a minimum
for wy', and sincav, = x — wy, it follows thatw, = w; in the case of the best approximation. [

Furthermore, it can be shown that this best approximatiamique. In addition, these results be
extended to the general setting of metric spaces. Seeatitgrexts for the details.

Note that this theorem says nothing about how to sé\dtself. In other words, given a fixedh,
the theorem indicates that the orthogonal projection wilhimize the error for each vector M.
However, selecting\; for a given data set is an entirely different and interesigsge which will be
pursued in the sequel.

Criterion for Orthogonal Projections

PROPOSITION4.4. If
P=PT,
then the matriXP is an orthogonal projection matrix.
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PROOF. LetP =PT, Px € Z(P) and(l —P)x € .4 (P). Then
Px)T(1=P)x = x'PT(I-P)x
= X (P—P?)x
=0

The converse is also true, i.e.[ifis an orthogonal projection matrix, th&n= PT.

EXAMPLE 4.2. Itis easy to verify that the matrix

11
=i 4
2 2
is an orthogonal projection matrix.
EXAMPLE 4.3. Every matrix of the formwv' is an orthogonal projection matrix fifv|| = 1:
W2 = (whw")
= v(vTv)v'
= w'.

Note that this projection matrix has rank one and #ig/wv') = sparfv). From this example we
observe that any vectormay be orthogonally projected onto a given veattay defining

Pyu = (whu=v(v'u).
Also, the orthogonal complement, @sidualr is then found to be

r=P,=(-P)u=u— (v uv.

Orthogonal Projection Onto a Subspace

We can leverage our ability to projeatonto a single vectov into a method for computing the
orthogonal projection af € R" onto a subspad#. To begin, we assume that we have an orthonormal

basis for the spac®/ consisting of the vectorsw¥,....w | We may view each of the/!) as
spanning a one-dimensional subsp@eClearly, each of these spaces is orthogonal, i.e.,

W LW, i#j.
Furthermore, the sum of these subspaces spatimensional subspace

W =W +W5 +--- +W.

From our previous deliberations, _ _

W=WiD-- - SW,.
In other words, the orthonormal basis induces a direct sucordposition of the subspat¥. A

projection ontdV may be constructed from projections onto the individuakgalzes.
The projection olu onto theith subspace is given by

P,nu= whwTy,

If we write Pj = IP,, i), then the projection matrix on¥ is given by

k kK
(6) P=SP=SwhwiT,
2"
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Given the matridM = [w(V|- .. |w(¥], it follows that

P=MM".

Orthogonalization

In the course of the above computations we assumed that bispace on which we were to project
was equipped with an orthonormal basis. We now reviewzrem-Schmidprocedure for computing

. m
an orthonormal basis starting from a set of vect%wé) } . Take as the first element

v

[V

1 —
The second element of this set is constructed using the saoa®tone-dimensional projection tech-
nique discussed previously. The projectionv& ontou') is given by
Pu(l)v(z) — (u(l)u(l)T)V(z)’
so the vector pointing orthogonally to? is the residual
= (I = Pya)v@.
Simplifying and normalizing this vector gives

u(z) B v@ _ (u(l)T\/(z))u(l)
V@ — (u@Ty@)Hu@)||”

Proceeding in the same fashion with tjtb direction we have

u(j): ZI 1u (l)u(') .
VD) = 3 uOTvu) |

Note that if the added directiort!) is dependent on the previous vectors, théh = 0.

EXAMPLE 4.4. Consider the matrix

R OO

1
0
-1
0

OrOoOPRr

Find the orthogonal projection matrix that takes an elernéit® ontoZ(A). Defineal = (10107
anda® = (1001)T. Since the third column is a multiple of the firsg(A) = sparfa?,a?). To
find the projection matri® that maps an element &% ontoZ(A), we first determine an orthonor-
mal basis forZ(A). Clearly the columns) anda® are linearly independent, but they are not
orthogonal. Using the Gram-Schmidt procedure we obtain

u(1>:\%(1010)T

and

1
2 _ = - T
u = 10-12)".
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The projection matrix onta'V is given by

1
IP):L — u(l)u(l)T — é

OFrOFr
O OoOoOoo
OPr OoOpPr

and the projection matrix onia/? is given by

P,—y@y@T 1[0

O OO

From this we have the projection matrix

-1
2

1
P=P1+P>= §

PR, ON
o O oo

1 1
0O O
2
1

Application: The Novelty FilterWe have seen how a projection matrix may be constructed from a
arbitrary collection of vectors which span a vector subsp&low we consider a direct application of
these ideas to a pattern processing problem.

Given a data set consisting of an ensemble of pattern veetars digital images of human faces, we
generate associated column vectors by concatenating lilv@ies/rows. In other words, each pattern
is available as an-tuple. Further, let's assume that we are given a large nukbithese images but

k
thatk < n, probably much less. Thus we have an ensenﬁb[@ ~ wherevl) e R" for everyi.

We would like to determine a projection matrix that takes & pattern and splits it into two com-
ponents: the first component is the portion of the data trsties in the subspace spanned by the
original patterns, otraining set the second component is orthogonal to the training set epice+
sents the portion of the data thanisvel

With this in mind, we defin&V as the basis in which all the training patterns lie and naedmw =

m < k with equality if the original patterns are independent. &edmine an orthonormal basis i

the Gram-Schmidt procedure is applied to the training detés operation will take us from the set of
generally nonorthogonal and possmly linearly dependattepn vectors to an orthonormal basis for

W, which we write as the se{tu } - Insummanyw = sparfv® ... .v¥) = sparju® ... u(m),

Next, the orthogonal projection matﬂqu computed via Equatlom(G) as well as the complementary
orthogonal projection matrik— P. The projection of a pattern produces a poinkif,

P:R" =W,
X~ Px=weR™
and the residual sits iR"™™
| —P:R" - W+,
~ (I =P)x=wt e R"™™
As before, this is an orthogonal decomposition of
X=W+w".

According to Kohonen3g], we refer to this orthogonal component as ttweltyof the pattern, and
the general procedure of separating the novelty of a pattem the non-novel component as the
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novelty filter In the face data example, novelty might correspond to a raew, for possibly a new
pose of a training face.

In practice, problems may arise that make the interpretatiohe novelty of a pattern more challeng-
ing. First, if the original set of patterns does not includmgples of all possible normal patterns, or at
least enough to span this set, then the subspaeél be too small and components of a pattern may
appear novel only because the set of stored patterns is talh. dmaddition, the effect of noise on
such a subspace representation can be significant. Moritsd®etanovelty filter can be found if8H].

5. Eigenvalues and Eigenvectors

At the center of our discussion has been the constructiom@égtion matrices to permit the de-
composition of vector spaces. One of the most useful metfaydonstruction projectors is to first
determine a basis of eigenvectors for the space in question.

The study of eigenvalue and eigenvectors is probably onéeftost important topics of linear
algebra. It has applications in the study of population ghpwtatistical analysis, face recognition,
medical imaging, control theory, vibration analysis, &lecircuits, etc. And this is just a very small
pool. Here, we will briefly introduce the definition of eigatwe and eigenvectors and illustrate its
use with a face recognition application.

The central question of theigenvalue problemcan generally be stated as follows. Givenran

n matrix A, which is usually thought of as a linear transformation,eagenvector of that linear
transformation (matrixd) is a nonzero vector which, when applied by that transfoienathanges in
length, but not direction. Mathematically, an (nonzergjeevectox of the matrixAis an x 1 matrix
such thatAx is a scalar multiple ok. The scalar is usually denoted Ry(lambda) and is called an
eigenvalueof A. In symbols, the eigenvalue problem can be written compastl

) AX = AX.

Given ann x n matrix A, how do we find the eigenvalue and corresponding eigenwsttarake
Equation[(¥), rewrite it into

(8) Ax—Ax =0,
wherel is then x n identity matrix andO is then x n zero matrix. Then factor out the
(9) (Al =A)x=0.

This homogeneous system of equationsiiknowns and equations) has nonzero solutions if and
only if the determinant oAl — A is zero, sincex cannot be a zero vector. This condition equation
det(A| — A) = 0 is called thecharacteristic equation of A, and is a polynomial equation of degree
nin A, denoted byp(A) = (A —AW)(A —A@)...(A —=A(M) =0. The eigenvalues d are readily
obtained by solving the characteristic equation. Once we tiire eigenvalues of\, we can use
Gaussian elimination to find the corresponding eigenvscttiiis possible that some of the?) are
the same. The number of times a particular eigenvalue isate@as referred to as i@lgebraic
multiplicity.

ExAMPLE 5.1. Find the eigenvalues and corresponding eigenvectdng anatrix

2 —12
a2

Solution:



30 1. VECTOR SPACES AND LINEAR TRANSFORMATION

The characteristic equation Afis

-1 A+5
= (A=2)(A+5)+12
A%243) +2
= (A+1)(A+2)=0 (settozery,

which givesA; = —1 andA, = —2 as the two eigenvalues 8f To obtain the corresponding eigen-
vectors, we use Gaussian elimination to solve the homogerawar system( | — A)x = O):

ForA; = —1:
1-2 12 3 12
“4“_A:[-4 -4+4::L1 4}

o o)

310 [ oo

Letting x> = t, we conclude that every eigenvectorXafis of the form

[ [f oo

A—A = ’A—Z 12‘

which row reduced to

This gives

ForA, = —-2: )
-2-2 12

(_3'_A::{-—1 —2+5_:[—1 3
o o)

1 - X1 0 .
{O OHXZ]_[O}:Xl_e,XZ_o.
Letting x> = t, we conclude that every eigenvectorfis of the form
X 3t - 3
el = [F] 1o

If we think of a vector as direction then the term “eigen” is commonly used as a prefix to direstio
that are unchanged under the influence of a linear transtmma

which row reduced to

This gives

EXAMPLE 5.2. The matrix

1 6 1
A=10 -3 -15
0O 0 -3

has the characteristic polynomial
pPA)=(A -1)(A+3)

from which we conclude that = 1 is an eigenvalue with (algebraic) multiplicity 1 aAd= 3 is an
eigenvalue with multiplicity 2.

PROPOSITIONS.1. Every eigenvalue has associated with it at least one eigtowe
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PROOF Given detA—Al) =0,
rank(A—Al) <n,
from which it follows, using the faat+ dim.#"(A) = n, that
dim A (A—=Al)> 1.
The elements of this nontrivial space are eigenvectors. O

PROPOSITIONS.2. The eigenvectors associated with the eigenvaluand the zero vector, from an
invariant subspace, referred to as the eigenspage E

ExXAMPLE 5.3. Ifu,v € E,, thenAu = Au andAv = Av. Letw = au+ v. We have
Alau+pBv) = aAu+ BAv
A(au+Bv)

from which we may conclude that € E,. Recall that every subspace must contain the zero vector,
yet zero is not an eigenvector. The eigenspBges an invariant subspace, i.al,€ E, implies
Au € E)\-

DEFINITION 5.1. The dimension of the eigenspace, i.e., Bjmis the number of independent eigen-
vectors associated with. This number is also referred to as tpometric multiplicityof A.

PrROPOSITIONS.3. The algebraic multiplicity ofA is greater or equal to the geometric multiplicity.

An eigenvalue whose geometric multiplicity is less tharaltgebraic multiplicity is said to bdefec-
tive. An n x n matrix that has no defective eigenvalues must hrevelependent eigenvectors.
THEOREMS5.1. Let A be an rx n matrix with n independent eigenvect({r\s(”,v(z), v } Define
the matrix V= [v(|...|v(V]. Then
VIAV = A,
whereA = diag(A (D, ..., A (M),
PROOF We will show thatAvV = VA:
AV = AV v . v
= AV Av@ ... Av()
= POVD AR L A0y

Note that the independence of the vector¥ a$ required so tha¥ —! exists. O

As a consequence of this theorem, a matrix thatrheslependent eigenvectors is said todiago-
nalizable

PROPOSITIONS.4. Eigenvectors associated with distinct eigenvalues akslily independent.
A set ofn independent eigenvectors forms a basisRbreferred to as arigenbasis
COROLLARY 5.2. An nx n matrix with n distinct eigenvalues

A0S 2@ 5 o5 2
is diagonalizable.

This follows directly from the fact that the eigenvectorssnbe independent.
In elementary linear algebra courses it is shown that symemagatrices have very important proper-
ties. We bundle a few of them into a single proposition.
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PROPOSITIONS.5. Let A be an nk n symmetric matrix.

(1) The eigenvalues of A are real. _ _
2) 1f A £ A0), then the eigenvectord) andvl) are orthogonal.
(3) Ais not defective, i.e., it has n independent eigenvectors.

Thus, given am x n symmetric matrixA, an orthonormal basis f&" may be constructed from its
eigenvectors. Eigenvalues of algebraic multiplicity oas brthogonal eigenvectors; eigenvectors that
correspond to an eigenvalue with multiplicity greater tbae may be orthogonalized by applying the
Gram-Schmidt procedure.

DEFINITION 5.2. We refer toA as beingorthogonally diagonalizablé
VTAV = A

THEOREM 5.3. Spectral Theorem. The matrix A is symmetric if and only ifehea real orthogonal
matrix V such that
VTAV = A

The equatiotvT AV = A may be rewritten as
A=VAVT = 3 AUVOVOT,
|

This representation expresses a square matrix in termsushasrank one matrices.

Application: Eigenfaces

Eigenfaces, as the name suggests, are a set of eigenvessatsnuthe computer vision problem
of human face recognition. A digital image of a face can bexseea vector whose components
are the brightness of each pixel. The dimension of this vespace is the number of pixels in the
image. Since human faces look relatively similar, it is ceeble to assume that there is a small set
of “eigenfaces” that represent the features of the face® €i¢genfaces that are created will appear
as light and dark areas that are arranged in a specific pafféis pattern is how different features
of a face are singled out to be evaluated and scored. Thdrbendl pattern to evaluate symmetry, if
there is any style of facial hair, where the hairline is, cailaate the size of the nose or mouth. Other
eigenfaces have patterns that are less simple to identifl/tlee image of the eigenface may look
very little like a face. What this means is, given any facegmave can use this set of eigenfaces to
represent it. Looking at it from a different perspectives et of eigenfaces are “basis” vectors in the
space of all faces.

These eigenfaces have provided great use in classificatotnbgons based oRrincipal Component
Analysis (PCA), which was first discovered by Karl Pearson in 1901. It is nowstly used as

a tool in exploratory data analysis and for making predectivodels. The main step of PCA is the
extraction of eigenvalues and eigenvectors of a covariaratex to achieve dimensionality reduction.
And yes, this is why you learn eigenvalues and eigenvectwskexample, we are given a set of face
images in Figuré]7. Using PCA, we obtain a set of (more thanelg@nfaces that are sorted by
the magnitude of their corresponding eigenvalues. Thetérs{ten largest eigenvalues) of those are
shown in Figuré B. We can see that the first eigenface picksheulighting condition of the set
while the other ones pick out different features of the oNdéage images. The technique of using
eigenvectors to perform recognition is used for handwritlegital recognition, lip reading, voice
recognition, sign language/hand gestures, etc.

Application: Google Eigenvectors

The following presentation will closely follow the discisss in [19] and [17]. For a relatively more
detailed mathematical discussion of the method, pleasgl3ke
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eigenface #6 eigenface #7 eigenface #8 eigenface #9 etgehid

FIGURE 8. Ten eigenfaces obtained from face images in Figlre 7.

Many web search engine techniques we see today follow the ioies of web pageankings The
concept was first introduced by Larry Page and later devdidyeSergey Brini44]. The project
started in 1995 and led to a functional prototype, named @&oag 1998. Shortly after, Page and
Brin founded Google Inc., the company behind the Googlecbeamgine. While just one of the many
factors which determine the ranking of Google search res@ageRank continues to provide the
basis for all of Google’s web search tools. Google uses aoriéhgn for ranking all the Web pages
that agrees well with a common-sense quality measure.

The web (at some frozen point in time) consistd\ofveb pages, most of them pointing to (having
links to) other web pages. The importance of a page depentiseamumber of links to and from a
page. In other words, a page which is pointed to very oftenlevba considered important, while a
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page with none or only very few other pages pointing to wowdccbnsidered not important. How
can we rank all web pages according to how important they lae€8 assume that all web pages are
ordered in some fashion (such as lexicographic) so we cagressiumber, such aso any page. Let
O; denote the set of pages tha linked to, theoutlinks The number of outlinks is denoté&§ = |O;|.
Theinlinks, denoted;, are the pages that have an outlink.tdlote that a page is not supposed to link
to itself.

In general, a pagecan be considered as more important the more inlinks it hasieder, a ranking
system based only on the number of inlinks is easy to martgulahen you design a Web page
that (e.g., for commercial reasons) you would like to be $B8eas many users as possible, you could
simply create a large number of (information-less and uwirignt) pages that have outlinesitolro
discourage this, one defines the rank sb that if a highly ranked pagehas an outlink t, this adds

to the importance of. The ranking of a page r;, should obey the following rules:

(1) The ranking; should grow with the number of pags inlinks. (A page which is pointed to
very often should deserve high ranking.)

(2) The rankingr; should be weighted by the ranking of each of p&geanlinks, i.e., if all
of those inlinks prove to be low-ranked, then their sheer Ipemis mitigated by their low
rankings. Conversely, if they are mostly high-ranked, tinety should boost pagis ranking.

(3) Let page have an inlink from pag¢. Then the more outlinks pagehas, the less it should
contribute torj. Namely, if pagej has only one outlink, and it points to pagehen page
i should be “honored” for such trust from page Conversely, if pagg points to a large
number of pages, pagamong them, this does not give pagauch pedigree.

Translating these into mathematics, we get

r'.
(10) =9 —.
JEdi Nj
This preliminary definition is recursive, so page ranks cafre computed directly. Instead, a fixed-
point iteration might be used. Guess an initial ranking @ecf). Then iterate

(¥

(11) rif = ’il— k=0,1,...
€l

There are a few problems with such an iteration: if a page bamitlinks, then in the iteration process
it accumulates rank only via its inlink, but this rank is nedestributed further. Therefore it is not
clear if the iteration converges. We will come back to thisipem later.
More insight can be gained if we represent the connectititycture of the web by an x n matrix
Q. Define

& ifthereis alink fromjtoi,
Qij =1

0 otherwise

This means that rowhas nonzero elements in the positions that corresponditd&snbfi. Similarly,
columnj has nonzero elements equalNpin the positions that correspond to the outlinkg pand,
provided that the page has outlinks, the sum of all the elésriercolumnj is equal to one.

ExXAMPLE 5.4. The following link graph illustrates a set of Web pagéthwutlinks and inlinks:
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NI

The corresponding matrix becomes

1

4

b
O WwrwkrF- Owlk O
O Wk Owkr Owl-
RO OOOoOOo
eoNeoNelNeNe)
Wk O WkFWr o O
[@ )N Ol\)ll—\o

0
Since page 4 has no outlinks, the corresponding column ial égaero.

Obviously, the definitio (10) is equivalent to the scalardurct of rowi and the vector, which holds
the rank of all pages. We can write the equation in matrix form

(12) Ar=Qr, A=1,

i.e., r is aneigenvectonf Q with eigenvalueA = 1. It is now easily seen that the iteratidn(11) is
equivalent to

p(kt1) — Qr(k), k=0,1,....

At this pointitis not clear that pagerank is well defined, &de not know if there exists an eigenvalue
equal to 1. It turns out that all stochastic matrices have phaperty and thus no trouble arises.
Interested readers are referred1d][for further details. Here, we employ tlgwwer methodo find
the eigenvector,. This method needs an initial guess fot [rq, - - ,rn]T, and setting alf; = 1 is not
too bad for that. As the iterations converge, the solutidousid. The entries af are real, since they
correspond to a real eigenvalue.

The vectorr now contains the ranking — called page rank by Google — is page. If Google
retrieves a set of pages all containing a link to a term yowsaaeching for, it presents them to you in
decreasing order of the pages’ ranking.

EXAMPLE 5.5. LetQ be given by

00030 %
lolioi
3 2 2 ?
Q_ooooég
[ 00030
0032000
1 1
110030

The eigenvector corresponding to the eigenvalue 1 is giyen b
r’ =[0.306,0.5480.278 0.148 0.139,0.697.
Thus page 6 has the highest ranking and page 5 has the lowkstga
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Some final remarks: Google (the company) solves Equafiop dt@ut once a morlih Roughly
speaking, they do not ugg= 1 as the initial guess, but instead use last month’s solutiorthe
real world,n ~ 10'°, meaning thaf has 18° elements. This is world’s largest matrix to be used
ever. Luckily, it contains mostly zeros and thus is extrgnsplarse. Without taking advantage of that,
Google (and other search engines) could not function.

6. The Singular Value Decomposition

The singular value decomposition (SVD) extends the spettearem for rectangular matrices. We
shall see in Chaptét 2 that it also provides the necessatyematics for understanding an important
class of optimal dimensionality-reducing mappings. Wdldsegin with a statement of the decom-
position theorem, and it the course of proving it we will &ditth several important facts concerning
the SVD.

Construction of the Decomposition
We begin with a statement of the decomposition theoremv@tbby a constructive proof.

THEOREMG6.1. Singular Value Decomposition (SVD). Let A be a real mmatrix and d= min{m, n}.
There exist orthogonal matrices U and V such that

(13) A=U3xVT,
where Ue R™™ V ¢ R™", andz = diag(aV,..., @) e R™,

If m> n, then the diagonal matrix has the form

o 0
0 O'(n)
S —
0 0 ’
O --- 0
while if m< n, then
o 0 O 0
S —
0 agm 0 0

Furthermore, the entries afare ordered according to

The case foA being a complex matrix is analogous and is treated in mosafialgebra texts. For
simplicity, we now assume that > n and thatA has full rank, i.e., rank. The rank-deficient case
follows immediately from these deliberations. To estdbliee decomposition given by Equatiéni(13),
we first rewrite it as

AV =UzZ.

Theith column of this relationship is
(14) AV = gy,
wherei = 1,...,n. Alternatively,

ATU =VsT,

lthe actual equation is a bit trickier, and is omitted here
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Theith column of this relationship is
(15) ATu(i) — O'(i)u(i)

where again = 1,...,n. For our constructive proof we must establish that, for angrgmatrixA,
solutions to equation$ (14) and {15) exist. In fact, as thevong propositions demonstrate, the

solutions to these equations occur in trip{es(‘), u(i),v(i)}, the components of which we refer to as

Y

thesingular valuesr (), theleft-singularvectorsu() and theright-singularvectorsv().

PROPOSITIONG.1. The n left-singular vectors of A exist and are given by thegemiectors of AA
corresponding to nonzero eigenvalues. These eigenvatuesspond to the singular values squared.

We have
Alu = ov
AATU = OAv
AATU = o%u

and henca/A = o. Existence of the eigenvectors follows sie&" is a symmetric matrix. Note that
the size of this eigenvector problemmnsx m. An analogous proposition is true for the right-singular
vectors.

PROPOSITIONG.2. The n right-singular vectors of A exist and are given by thigemvectors of AA,
and the associated eigenvalues correspond to the singalaes squared.

We have
Av = au
ATAv = oA'u
ATAv = o?v.

Again, existence of the eigenvectors follows, siideA is a symmetric matrix. Note that this is an
N x n eigenvector problem. However, since we are assumidgm, all of the eigenvectors in this
instance are also singular vectors.

We are now in a position to provide a constructive proof of ##D based on the existence of the
left- and right-singular vectors. Again, we assume> n, so there aren singular-vector triplets

{o(i), u(i),v(i>}. First we will show that

AV =U 5.
e I N e
mxn nxn mxn Nnxn

Thus,
AV = AV v

It follows that
(16) A=U05VT,

whereU € R™" (j.e., it isU with the lastm— n columns deleted), antl € R™". This version of
the SVD is referred to as thin SVD, or thereducedSVD. The full SVD follows by including the
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eigenvectors{u(”“), o u(m)}. In this case we write
o 0
(17) AV = U] u™umD|Lum)] 8 a(()”)
0 ... 0

This concludes our constructive proof of the SVD.
Corollaries of the Decomposition
The SVD can be used to establish properties of matrices dsagvetpresentations for them.
PROPOSITIONG.3. If rankA=r, then there are r nonzero singular values, i.e.,
oD~ ...c00) < g+ — .

PrROOF. This follows directly from the rewriting of Equation (113% a
r

2,

To derive this expression define the matriégs= diag(aV,0,...,0), Z, = diag(0,c(?,0,...,0),
and so on. If follows that
A = UxVvT
U(Zy+ o+ 3 VT
= UZVT4US VT +Us VT
o DuOyOT L g@y@yAT ... gy,

O

Note that SVD decomposes, or reduces, the matrix into a sumasfk-one matrices. Later we shall
see that it does this optimally well. Proposition]6.3 may s&lelished in another way as well. For
example, the rank of a diagonal matrix is the number of nangégonal elements. Furthermore,
orthogonal transformations do not change the number obvgthat make up a basis. In view of
A=U3XVT, it follows that if rankZ = r, then ranlA = .

It is also true that the column covariance mat&" and the row covariance matriX' A have the
same rank. IAis a data matrix, this suggests that the arrangement of theadaolumn or row vector
does not affect the number of relevant terms in the SVD.

PROPOSITIONG.4. Let A be an nx n matrix of rank r. Then
r = rank(AAT) = rank(ATA).

This follows directly from the correspondence of the nonz@ngular values with the nonzero eigen-
values: they are exactly the same in number.
The SVD provides bases for the fundamental subspaces. Hew@dlow the matrixA to be rank-
deficienti.e., of rankk < d = min{m,n}.
PROPOSITIONG.5. Let A be an mx n matrix of rank r. Then:

(1) The r left-singular vectors associated with the r nonzengslar values of A,

ie., {u(1>, . .,u(r)}, form a basis forZ(A).
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(2) The r right-singular vectors associated with the r nonzengslar values of A,
ie., {v(l),. : .,v(r)}, form a basis forz (AT).

(3) The m—r eigenvectors of ARassociated with the mr zero eigenvalues,
ie., {u(r“),...,u(m)}, form a basis for /" (AT).

(4) The n—r eigenvectors of PA associated with the-ar zero eigenvalues,
ie., {v(r“), e u(”)}, form a basis for 4 (A).

PROOF Item 1 follows from Equatior(18). Item 3 follows from thecfahat the vectors(®) sit
in RM and the full set forms a basis for this_spaéé\f is a symmetric matrix). Thus, the—r must
form a basis for 4 (AT), sinceR™ = .4 (AT)@&Z(A). Items 2 and 4 are true for similar reasonsJ

EXAMPLE 6.1. Compute the SVD of the data matrix

11
A=|0 1].
10

First, we compute the right-singular vectors and singuddmes ofA. These are exactly the eigenvec-
tors and the square root of the eigenvalues of

. (21
AA= <1 2)
which has the characteristic equatipf ) = (A —1)(A —3) = 0. Hences™® = VA1) = {/3 has the

right-singular vector

1
D_ 2T
\/§(7>7

ando@ = VA = 1 has the right-singular vector

v

vid = i(—l, nT.

The two left-singular vectors are given by the eigenveabbrs

2 11
AM'=[1 10
101

corresponding to the two largest eigenvalues. The charstiteequation foAAT is given byp(A) =
A(A —1)(A —3) =0. Now o (seen to be the same as above, as expected) has the lefasingu

vector
\/é( 9 ==y ) 9

u'
ando(@ = 1 has the left-singular vector

1
2 _ = _1\T
u= = 0,1,-1)".
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Lastly, we have the eigenvalué® = 0 which corresponds to the eigenvector

m@:-l4L—L—1ﬂ.

V3
This last vector completes the basis Fot:
2 0 1
V/6 V3
u=|+ L _1
PR
Ve V2 V3
So thefull SVD is given by
2 0 1
11 /6 V3 V3 0\ /L _ 1
01]l=(% % —-H||lo 1]{¥ 2
10 \{6 ﬁl \/1§ 0 O % \% ,
V6 V2 V3

and thereducedSVD is given by
2

< 0
11 1 1
Ol:fi \/goﬁ_ﬁ.
1o/ (2 YAJ\0 Y\G 3
- 2 V2

V6
Reduction and Compression of Matrices

The SVD not only provides an efficient means to represent axnaithout loss, it also provides an
optimal method for approximating a matrix by another matfixeduced rank. Define a rarkk< r
approximation to the matrik as

Koo
(19) Ac= S gDudyiT,
2

PROPOSITIONG.6. The error of a rank-k approximation provided by i given byo D i.e.,
A= All2 = gV

PrROOF
r k
A—Ak — O'(i)u(i)v(i)T _ O'(i)u(i)v(i)T
2, 2,
_ 5 gyt
i=k+1
= UV,
where
0
gk+1)
=
g
0
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It follows that

A=Al = [UZVT]]2
= [1Z]l2
G(k+1)
since 2-norms are invariant under multiplication by ortbiogl matrices. O

If we know the correct rank oA, e.g., by inspecting the singular values, then wereamve the noise
andcompress the dathy approximating? with a matrix of the correct rank. One way to do this is to
truncate the singular value expansion:

THEOREM 6.2. The SVD provides the best reduced-rank approximation teegmnatrix A, i.e., any
matrix, say B, that is not the rank-k SVD approximation hasaggr error. Namely, if

k
A= Zg(i)u(i)v(i)T (]_g k < r)
i=

then
A= argmin [|[A—B||2 and A= argmin ||A—B||r.
rank(B)=k rank(B)=k
PROOF SeeR2]. O
EXAMPLE 6.2. A rank-one approximation to the matrix
11
A=10 1
10
is given by
11
A~ |1 1
11
2 2

This approximation is calculated by
A A = cWyWyDT,

ExAMPLE 6.3. In Figurd P we see a raw digital gray-level image of sig@>4500. Treating it as a
matrix, we may apply the SVD directly to the image. The efiefctetaining 10, 50, and 170 terms
in the expansion is shown in the subimages. The im#@ggsAsg, andA; 7o filter out the smallest
eigenvalues. The missing, or discarded part of the imagbdgonal complement) is shown for 10
and 170 terms in Figuie 1L0. The images A;p andA — A7 filter out the largest eigenvalues.
Consider the compression achieved fok-term expansion. The original image has siae n =
240000 bytes. The reconstructions require that we $taectors of the formo®u® as well ask
vectors of the fornv(K). After rounding, the compressed images requirad- n)k = 98k bytes. For

k = 10 approximately 3% of the size of the original raw data iairetd while fork = 50 andk = 170,
approximately 15% and 51% are retained, respectively.

Geometric and Numerical Properties of SVD

Numerical properties of the SVD provide ways to detect theewical dimensionality as well as the
geometry of data sets. For example, for a dataXsethose column vectors represent distinct data
points, the singular values represent the distributiorhefdource data’s energy among each of the
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€)) Oriinal image (b) Rank 10 approximation

: 3

FIGURE 9. The SVD of a matrix with entries of a digital image. The atimeages are
rank-10,-50 and -170 approximations to the original image, A1o, Asg, andA;7o.
The relative errors are 0,@305, 00551, and 126 forA, A1o, Asg, andA; 7o, respec-

tively.

©

FIGURE 10. The SVD of a matrix with entries of a digital image. Top:eltruncated
imageA — Ajp. Bottom: The truncated image— Az 7o.

singular vectors, where the singular vectors form a basig®dataCumulative energgf the firstt
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(a) (b)

> 95% energy is captured by
the first 50 modes of
singular vectors

1]
0 0 100 150 200 250 300 350 400 450 500

FIGURE 11. Singular value distribution for the image in Figlte Q (a)

(1 <t <r)singular values is given by

Si_1 07

Si_107
For a low rank matrix, th@umber of large singular valuds often referred to as theumerical rank
of that matrix.
ConsiderA € R™" as a map fronR" to R™. Let S™! be the unit sphere iR". If the axes ofR"
are given by the orthogonal singular vectosg, v, . . ., Vn, thenA mapsS™1 into an ellipsoid inR™
with r = rank(A) axes. The length of the axes arge 1 <i < r and the direction of the axes are given
by u; (or Av). Because this geometric property and the matrix propedwptraned above, SVD is
used a lot to reduce the dimensionality and detect the gegmitarge data sets.

EXAMPLE 6.4. Treating the digital image in Figuré 9 (a) as a matrix applying the SVD directly
to the image, we get the singular value distribution in Fegiid (a). Using the following MATLAB
code, we find that the first 50 modes of the singular vectorsicepver 95% of the energy (Figurel 11
(b))

load mandrill.mat

[U,S,V] = svd(X,0); % X is the image matrix

D = diag(S).”2;

cum_energy = 100. *cumsum(D)./sum(D);

| = find(cum_energy > 95);

This suggests that the approximatibdy gives an error rate less than 5%.

EXAMPLE 6.5. Let
15 113 --- 21

9 12 ... 52
x— |34 129 .- 30
76 78 ... 198

be a sizem-by-n matrix with singular value decompositioh=USV'. ThenU(:,1:2)TX = §(1:
2,1:2V(;,1:2)T = V7T is a matrix of size 2-byr. SVT is the original data projected onto the first
two dimensions. Now, imagine each column vectoKXimepresent a data point iR™ and belongs

to one of the three distinct classes (black, green, red). Byegpting these column vectors onto
the first two dimensions, we can visualize the neighborh@bationships among the three classes
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FIGURE 12. A data matrix projected onto the first 2 dimensions.

(see Figuré 12). Notice that this method works relativelyl feg data sets that are intrinsically low
dimensional, in particular, 2-dimensional.

Computation of the SVD

We have shown that the singular values may be computed byirfgrthe covariance matriceSA"

or ATA and computing their eigenvalues. While this approach isblé for many applications, it is
numerically unstable. An alternative to forming the cosade matrices is to calculate the left- and
right-singular vectors directly from the system

0O A U(i) (i) U(i)
e (& 0) (o) =" ()
If the matrixA is perturbed by a small amount then it can be shown that thanped singular values
o' satisfy
61 — o] = O(e]|All)

when computed using Equatidn{2@)js the machine precision. On the other hand, if the singular
values are obtained by first computing the eigenvalues dfrtradler of the two matrice8AT or ATA,
then

610 — oV = O(el|Al?/a ).

This squaring of the norm followed by the division by the silag value becomes significant espe-
cially for the smaller singular values.

ExXAMPLE 6.6. To demonstrate the mechanics of the system calculagaevisit Examplé 6]1. Now
we have to compute the eigenvectors and eigenvalues of

(3 3)-

R, OOO

0
0
0
0
1

OFr O0OO0O
OO FrLrOPR
OO OFrE
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The eigenvectors are

1 1 1
L ]
25 23 22 T
2F A Y2
S G T
2 2 2 2

where columns are ordered from left to right via the singuklueso = —/3, v/3, —1, 1,0. The
eigenvectors now contain the right- and left-singular @ectis components, i.e., each column is of
the form(u™,v()). If is interesting to note that all the singular values () are present and that the
associated eigenvectans'), +v(1)).

Application: Principal Component Analysis

The approximation properties of the SVD can be used to @aieithe equivalence between the
SVD andPrincipal Component Analys{®CA). Assume thaX € R™" is a data matrix, where each
column is an observation of a real-valued random vector migan zero. The matrix is assumed to
be centered, i.e., the mean of each column in equal to zerotheeSVD ofX beX =UXV'. The
right-singular vectors(!) are calledprincipal components directiorsf X. The vector

2D — xy = gDy@D
has the largest sample variance among all normalized lecwabinations of the columns of:
(a1)?
m

Find the vector of maximal variance is equivalent, usingdinalgebra terminology, to maximizing
the Rayleih quotient:

Var(zZY) =

(1) VTXTXV
vl = max———.
v£0 VTV
The normalized variable = —-Xv(Y is called thenormalized first principal componenf X.

Having determined the vector of largest sample varianceuswally want to go on and find the
vector of second largest sample variance thattisogonalto the first. The is done by computing the
vector of largest sample variance of theflated data matrix X oYuv(L) . Continuing this process
we can determine all the principal components in order,we.compute the singular vectors. In the
general step of the procedure, the subsequent principgl@oenmt is defined as the vector of maximal
variance subject to the constraint that it is orthogonah&ogrevious ones.

EXAMPLE 6.7. The concept of PCA is illustrated in Figlre 13. 35 daiafsavere generated and col-
lected in a data matriX € R3*3%, The data points and the three principal components asirifited

in the middle plot of Figure13. From this, we can see that tita det is approximately 2-dimensional,
since the third dimension has relatively smaller variandaving this realization gives us a way to
represent data points using two singular modes only, asrshothe right plot of Figuré 3.
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FIGURE 13.
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CHAPTER 2

Optimal Orthogonal Pattern Representations

1. Introduction

In this chapter, we develop the idea of an optimal dimensityageducing mapping. Specially, we

consider the optimization problem over the class of ortmadjtransformations. As orthogonal trans-
formations are linear, the optimization problem amountBriding a best orthonormal basis, which
we write as the columns of the matrdlx, for the change of coordinates. Thus, given a data pqint
we seek the orthogonal matrix (i.e., ®T® = 1) such that the transformation

a=o"x

is optimal in a sense to be made precise. Geometrically,aaéajf the optimization is to rotate the
ambient coordinates of the data to reveal the subspace thwine data resides.

The main result is the well-known Karhunen-Loéve (KL) expian. Its importance in pattern analy-
sis is substantiated by the number of aliases under whictettmique is known, which include the
principal component analysis (PCA24,29, empirical orthogonal functions (EOF$3{]. It is also
closely related to the well-known singular value decompasi(SVD) [27].

We will start this chapter by defining by definirgptimal basesn Section2 followed by the con-
struction of optimal bases with KL in Sectigh 3. The resgtapproach will be referred to as the
direct method Sectior # presents the most important and widely used piep@®f KL expansion.
The direct method for implementing the KL transformatiommat be applied to elements of high-
dimensional vector spaces — say, dimensions above 100hidicdse, an alternative approach is
used, referred to as tlemapshot methouh view of its natural application to digital images. In Sec-
tion[d, we present this technique and apply it to a real problgectio b reexamines the KL transfor-
mation from the perspective of the SVD described earliee $WD permits a deeper understanding
of the relationship between the direct and snapshot mefllod®mputing the eigenvectors.

2. What is an Optimal Basis?

The purpose of this section is to mathematically charaggetine notion of aroptimal basis In
practice, an optimal basis f& will extract, or package, the salient features and inforomain the
data. ldeally, this setting will enhance our ability to stubde data in terms of a significantly reduced
number of expansion coefficients; only a small number of titdess ofa = ®T x will be of interest.
Consider arN-dimensional inner product spa¥eequipped with an ordered orthonormal bagis=

{q)(l) o, N } Every point inV may be expressed without error in terms of the basis vector as

(21) X(IJ) — a:(l-“)q)(l) 4.+ al(\lu) QD(N),

wherea® = (x#), ¢). This inner product will generally be the usual Euclideanein or dot,
product.

Given a data set, how should a bagfsbe constructed such that the truncation of the Nilerm
expansion in Equatidn 21 tolxterm expansion

(22) X(D“) = a(lu)q)(l) et a|(3“)§0(D)
47
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will produce a minimum error? SinoéD“) is an approximation ta"), we write

~ y(H)
xH e x!
and the accuracy of this expression will be at the center oflmeussion.

Typically we are interested in approximating a collectionensemble, oP patterns{x(“)} rather
than a single pattern. The error vector for each paméf’ﬁ, Is the difference between the exact point
x(¥) and the truncated expansigff’, i.e.,

ggl) — () _ XI(DH)'
A scalar measure of the error is then simply- Hsé)“)H, where the norm is induced by the (usually

Euclidean) inner product. As shown below, a closed-forrmida for the best basis may be obtained
for the squared error

ese=lleg” %
Thus, our criterion for an optimal basis is that it shall mige the mean squared error over the set
of all orthonormal bases. The mean, or ensemble averageseifaf vectors<(t), x@, ... x(P) is
defined as
Lo
(23) (X) = P;le :

It should be noted that the above addition is applied compiovise; it is standard practice to omit
the pattern indexu for terms within the angled brackets when writing an ensenatverage. It is
customary to mean-subtract each pattern in the ensemhkisigeometrically equivalent to moving
the center of the coordinate system of the patterns to thenanie average (or centroid) of all the data
set. Thus we define a new ensemble

)N((“) — X(“) _ <X> .

DEFINITION 2.1. The quantitg® is called thefluctuating field or caricature of the patternx(H),

In what follows we will assume, unless otherwise stated,dhadhe pattern vectors have been mean-
subtracted, and we drop the tild’e for convenience.

DEFINITION 2.2. The mean squared truncation edgjseof a D-term approximation to an ensemble
of vectors is defined as

emse= (|[x—xpl|[*) = {||5|I?).

The Subspace Approatlet's reexamine our previous remarks in terms of subspadé&smay de-
compose ) in two pieces as

D ] N .
(24) x(H) Zl ai(u) o)+ ai(u) o
i=

i=Dt1
(25) — X gl
The basis for this vector expansion may be used to define trepaued\p = span{ q)<1),...,qo(D)}
andWg- = span{ o0 (p(N)}. These subspaces splitinto two pieces as a direct sum
V =Wb oW,

where the truncated representation&g lie in the orthogonal subspa®é, and the error vectorsé“)
lie in Wy
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While the orthogonal projection theorem states that tHeogidnal expansion provides a “best approx-
imation”, it says nothing about how to findlp such that we obtain the best possible approximation.
Thus our task is to determine a single basis that providesphienal subspace MVfor any level of
truncation 1< D < N. Again, optimal here means that a well-defined error shoelohimimized over

all possibleD-dimensional subspaces.

3. Construction of the Optimal Basis

We have characterized an optimal orthogonal basis as onenthianizes the mean squared truncation
error of the expansion. Equivalently, one may seek an odimal basis that maximizes the mean
squared projection of the data. Before considering thevatpnce of these optimality criteria further,
we proceed with the sequential construction of a basis thatmizes the mean squared projection of
the data. The basic algorithm for constructing such as Imass follows:

e Find the best one-dimensional subsp@ge
¢ Find the best one-dimensional subsp@éenith the restriction that it must be orthogonal to
W
e Find the best one-dimensional subsp@gevith the restriction tha?f L W for all j < i.
Now we define the best first eigenvecigt to be the one that maximizes the mean squared projection
of all patterns in the ensemble onto itself. Namely, find

e 657

subject to
((pm,(p(l)) —1

The normalization ofp to be of unit length is required as otherwise simply muliptythis vector
by a constant would increase the projection.

This constrained optimization problem may be solved viatéiehnique of Lagrange multipliers. To
apply this method we define thegrangian g to be

6001 0") = (99 ,%02) ~ (9, ¢Y) - 1)

The necessary condition for a maximum (or a minimum) are geen by

o

s
o1
a0

where the last equation is exactly the constrEiNt)ting that

0% = (9. X)(X,9)
= (@)X @) =o' (xx' p)
= (@, xx" @)

Lin what follows we employ the notation
OF(g) _(9F  OF\!
dp  \dm’ Tom/)
If it left as an exercise for the reader to show thé&p, ¢) = 2¢ and that, ifC is a symmetric matrixg (¢,C@) = 2Cq.
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and defining the symmetric matrx = <xxT>, the Lagrangian may be rewritten in the more useful
form

01(A1, M) = (¢, CoM) = Ag[(9), ) — 1].
Differentiating with respect te!), we obtain

991 _ 50D M _
m =2C¢"7 - 21107 =0,

or

C(p(l) — Alcp(l)
The resulting eigenvector problem is a necessary conditios associated with an extremum of the
Lagrangian. Hence, it is necessary lmththe best and worst directions to satisfy this equation.
AssuminggY) corresponds to the best eigenvector, i.e., the one with anmuem projection, the next
best basis direction should satisfy the above requirenémtsximum projection, but with the added
restriction that it must be orthogonal to the best directiph. Thus, the second eigenvecp?® is
found by requiring

(D x)2

r2<gX<<<o %))

subject to

<¢<2),¢<2>> —1 and <¢<1>,¢<2>> —0,

where nowg? is assumed to be the (now fixed) orthonormal vector found ebd@he associated
Lagrangian is now
92(¢?) = (9?,C0'?) —22[(9?), 0'?) — 1] — (0, 0?),
and the necessary conditions for an extremum have become
0g Jd02 0%
092 A,  du
we will simplify our problem by ignoring the term(¢M, ¢(2), which can be shown to be zero given

thatC is symmetric and such matrices always have orthogonalesgéors. Now, differentiating with
respect tap?, we obtain

=0.

9% _ 5002 @ _
m =2Cp7 — 2207 =0,
or

C(p(z) — Ach(z)
The process of determining tith best eigenvector given the first 1 eigenvectors is analogous. The
result is that the optimal basis vectors must come from swiatof the eigenvector problem

Cq)(') — )\Icpm
Computing the KL eigenvectors via the above equation igmedeto as thelirect method

Special Case#n the above derivation it is possible that the best one-dsimmal subspace is not
unique. Geometrically this corresponds to having an ejggees with a geometric multiplicity greater
than one. The algebraic multiplicity of the eigenvalue mustequal to the geometric multiplicity
sinceC is symmetric and thus has a setfinearly independent eigenvectors.

In practice two-dimensional eigenspaces, indicated bgreiglues of multiplicity two, arise with
translational invariant data where the KL eigenvectorskamerier modes. This special case may be
viewed as data traveling periodically on the unit circleemvorthonormal basis consists of vectors
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that capture exactly the same projection of the data. Ofsepufthe data consists of an ellipse with
unequal semiaxes, then the eigenvalues will be distinct.

If the matrixC has one or more zero eigenvalues, then the data has zeratmojento this basis
vector. We may conclude that no information is present arsdctbordinate may be safely removed.

Ordering of the Optimal Basié natural ordering for the optimal basi$!) is provided by thespec-
trum, or KL spectrum(i.e., the discrete set of eigenvalues®fRecall that the first eigenvector was

found by requiring that
2
<<q0(1),x> > — maximum

or, equivalently, tha(a@ = A1 = maximum. Proceeding in this fashion, the second eigenvalue

defined so thad, = maximum, subject to the constraint that the associatectauate directiorp®
must be orthogonal tpY). Hence

A1 > Ao,

The remaining eigenvalues are defined iteratively so that &ds a maximum subject to the require-
ment that the associated coordinate direct@dhbe orthogonal to[ o ..., (p“*”}. Hence at each
stepAj > Aj11, SO we conclude

A>A2 > >AN2>0.

Therefore the eigenvectors can be ordered naturally acgptd the amount of variance contained in
their respective directions. The patted#) is then approximated by the basis vect@rsorrespond-
ing to the largest eigenvalues ©f

Maximum Squared Projection vs Minimum Squared Error

Now we show the connection of the minimum-mean-squared emiterion and the maximum-

P
squared-projection criterion. Given an ensemble of vsc{o«(“)} ) with eachx®) € V and
“:
N
dimV = N, we seek a set of basis vect rqp(“)} . such that the error of the truncated expansion is
u:
minimized in the mean-square sense. Recall that any patetorx(®) may be written without error
as

N .
X(“) — z a&“)(p(l).
j=1

The expansion error vector may be expressed in terms of #is, lsince

gl(au) — xH_ X(Du)
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e >
(£:4)

<
< N
(e o)

which upon invoking the orthonormality relation gives

AR
Emse= <j:g+laj>
N L\ 2
Emse= < g 1(x7(p(1)> >
j=D+

Minimizing the mean squared error can now be seen as equivalenaximizing the sum of the first
D squared projections, i.e.,

On average we have

émse =

and hence

D

Gt gn <Z (x,q)(j))2>.

=1

4. General Properties of the KL Expansion

In this section, we outline the useful properties of the Klcataposition. It will be seen that the
optimal orthogonal transformation has remarkable strecitu that it may be derived from several
optimality criteria.

PROPERTY 4.1. TheN x N matrix C is referred as thensemble-averaged covariancetrix. It is
symmetric and determines an ordered sé\l @frthogonal eigenvectors with associated real eigenval-
ues.

The following property is actually true for any data set thas zero mean.

PROPERTY 4.2. For an ensemble of mean-subtracted vectors (ke= 0O, the coordinate values
also have mean zero. To see this, write

@ = (o)

_ ((x) ,(p(J))
- (0.g")
= 0.

PROPERTY4.3. The KL expansion coefficients are uncorrelated on gegiiee.,

(ajax) =0
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when | # k. Indeed, we have

(aja) =

In particular,(ajax) = 0 whenj # k.

Although the data is uncorrelated averagen the KL coordinate system, it is possible that the data
is correlated on subsets of the total ensemble. For exampdetime-series setting it is possible for
the data to have short-time correlations in the KL basis @inates. If we consider a subset of the
total data, i.e.X C X, then we may writdajay)y # 0.

The above property is also equivalent to the fact that in thé&sis, the covariance matrix is diagonal.

PROPERTY4.4. The eigenvalues @f are nonnegative:
Aj=(af) =0
forj=1,...,N.

This follows directly from the previous property for the egs= k. Note that the number of nonzero
eigenvalues is equal to the rank of the matixwhich in turn equals the dimension of the space
spanned by the data set.

We see from the next property that it is also possible to vieswKL basis as the one that maximizes
the variance along each coordinate direction, subjectttmgonality constraints.

PROPERTY 4.5. For mean-subtracted data, the statistical variantleeofth coordinate direction is
proportional to thgth eigenvalue o€.

We write the statistical variance of thth direction over the ensemble of patterns as

P
var@) = 5—7 % <a§“)—<aj>>2

P 1o ()2
P—1P“21(J >
_ P Py
= 1@ =p 1M
That is,
var(aj) O Aj,

where we have used the fa@;j) = 0 and the Properfy 4.3.

PROPERTY4.6. The eigenvalues &f give a measure of the truncation error:

N
Emse= Aj
j=b+1
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Substituting the eigenvector equatiop!’) = A;¢l) into
N

émse= ,-:;1 (qo(”,cqo(‘)) :

we have
N N

N
PROPERTY4.7. The KL basis captures more statistical variance thgrotirer basis. Le{L/J

be any other basis for the inner product spd¢and write theD-term expansion of an element‘o)f
as

Define a measure of the variance (for mean-subtracted détajespect to the basi%w(i)} as

= ().
Pi< 2 A

Then

”MU

j
with equality when{ w(i)} is the KL basis.

DEFINITION 4.1. A data set is said to Heanslationally invariantis x € X implies that any cyclic
permutation ok is also inX.

PROPERTY 4.8. If X is a translationally invariant data set, then the optimgkevectors are the
Fourier vectors, i.e., sinusoids.

Thus, for translationally invariant data, the discreteientransform provides an analytical form for
the best bases.

Shannon’s EntropyA standard measure of information is provided by Shannomtsopy which is

defined as N

wheresN | B = 1. If we interpret the normallzed elgenvalues of the covenrgamatrix
- Ai
= N
i1
as the possibilitieB, then it is possible to show that the KL eigenvectors arenagitin an information-
theoretic sense, i.e., they minimike[46].
The significance of Shannon’s entragyin this context is that it provides a measure of the distrdout

of the magnitude of the eigenvalues, or energy, across trelicates of the basis. In particular, if the
probabilities are all constant with

foralli=1,...,N, then
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Also, if
p— 1 !f | = 1,
0 ifl <i<N,
thenH = 0.

In these two extreme cases we see that if all the eigenvataesjaal then there is no compression of
information, i.e., there is no preferred coordinate dimtandH is a maximum. On the other hand,
if there is only one nonzero eigenvalue, then all the infdromeis contained along one coordinate and
H is a minimum.

PROPERTY4.9. The Karhunen-Loéve basis minimizes Shannon’s eptrop

For a proof of this property, se&3] or [3Q].

Truncation CriteriaSeveralad hoccriteria have been proposed for determining the numbenrpfde
D to retain in the expansion

D .
x=73 ajp).
=1

A simple but widely used variance-based criterion is toingtae number of terms necessary to capture
a specified fraction of the total varianc&l].
From Equation[(24) and the Pythagorean theorem, it folldwas t

X2 =[x 124 |32

Taking ensemble averages,

(1Y = (1) + (S 17).

In the KL basis, these terms area measured by the eigenvalues

(IpH12) = ém +

Since the statistical variance is a measure of the ampBtageared, it is often referred to asergy
Using this terminology, the total energy in the data is dedot

En = <Hx<“>||2> = _i;\i.
&

The energy captured by2term expansion is given by

D
Ep = i;/\i.

Typically, for purposes of comparison, we shall be intexésh the normalized energy

N

Ai.
+1

Now one can also interpret the quantity
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as the probability that a pattern is contained in the sulessppanned by the eigenvectp). Note
that the normalized mean squared error is readily avaikdble
N )\i -
énmse= o= 1-Ep.
i=D+1 =N

This error is actually the relative error squared of the nstauction of the data matrix in the Frobenius
norm.
We will refer to a plot of the eigenvalues versus the eigarwahdex as a KL-spectrum plot. Often
we will plot logA; vsi to enhance visualization of sharp decreases in the eigezsahlso, it is often
useful to plotEp as a function of the numb& of terms in the expansion. These plots are used to
estimate the so-called KL dimension of the data. This dinoenis generally taken as the number of
terms required to ensure that some minimum quantity of gnisrgaptured by the data.
Now, we have the normalized energy criterion

(26) ED >Y,
or equivalently, that the normalized mean squared error
(27) enmse< 11—y

should be less than some constgntypically taken to bey € [0.90,0.99. In addition, it is often
useful to add the restriction that

A
(28) b+l 5,
A1
whered = 0.01, for example. This is a restriction on the 2-norm of theadaatrix. We summarize
these remarks with the following definitions:

DEFINITION 4.2. The KLenergy dimensigrwritten dim(KLEy), is defined to be the minimum num-
ber of termsD,, required in the orthogonal expansion to ensure Eagt> y.

DEFINITION 4.3. The KLstretching dimensigrwritten dim(KLMjy), is defined to be the minimum
numberD s required to ensure thab,1/A1 < .

In addition, it is useful to combine these definitions int@tt KL dimension, written dim(KLD) ),
which may be defined as the maximum of K} &d KLM;, i.e.,

Dt = max{Ds,Dy}.

Note that the utility of these global definitions of dimermsis limited by the requirement of making
ad hocchoices fory andé.

A number of other criteria have been proposed for deterrgitiie number of terms to retain in a best
basis expansion. For example, it has been observed thattkpéctrum often can be viewed as two
lines. The point these lines intersect determines the \lDe Often there is a gap in the eigenvalues,
which indicates a value dd for truncation. A more rigorous approach is to apply a cnagdation
scheme as outlined iflLf], but even such methods do not always give consistent eestliey do,
however, have the advantage over the ad hoc energy criterithrat they actually take noise in the
data into account when estimating dimension.

Finally, it should be emphasized that the utility of theseaswes is greatly enhanced if they can be
implemented in a problem-dependent fashion. It is clear dha may require far fewer terms for
a classification problem than for a reconstruction problemene more details in the pattern are re-
quired. Additionally, some problems have critical infotima in the lowest-energy modes, clearly
indicating that the KL eigenvector selection does not haweigue solution.
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Matrix Notation

In this section we would like to reinterpret the expansiondirrear transformations and emphasize
the dimensionality reducing properties of these transédions. We begin by constructing a matrix
® made up of the eigenvectors©fi.e.,

Thus the coefficients of the pattern vector with respect édth basis are now
all) = pTxH)

wherea®) = ("), ... al))T. These relations may be combined to give
(29) A=dTX.

If we have determined a numbe@r of terms to retain in our expansion, clearly it is not reqdire
to compute all the terms in the expansion. Hence, it is udefdlefine a dimensionality-reducing
transformation based on

a matrix withD columns, namely the firdd eigenvectors. Now, thB coefficients are given by
alkh) = pLxM),

wherea®) = (@* ... a"))T. Or, in matrix notation,

A= dLX,
whereA is aD x P matrix. It is identical to the firsb rows ofA in Equation [2D).
PROPERTY4.10. The KL basis diagonalizes the ensemble average eowamatribC:

(aa’) = ((@"x)(x" D))
dTCo
= A,

where/\j = A; and all the off-diagonal elements are zero.

PROPERTY 4.11. We now have the spectral decomposition of the covegiamatrix alC = PADT,
i.e.,

C= /\l(p(l) (p(l)T + /\Z(p(z) (p(Z)T + ... +)\1(p(N)(p(N)T.
This allows us to decompose the covariance matrix in an @tvay. Note that iP < N, then we do
not expect more than a basis@fectors. The remaininy — P vectors belong to the null space®©f

Geometrical Interpretation of KL Eigenvectors

PrRoOPOSITION4.1. Let C be a nonsingular ensemble-averaged covariance mgémerated by the
N x P data matrix X, i.e., G= XXT. Consider the ellipsoid defined by

(30) x'CIx=1.

The eigenvectors of C are the directions of the principakasfghe ellipse, and the associated square
roots of the eigenvalues are the lengths of the semi-axes.
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PROOF It suffices to transform the equation for the ellipse int® it basis. LetJ consist of the
eigenvectors of. Then

z=UTx

is the appropriate change of basis. Sibces an orthogonal matrixx = Uz. Substituting this relation
into Equation[(3D) gives

(31) zZ7u'cluz=1
Given thatU diagonalize€, we have
C=UAU".
AssumingC is nonsingular,
cl=untu'.

Substituting this equation into Equatidn{31) gives
Z7UTUAN U TUz=1.

Again, using the orthogonality &f, we havez" A=z =1, or

Note that the expressiod C~1x = c represents a family of concentric ellipses. O

As an example consider Gaussian random defax;) where the first variable has mean zero and
standard deviation.8 while the second variable has mean zero and standard idevi2@. This data

is then rotated in the plane and the KL procedure applied.culation shows\ () = 6.3373 and
2@ = 10543, soo® = VAT = 25174 ando@ = VA @) = 1.0268

The ellipsoidal neighborhoods determined in the first stéddgbe algorithm may be used to order the
data in thee-neighborhood matrix via the introduction of tenorm written||x||2 = X" Ax, where
the matrixA is taken to b&c~* andC = BB/ :

IX|[E-s = xTC7'x
= x'UAUTX
_ (XTU/\—l/Z)(A—l/Z)UTX
= y'y=|lyl%

wherey = A~Y2UTx. Hence the ellipsoidal norm may be interpreted as the stdrilzclidean norm
after the change of coordinates

Y =AY2yTg,.

This transformation is referred to asvhiteningtransformation. The covariance matrix is the identity
in the new coordinate system, i.e.,

YYT =1.

See Figuréll for an example of applying the whitening tramsé&tion to Gaussian data.

2Note that in our deviation of KL, no assumptions were madeeaning the statistical distribution of the data.
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(a) Gaussian noise (b) Data on the left after whitening

FIGURE 1. (Images are taken directly fron81]) Random data before and after
whitening. The contours correspond to the I8€1x = ¢;, wherec; = 1, ¢, = 4,
andcz = 9.

5. The Snapshot Method

The construction of data-dependeritasis as outlined above requires solving the eigenveabbitgrm
Coll) = ,\j(p(j)’

whereC is anN x N matrix formed by averaging rank one covariance matrices. Whdrbecomes
large, e.g., 1000 to 10000, it is generally not possible teesthis problem directly. There are a
variety of techniques for computing the largest eigenvahrel eigenvectors, but@fis a nonsingular
matrix, then the problem may be reduced without approxiometid an eigenvector problem of size
P x P. The technique is referred to as theapshot methodecause of its applicability to data sets
consisting of high-resolution digital snapshdd2[[45. This result is very useful if the number of
patternspP, is manageable, typicallp < 1000. The dimensioN now enters in only in storage space
and add/multiplies.

Reduction of Lip Motion

In this application, introduced ii8B,[34, we are interested in characterizing the motion of lipsrtyr
speech, i.e., machine lip reading. The data sets come intiredf sequences of digital images which
are recorded by focusing a camera on the speaker’s lipsisdsetting, a wordv is viewed as a short
sequenceR = 16) of high-dimensional (128 100) images

W= {x(l),x(z),...,X(Pfl),x(P)}.

In the coordinate system of the ambient space, a word issepted byN = 12 000 spatially and
temporally correlated time series. To reduce the dimeidityrof this representation we digitally
record a set of words, to be used for training, that charaeteithe lip motion, i.e., we assume the
data set is large enough to span the space of all relevantliipns. From this training set we compute
the eigenpictures, @igenlips displayed in Figurel2, using the snapshot method. A sampid {mot
from the training set) is represented by the sequence of agesishown on the left of Figurk 3. These
images were projected onto the first 20 eigenpictures. Tédtref the reconstruction is excellent;
see the right of Figurgl 3. We note that plotting the relatigmé&etween two coefficients in the plane
gives a characteristic curve for particular words; &% for details.
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FIGURE 2. (Images are taken directly froi81]) The first 16 eigenlips ordered from
left to right and top to bottom.

FIGURE 3. (Images are taken directly froid]]) Left: A sequence of snapshots of lip
motion. Right: The reconstruction of lip images after potign onto a 20-dimensional
optimal subspace.

6. The SVD and The KL Expansion

In this section we reexamine, via the SVD, the direct and simafomethods for implementing the KL
expansion. The SVD, as described in Seclibn 6 is a classichpawerful tool in numerical linear
algebra. Here our purpose is to demonstrate that the eigemy@oblems associated with the direct
and the snapshot method fit neatly into the mathematicalewark of the SVD. In particular, we
shall see that thkeft-singular vectors are the eigenvectors computed indilect method, while the
right-singular vectors are the eigenvectors computed enghapshot method

P
We begin by constructing ad x P data matrixX out of our ensemblt{x(m} ) of pattern vectors
U=

in RN, where the columns of are the pattern vector¥: = [xD| .. [x(P)].

To assist in the interpretation of our results, we will assuimat the ensemble consists of time-
dependent vectors. For simplicity we assume that the $patiable is one-dimensional. It should be
emphasized that these assumptions are for convenienceeandta requirement of the theory. For

these time-dependent observatiof$)ij = x( D the column index is the time indgx=1,...,P, and
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the row indexj = 1,...,N is the spatial index. Thus ogpatiotemporatiata matrix

% % T %
x— |2 % )

is indexed from left to right by time and from top to bottom Ipase. Note that the size of this matrix
may be enormous in practice and its actual formation may eqdssible due to computer memory
limitations. However, this does not prevent us from apmytime mathematics of the SVD.

The transpose of is given by

NN
2 2 2
o
WPl P P

In what follows, it will be useful to write the matriXT in terms of its column vectors. Therefore, we
introduce the notation

X" =Wy,

Whereyg') = xi(”. One might viewX' as a new data matrix where the roles of time and space have
been interchanged.

The motivation for collecting the data in matrix form comesnh the observation that we may rewrite
the ensemble-average covariance matrix in term%Xf. To see this, write out thgkth element of

this matrix,

(32) (XXT) ik i X = P(XjX),
u=1

wherej,k=1,...,N. In other words,

XT = (xx").

From the above expression, we see that that patterns arg tairelated over the spatial variable
and average over time. Thus, we define the ensemble-avepagial covariance matrkCy of the
observations as

1

(33) Cx= E)xxT.

In an analogous manner we may form the ensemble-avetagegsbral covariancenatrix
1

(34) C = NxTx.

As before, let’s write out thgkth element of this matrix:
T SNING
(35) (XTX) =3 %% =N (yjy),
I=1

3Strictly speaking, this matrix is not necessarily a covar@matrix, as it is not essential to apply a mean subtraction
We retain the term in analogy with the previous sections.
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wherej,k=1,...,P. In other words,

17 T
NX X=(yy"),

so we see thd; is in fact a temporal covariance matrix. Note that the dedinibf the ensemble, and
hence ensemble average, has changed from that given abodeterminingC, the spatial covari-
ances are averaged over time, while in determidintpe temporal covariances are averaged over the
spatial domain. Hence we will refer to the eigenvector€péas thespatial eigenvectorand to the
eigenvectors of; as thetemporal eigenvectors

We note thaCy is anN x N matrix and the spatial eigenvectors are solutions of
(36) XXTU = UA,,

where the columns d correspond to the eigenvectors@y i.e.,U = [u®|...|uN)]. Also, A is an
N x N matrix

Py
A2
/\X -
AN
Similarly, G is aP x P matrix and the temporal eigenvectors are the solutions of
(37) XTXV =VA,

where the column¥ correspond to the eigenvectors@f i.e.,V = [v|...|v(P)]. Also, A, is an

P x P matrix
A

We have used the same notation for the eigenvalu¥sdfandX X in view of the following propo-
sition, which is a consequence of the fact(¥et") = det X" X):

PROPOSITIONG.1. The nonzero entries éfy and/\; are equal.

Hence, the KL spectrum can be determined from computingitfenealues of eithe€, or C;. Note
that the eigenvalues @% are actually given by the matrix/P)/A\x and the eigenvalues Gf are given
by the matrix(1/N)A:.

Now we recast these results in terms of the SVD. We recoghgelie spatial eigenvectdisof the
spatial covariance matriX X" are exactly the left-singular vectors of the data ma¥ixAlso, the
temporal eigenvectois of the temporal covariance mati' X are exactly the right-singular vectors
of the data matriX. Thus, by the SVD we may decompose the data matrix

X=UzVvT,
whereZ is theN x P diagonal matrix given by
> =diag(c¥,..., o),

wherea() = VA, i.e., the singular values are the square roots of the eitiems ofX XT. Again,r
is the rank of the matriX, or, equivalently, the number of nonzero singular values.
Given the columns dl for a basis for the data, we have thithogonal expansion

%mzi#%m
=1
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Recall that this may be rewritten in terms of matrices as

X =UA,
whereA is anN x P matrix of expansion coefficiens = [aV)|--|alP)]. Furthermore, sincelT =
U1, the expansion coefficients are given by
(38) A=UTX.
The following propositions provide very useful relationshbetween the expansion coefficients and
the eigenvectors.

PROPOSITIONG.2. If Z is the matrix of singular values of X, and V the matrix of assec temporal
eigenvectors (right-singular vectors), then the matriexpansion coefficients A, i.e., the projections
of the data onto the optimal spatial eigenvectors, is given b

(39) A=3VvT.
PROOF By the SVD
X=UzVT,
Multiplying both sides of the relationship ty" and using the fact that TU = | gives
UTx=xvT.
RecognizingA = UTX completes the result, which has an extremely useful inééation: the expan-
sion coefficient\ are contained in the temporal eigenvectors, i.e., the-8gigular vectors. O

Thus, the time-dependent coefficients given by the matrimay be computed using two different
methods. First, given thd-dimensional spatial eigenvectors, the projections mafobed directly
using Equation[(38). Alternatively, given thedimensional temporal eigenvectors, the projection
coefficients may be found indirectly by using Equatibnl (3Bpte that eitheiP-dimensional oiN-
dimensional eigenvectors are required, but not both. Wswae approach is significantly more
efficient than the other.

The next proposition states that the spatial eigenvectasslme written as the superposition of data
where the appropriate expansion coefficients are provige@nporal eigenvectors, i.e., the right-
singular vectors.

PROPOSITIONG.3.

where j=1,...,rankX.
PROOF The result follows directly from the SVD
X = uzvT
XV = Uz,
where the fact tha¥ is an orthogonal matrix has been used. Definiig a P x N matrix, as the
pseudoinverse df, we have
U=XVzT,
from which the proposition follows. O

The next proposition presents a relation that is in a sensefrical to the previous one. It states that
the temporal eigenvectors may be written as the superposifidata where the appropriate expansion
coefficients are provided by spatial eigenvectors.
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PROPOSITIONG.4.
v =1 % uDy®
9 & ¢

where j=1,...,rankX and §)<> = XS) as defined above.
PROOF Again, this result follows directly from the SVD
X = UV’
utx = v’
vl = stuTx,

where the fact thdt) is an orthogonal matrix has been used. Hence,

VvV =XTuzt,
from which the proposition follows. O

ExAMPLE 6.1. Recall Example@.1, where the left- and right-singuéators were computed for the

data matrix
11
X=10 1], xT:G cl) é)
10

The columns ofXT arey® = (11)T, y@ = (01T, andy®® = (10)T. We now confirm Proposi-
tion[6.3. To this end, we compute

P
) = L5y
O &1
for u. Evaluating this formula gives

1
ud = = <v§1)x(1) +vg1)x(2)> .

V3
1
Recallingv = —(1 1T, we obtain
g fz( )
1 1
uv =112 (o) s 2 (1)].

alva\1) Tve o

Therefore,
u® = i(211)T,

which checks.
We now confirm Proposition 8.4 by computing

] 1 N .
() — — (1
vl = ul 'y,
Oj k; k

for vil). Employing the value fou?) found above, we obtain

- 3lA0 3030130
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which checks. Itis also reassuring to confirm the formaia >V T which provides the spatial expan-
sion coefficients in terms of the temporal eigenvectors. iBgatl computation,

A = UTX
2 1 1
V6 V6 Ve 11
=10 &% -%||01
4 1 _71J\1o0
V3 V3 VB
3 3
B AL
V2 V2
0 0

According to the proposition, thé x P matrix A= VT is also found as

3 3
1 (V3 0\ /1 1 2 V2
— 1 0 1 = 1 1],
\/200<_11) V2 2

which agrees with the previous result.

Translationally Invariant Data

We consider a data set consisting of toev vectors< x(®) | to be translationally invariant if the

spatial domain is periodic and a cyclic permutation of theponents of a given data point generates
another element of the data set. For example(Xf= (123), then the translationally invariant data
set generated by this point is
1 2 3
X=13 12
2 31
The columns of thenx n matrix X may be cyclically permuted by thex n circulant matrixC, where
(C)ij = c¢i—j andc; = cin. SinceC is also a permutation matrix, its rows must be circular stoft
the first row of the identity matrix.
In this example, the & 3 circulant permutation matrix is

010
C=(0 01
100
The action of right-multiplying by is to cyclically permute the columns, i.e.,

312
XC=12 31
1 2 3

Associated with the circulant matrX is a permutation matrif, obtained by interchanging rows or
columns of the identity matrix, which rearranges the rowX afito their original order

PXC=X.
In our example it may be verified that

'U
I
or o
P OO
oOor
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Note that ifP is a permutation , theR~1 = PT. The right singular vectors of may be determined
by formingX'X, i.e.,

XTX =CTXTPTPXC=CTXTXC;
hence

CX™X =XTXC.

So the circulant matri€ commutes withXT X. It can be shown that bot® and X' X are similar to
diagonal matrices, i.e., they asample It follows that they share the same eigenvect8@.[ As it
will be shown in Chapt€rl6, the eigenvectors of the circutaatrices are Fourier modes, so we may
conclude that the right-singular vectors are also sinsditie given 3« 3 circulant matrixC has the
eigenvectors

1 1 1
1], /3 | i /3
1 AT /3 21 /3

The fact that the optimal basis for translationally invatidata consists of Fourier vectors is well
known. The argument presented here follo@js [



CHAPTER 3

Additional Theory, Algorithms and Applications

In this chapter we continue our study of the KL procedure goplyait to a variety of problems. We
begin with an extension of the KL procedure fgmppydata in Sectiofll. This is followed by the
application of the KL procedure in the presence of noise ictiSel[2.

1. Application with Missing Data

Now we turn to the problem of using the KL procedure on data #edt havegaps or missing
components. The algorithm presented here is due to Eversb®iaovich [L8]. Our development
follows [18], although here we simplify the setting of the presentaltipnising discrete vector spaces,
rather than function spaces. We distinguish this extensidine KL procedure fogappy datausing
the terminology of(18], from the case ohoisy datawhich is developed in the next section.

1.1. Estimating Missing Data. Suppose we can learn a set of best b%sp&l),(p(z),...,(p(m}
from a training set. Lek € RN be a vector that possesses a reduced expansion in terms K the
basis as

S o o0
X~Xp= Y anp".
2

It follows that onlyD points of information are required to reproduce the origugtor. Consider
now an incomplete, or gappy, cogyof the original vectox. This may be expressed as

o )X, m=1,
’“‘{o, m =0,

where the vectom € RN is an indicator vector, omask which identifies the indices of the missing
data. We will also write this incomplete vector as

X =m.X,
where the product notation presents the point-wise midapbn: theith component of the product
IS (M.X)j = mX;.
Given a vectok that is an element of an ensemble of intrinsically low dimemst may be possible to
replace, or at least estimate, the missing entries. If tH@emhdimension in which the vector resides
is large, specifically iD < N, it is plausible that this repair may by possible even if angigant
number of the entries ofare missing. The missing entries of the gappy vextoay be approximated
by the corresponding elementsiof, yielding aD-term approximation t& as

D
(40) K~kp =Y a0,
nzl

where the{&,} are to be found by requiring that
(41) E = [|%—%ol[7,

be a minimum. The notation
|IX]]2 = (X,X)m = (M.X,M.X)
67
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indicates that the norm is defined only on the data that is meding. With this norm it follows that
the coefficientd&,} are estimated based on the available data only.

A few observations are in order. First, note that, by virtiehe eigenvector{rp(”)} being fully

intact, the reconstructiagkp has no missing entries. In addition, singegapproximate& on the mask
m, it also approximates given

|IX—Xp|lm = |[x—Xp||m.
Now, using this definition of the (gappy) inner product, th@emay be expanded as

O
O

E = <)~(— én(p(n,)?— ék(p(k)
n

D D D
= Zm-2|% Y &e" | +[ Y &e", S &
2 D D k
= K52 &% o")m+ > (o™, o)
n=1 k,n=1

Note that the eigenvecton{srp(k)} are no longer orthogonal on the gappy inner product.
Differentiating the error ternk with respect to th&th coefficient gives

JE
98

from which it follows that

D .
—0-2(% ™) +2_Zléa(<p('>, 9" )m =0,
i=

D .
Zé'((p(l)’ (p(k)>m — ()N(’ (p(k)>m
i=

This may be rewritten in the form of a linear system

Ma=f,
where
Mij = (¢, o)
and
fi = ()’27 (P(I))m
The original vectox is then approximated by the repairigfwhich we denote by, i.e.,
Xi, m =1,
p)i=< .
(rol {(XD)i, m = 0.

1.2. Estimating a KL Basis with Missing Data. In the previous subsection we examined the
guestion of estimating data missing from an observatiire procedure required a KL basis de-
rived from a training set with no gaps. These ideas may now be applied to constructing a KL basis
where only incomplete data sets are available. The proegatesented here was proposedlig]] It
is based on an iterative process that successiephirsthe gappy data and improves the estimate for
the associated KL basis.

A summary of the iterative procedure for repairing the gagata set and computing the KL basis
vectors is provided in the following box.
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KL Procedure for Gappy Data

Initialize the missing data with the ensemble average.

Compute the first estimate of the KL basis.

Re-estimate the ensemble using the gappy approximatmiha KL basis.
Re-compute the KL basis.

Repeat Steps 3—4 until stopping criterion is satisfied.

arwbdPE

We now describe the steps in detail. The data set may be nbdglassociating with each pattern
a maskm(¥) of indices indicating which data is available and which comgnts are missing. Each
pattern with incomplete data may now be written

where

Once this ensemble average has been determined from the daiayp the first stage of the ensemble
repair procedure may be executethis repair is done by replacing the missing data with the
point-wise mean of the existing dataSpecifically, the first stage of the repair process is then

(1) (W) _ 1

Wy — 4% ™

The improved ensembl%xU‘)(O)} may be used to construct the first estimate, or initialize,Kh

basis, which we denote
P

{q)(i)(o)}j:l.

Now, given an initial estimate for the KL basis vectors, apioved approximation may be obtained
using the procedure of the previous section.

Specifically, given the gappy pattern veci®f)= mH.x*, we may improve our estimate &fgiven
by Equatiori 4R by using the first estimate of the KL basis. Tingroved estimate may be written

D
%1 = 5 & W),
=1

where the{é&“)(l)} are the solutions to

where

and
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The second iteration of the repair procedure uses the inegrestimate

Xi(“)7 m(“)zl,
(43) (r (1)) = (@) . mP o

for the gappy data ensemble.
The last two steps of this process are repeated until the ISishiea deemed to have converged in a
satisfactory manner. In particular, we expect the sequehi@pairs to approach the actual data

r(“>(n) — x®)
and consequently, the sequence of estimated eigenveatapptoach and actual eigenvectors:
o (n) — @l

It is natural to end the iteration when the updates provitlle Ichange and it is concluded that no
further progress is being made.

ExAMPLE 1.1. This example concerns the application of the KL procedior incomplete data dis-
cussed above. Let the complete data set be translationadlyiant:

Omt) = = 3 Lsinlkm )],
N, & K
wherem = 1,...,M, with M dimension of the ambient space (size of the spatial gridj, jan-
(m—1)2m
M
andt, = . We select an ensemble of ma ks(“)}, u=1,...,P,where 10% of the indices
are selected to be zero for each mask. Each pattern in theapiete ensemble may be written as
%) = m(H) f1),

1,...,P, with P the number of points in the ensemble, as shown in Figure L&), =
(u—121)2m

N
Where(f(“)> = % > %sin[k(xm—t“)]. LetP =M =64 andN = 3. See Figurgl1(b) for the resulted
m K=1

f(x,t) with 10% mask. With the gappy algorithi] and the equation
D
x~%o =Y o,
n=1

we obtain the repaired data after a single pass of repairagrsim Figure_1(c) and the final repaired
data after 3 iterations in Figuié 1(d).

2. Application to Noisy Data

Now we turn to the case where the patterns have added neise, i.
x(H) = W) 4 n(W),

or, in terms of data matrices,

X =S+N,
whereX is assumed to be tall, i.e., if it i5x P thenn > P. In addition, the columns are assumed to
have zero mean.
In the general situation, neither the denoised sigtdinor the noise component* is observable;
only the noisy signak®) is available. An optimal representation of the noisy datsenms of the
eigenvectors of the ensemble-averaged covariance n@tHx(xxT> does not, in general, provide a
good separation of the signal and the noise.
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80

(d) (d)

FIGURE 1. An illustration of the gappy algorithnil§] on a translationally invariant
data. (a) The original data. (b) The gappy data. (c) Restét af single repair. (d)
Final result after 3 iterations of repair.

The simple case is that @fhite noise, which is assumed to have zero mean, be uncorrelatedhsi
signal and have a covariance matrix of the famnwherea is the variance of the noise amdis the
identity matrix. In this instance, the covariance matrixtad signal may be decomposed as

Cx = ((s+n)(s+nm)T")
— (o) (")
= Gs+al,

whereCs = <ssT>. The eigenvector o€, are the same as those @f, and the eigenvalues are all
shifted upwards by the variance of the nogsdeaving the differences of the eigenvalues preserved.
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The general situation is more complicated and the noise iddegd change the eigenvectors. Now
the signal and noise may be separated in an optimal way byirgtm appropriate variational prin-
ciple. One approach for characterizing a basis in the poesehnoise is to choose the direction with
maximum noise fractiof4].

The optimal first basis vectog, is again taken as a superposition of the data, i.e.,

It follows then that we may decompogdnto signal and noise components
=+,

wheregs = SY andg, = Ny.
The basis vectop is said to have maximum noise fraction if the ratio

@
D(@) =
(®) o0
is a maximum. This may now be rewritten as
_YINTNy

Differentiating this with respect tgy and setting the result to zero leads to #ygnmetric definite
generalized eigenproblem

(44) NNy = p?XTXy.

This problem may be solved without actually forming the pretdmatricedN™ N andX T X, using the
generalized SVD, seRf)].

The remaining maximum-nose-fraction basis vectors maybed using a similar approach. In fact,
they are generated by the segeheralized singular vectofap} that come from solving Equatiéni44.

These generalized singular vecte{rqa(i)} are ordered according to the generalized singular values

{u} with the largestu corresponding to the basis vector with thmst noise Alternatively, the
order of the generalized singular vectors may be reverseis. i3 convenient for data reconstruction
purposes where the signal, not the noise, is the item ofdster

Notice that the signal matrix and the matrix of maximum ndiaetion vectors are the same, i.e.,

S=0o.
The generalized singular vectors are normalized so that
‘,U(DXTXQUU)dy
Notice that they are not orthogonal with respect to the uualidean inner product — the inner
product is now weighted. The badi¢} is, however, orthonormal.

ExXAMPLE 2.1. Noisy Time Series from a Physical ProceAs an example of the application of these
ideas we consider the problem of filtering a sePof 7 noisy time series shown in Figurk 2(a), each
of lengthn = 250. In this problem we take the data matkxto be 250x 7, where each column
has had the mean removed. If we treat each of these time sariaspoint inR?>°, then the KL
eigenvectors for the noisy data are shown in Figire 2(b)e Nt these basis vectors are equivalent
to the left-singular vectors of the data matix The significant level of noise spread across all of
these basis vectors is evident.

To apply the maximum-noise-fraction method for filtering get of noisy time series we must esti-
mate the covariance matrix of the noid&,N. Assuming the noise is uncorrelated, the noise may
be estimated simply by differencing signals shifted by onencrement. After computingN in this
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way the generalized singular vectdrg/} were found and used to construct the orthonormal basis
{@} shown in Figuré2(c).

The result of projecting the first of the original seven tinegiss onto the maximum-noise-fraction
basis is shown in Figufé 2(d) for one to seven modes. Obsewdéhe noise-free portion of the signal
is reconstructed last. For a closer look at the effect ofdating the noisy basis vectors, a full-mode
reconstruction of the first time series is shown in Figure 8tid¢ that significant detail of the signal
is retained while a large amount of noise is removed.

Finally, we remark that although the method was introducetti&¢ context of eliminating noise, it is
potentially useful for separating signals in general whendovariance matrices for each component
are available. Also, a striking feature of this approaclmé hon-differentiable functions with added
noise may be recovered without smoothing, i.e., the filtéwedtion may also be non-differentiable.
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10 3
0 Gl ] I il e 0 i 1] L] n

(c) (d)

FIGURE 2. (@) A collection of seven noisy time series. (b) The orthromal basis
resulting from the noisy time series in (a). (c) The orthonak basis resulting from
implementing the maximum-noise-fraction method on sewa@syntime series in (a).
The basis vector with the most signal is at the top, and thewotiethe maximum-
noise-fraction is at the bottom. (d) The result of projegtthe first of the original
seven time series onto the maximum-noise-fraction basis.
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FIGURE 3. Full-mode reconstruction of the first noisy time serieBigure[2(a).
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CHAPTER 4

Fisher’s Linear Discriminant Analysis

Linear discriminant analysis (LDA) and the related Fisbdinear discriminant analysis (FDA) are
methods used in statistics and machine learning to find adioembination of features which char-
acterize or separate two or more classes of objects or evemtsesulting combination may be used
as a linear classifier, or, more commonly, for dimensiopaétiuction before later classification.

The terms Fisher’s linear discriminant and LDA are oftendusgerchangeably, although Fisher’s
original article RQ] actually describes a slightly different discriminant, ialihndoes not make some
of the assumptions of LDA such as normally distributed dassr equal class covariances. In the
following discussions, we will use FDA and LDA interchangbawithout worries. We will motivate
the method with a simple two-class classification problest ind generalize it to the multiclass case.
The discussions here follow2].

1. FDA for Two Classes

We will develop the idea of FDA in the context of a simple twlass problem. Namely, we will
consider two classe§); andD,, of data points ifR?. Applying FDA to this data in the plane will
generate a line and a scalar which can then be used to claes#{points. The classification accuracy
using Fisher’s Discriminant Analysis depends on the lirssgrarability of the classes of data. Two
classes of points ifR? are linearly separable if it is possible to draw a line sipiijtthe plane into
two half-planes, with one class of points lying entirely areside of the line and the other class of
points lying on the opposite side of the line. Figlle 1(a)sitates two linearly separable classes of
data with a separating line, and Figlie 1(b) shows two noealily separable classes.

Of course, if data fails to be linearly separable it can bergily or weakly non-linearly separable
depending on how much the classes of data are mixed. Thenkeskasses are mixed, the more likely
that FDA will still perform fairly well. In the case where tteeis a severe non-linearity, it is difficult
to directly compute the discriminating features betweenttho classes of patterns in the original
input space. By defining a non-linear mapping from the inpaice to a high-dimensional feature

() (b)

FIGURE 1. (a) A linearly separable data cloud. (b) A non-linearlga®ble data cloud.

7



78 4. FISHER'S LINEAR DISCRIMINANT ANALYSIS

FIGURE 2. Kernel LDA. A non-linear map (i.e., kernel) can be foundgéparable two
non-linearly separable classes.
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FIGURE 3. (a) A bad projection. (b) A good projection in the Lineas®iminant Analysis.

space, one can possibly obtain a linearly separable disoibin the feature space. Then LDA, the
linear technique, can be performed in the feature spacettactxhe most significant discriminating
features. This technique is generally called the Kernel BRA) [13,43. A graphical illustration
is given in Figuré .

Given a novel poink € R?, the idea behind FDA is to

(1) Projectx onto the line spanned by a certain unit vestpthereby reducing the dimension of
x from two to one, from a point ifR? to a scalar value ifR.

(2) Select the class of based on whethew' x is above or below a certain scalar critical value
Oc.

The question then becomes how to optimally select the direcf projectionw. Figure[3 compares
the situations when a good and bad projection are used. Wheodyprojection is found, two distinct
classes can be separated without error; on the other hamblad projection is chosen, it is impossible
to find a real scalao. that separates the two classes perfectly. With that, ofifirs@lectingw and

a¢ will be the focus of the following discussions.

1.1. Finding the Good Projection. First we discuss selecting the optimal projectian, There
are two aspects that effect the optimizatiomofThe goals are to separate data in distinct classes as
far as possible while pull the data within the same class@seds possible.
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FIGURE 4. An illustration of a good LDA projection that maximizesthetween-
class scatter and minimizes the within-class scatter.

1.1.1. Between-Class Separation and Within-Class Condensatietin; andny be the number
of data points irD; andD», respectively. Define the class-wise means:

1 1
m=— X and mp= — y.
Ny xeb1 2 yeDb,
We then define the means of the projected data accordingly as
T ~ 1 T
M= — w'x and nb=— w'y.
M xeD1 N2 yeb2

We desire that the projected means be far apart, in the éffproduce class-clusters that are far apart
in the one-dimensional projected space. In other wordschoese the between-class objective we
find w such that

(45) w = arg max1fp — iy )?.
W*

Moreover, we want to minimize the scatter (variance) in eafdine projected class clusters. Define
the projected class-cluster scatter BarandD-, respectively, as

=5 Wx—rm)? and =S Wy—rp)?
xeDq yeb2

These two goals are summarized graphically in Figlire 4. o
Now the total within-class scatter, across all classesjvisngby S +S5. Thew that achieves the
within-class objective is given by

(46) argmin(S{+S3) .
w
In order to achieve Equatioris (45) afdl(46) at once, we seetatdmize the function
(e — My)?
SI+S
over all choices ofv with ||w||, = 1, where unit length prevents the between-class scatter higng
unbounded. Equatiof (47) is called the Fisher Criterln [

(47) I(w) =
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1.1.2. Rewrite Jw) and Maximize.We can maximizd using expansions and matrix differentia-
tion. First, we notice that we can write the projected meateiims of the original mean

- 1
m = — 5 wx
nl Xebq

— i (WTx(il> +WTX(i2) -+ >
Ny

1
- w' —%x
n1X€1

_ T
= W Im
Similarly, fi, = w' mp. Thus, the numeratdd(w) of J(w) can be expanded as follows.

NW) = (fp—my)? = (Wimp—w"my)2 = (W' (mp —my))?
= w (mp—my)w' (mp—my) =w' (mp—my) (mp—my) " w=w'Sgw,
where
(48) Sg=(mp—my) (mp—my)’

is the between-class scatter matrix.
For the denominatdd(w) of J(w), we can write

Dw) = S+S= WX — i)+ wly — i)
xe%l( l) yE%z( )
— % (wa—me1)2+ % (WTY—WTmZ)Z
xeD1 yeDL?
-3 (W (x— my) (x—my) Tw) + > (W' (y—mp)(y—mg)"w)
Xe yebD2
N WTig,zxe%i(X_m)(x_m>TW:WTSNW

where

(49) sN:_ZZX;(x—m)(x—m)T

is the within-class scatter matrix.
We can finally write the Fisher Criterion as

T

Iw) = N(w) W SBW,
D(w) wlSyw

which is commonly known as the generalized Rayleigh quofikd.

SettingJ(w) = 0, a necessary condition for a global maximum, gives the rgdéined eigenvalue
problem (see AppendiX 5)

(50) SwW = ASyw.

But which of the generalized eigenvectors that satisfy Hqnd5Q) is the optimalv? We notice that
_Nw) _
“pw

is precisely the Fisher Criterion. Since we want to maxindige) = A we will find w as the general-
ized eigenvector corresponding to the largest generatimgehvalue solving Equatiop (50).
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1.2. Optimal a¢. Finally, the task of selecting an optima¢ can be approached in a variety of
ways. Several methods are available for heuristicallycsielg the threshold valuey.. One method
is to leta be the average of the projected means

M+
cT 2
. In another method, one can assume, without loss of getyethkt the projected class-clusterof
lies above the projected class-clusteiDf Then it is reasonable to set to be the average of the
minimum projected element @i, call it X, and the maximum projected elementf, call ity, i.e.,
X+y
ac —_— T.
Or, one can select; by cross-validation. Namely is chosen empirically to maximize classification
rates for validation data.

2. Multiclass FDA

In the case where there are more than two classes, the anabedd in the previous section can be
extended to find a subspace which appears to contain all afaks variability.

We begin by supposing there alé > 2 classesP1, Do, ...,Dy, partitioningn pointsx € RN,i =
1,...,n, where there arg; points in eactD;. LetX = {x € RN}{‘Zl. We takd < N copies of the linear
projection formula from the two class, two-dimensionaleas

T
Yk=wW X, k=1,...1,

where each numbe, is the result of projection of onto the line spanned by vectax. Combining
these into a matrix equation yields

y=WTx
whereW = [wiw, ---wi] isN x| andy = [y1y» --- yi]T is| x 1. Thus, the projection of eachiby W
is an associategi. This generates the sétof n projected pointsy = {y; € R'}" ;. Each of they;
maintains the same class label as its countespaWe want to find the best projectidM, where the
definition of quality has been extended from the two clasblera in a natural way.
We are now ready to generalize the definitionsSgf and Sg for the multiclass, high-dimensional
case, as shown ilfl]. For the original data, the within-class scatter is the sum of individual class
variances

The definition of the within-class scatter matrix is someiwhtuitive, and matches exactly the form
in Equation[(4B). Each outer product used to cr&feommunicates a measure of the variance of a
data point from the mean, consisting of every pairwise campa of entries. On the other hand, the
definition of the between-class scatter matrix is not agtiseu It arises from considering the total
scatter

S 3 (0= -,

wheremis the mean across all data pointinif we let the total scatter be the sum of the within-class
and between-class scatter matrices,

SFISN+S37
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then we solve for the between-class scatter matrix by
M
S=S-Sw= Zlni(m —m)(m —m)T.
i=

Now we consider the projected data If we let i be the mean o¥ andny be the mean of the
projected data in clad3;, we have the natural extension to the projected withinscéasitter matrix

M
Sw= (y—m)(y—m)".
i;y;i
and the projected between-class scatter matrix
M
&= Zlni(m —m)(Ay—m)T.
i=

After simplification, we arrive aﬁN =WTSyW andéB =WTSW. We can produce a scalar measur-
ing scatter using the determinant of the products, sincdeberminant is the product of the eigenval-
ues, and the magnitude of the product of eigenvalues camelsito variance. In this light, the Fisher
Criterion becomes

WTssW|
ST
a ratio of determinants. The columns\af are found as thé eigenvectors corresponding to the
largest eigenvalues, in descending order, of the genedbéigenvalue problem

W= ASyw.

Higher-dimensional ambient spaces lead to new notiong:of The purpose ofx; is to separate
projected data into distinct classes. This allows for niousmays to define,, as with the two-class
problem inR?, but what is important about the general FDA is that it gives transformation matrix
W with the aforementioned favorable properties.

JW)



CHAPTER 5

Convolution in Digital Images

In this chapter we define the convolution operat@nd become familiar with it. We then develop
some basic properties of convolution and next, study thezpidy between the convolution with filter
and the Fourier series of the filter.

1. Convolution and Correlation

Convolution on two functionsandf can be viewed as a way to producing a modified versiaaof
f, whichever is appropriate. The formal definition is statethie continuous form:

(fxs)(t / f(r)-s(t—rt1 dr—/ S(1)- f(t—r1)drt.
In the discrete case,

DEFINITION 1.1. Letsandf be two bi-infinite sequences, whese- (...,s 2,5 1, S,51,S,...) and
f=(..,f2, f_1,fo, f1, f2,...). Then theconvolutionproducty of sand f, denoted byf xsis the
bi-infinite sequence whosegh component is given by

(51) Z Sk fnk-

k=—o0
In general, Equation %1 will diverge unless appropriateditions are placed os and f. In our
applications, eithes will be non-zero on a set of measure zero or termsand f will decay rapidly
to ensure convergence.
A seemingly familiar concept that resembles a lot of the ati@ristics of convolution will be dis-
cussed next. Statistically speaking, the (Pearsonelation px v between two random variables

andY is defined as
oy — COUXY) _ ELX = (Y = pv)]
’ Ox Oy Ox Oy ’
whereE (X) andE(Y) refer to the expected value ¥fandY, respectively. Sincgx = E(X), the mean

of X, andoZ = E[(X — E(X))?] = E(X?) — E(X), the variance oK, the equation above becomes
B E(XY) — E(X)E(Y)
P = JE(X®) — E2(X) JEV?) — EAY)
In terms of finite signals, we have an expression that is amil Equatiof 51

o Lt i@ o) (i — ).

n—1 0s0%
Notice that the signal has one fewer degree of freedom whemtan is taken out, explaining the
division byn — 1 instead oh.
These two concepts inspire the usecofrelationandconvolutionin image processing applications.
Intuitively, correlation is like the process of moving adiltmask § over a signal (s) or image and
computing the sum of products at each location while coriaiuworks similarly except that the
filter f is first rotated 180 A simple 1D example is given in Figuke 1 to illustrate the isamity and
difference of these two concepts.

83
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Correlation Convolution
s f s rotated f
a 00010000 12328 i 00010000 82321
b. 00010000 j. 00010000
12328 82321
¢. [0000000100000000 k [0000000100000000
12328 82321
d 0[00000[0100000000 1L 0[000000100000000
12328 82321
e. 0000000100000000 m 0000000100000000
12328 12321
£00000001000[00000 n. 00000001000[00000
12328 82321
g2 000823210000 0. 000123280000
h. 08232100 p. 01232800

FIGURE 1. sis a discrete unit pulse of length 8 aridis a filter of length 5. The
processes of correlation and convolution are illustratedne left and right panels,
respectively. In steps b. and j., the align the signal andrfilin steps c. and k.,
appropriate number of zeros are added to pad the empty oetisder to perform
multiplications in the next step. In general, if the filterabfsizem, then we needh— 1
zeros on either side «f Plots d. (resp. |.) and e. (resp. m.) show the positionsef th
filter after one and four shifts, respectively. For examgiie, result of convolution at
four shifts is calculated from®@+0-2+0-3+1-2+0-1= 2, which corresponds to
the first 2 from the left in the full convolution result showna. Finally, the full-length
correlation and convolution are cropped to match the leonfthe original signals.
Notice that the only major difference between the two meshsthe action of rotating
the filter mask in convolution before performing the prodamcti sum.

We proceed with a similar fashion in the case of 2-dimengisigaals, such as the case of images. In
general, if the filter is of sizen x n, we first pad the imagswith a minimum ofm— 1 rows of zero’s
on the top and bottom and— 1 columns of zero’s on the left and right. The rest of the datren
and convolution process is similar to the 1D case and istiitesd in Figuré 2.

Mathematically, we compute discrete 2D correlation with

a b a b
fxy)ssxy)= > > fuv)sx+uy+v)= % > suv)f(x+uy+v)

u=—-av=-—Db U=—av=-—b
and discrete 2D convolution with
f(X,y)*xS(X,y) = f(u,v)s(x—u,y—v) f(X+uy+v).
uzav—zb uzavzb

There are a few things to pay attention to here. First, botretadion and convolution are commuta-
tive, which means that it is irrelevant what we consider agaas and what we consider as a filter.



1. CONVOLUTION AND CORRELATION 85

) f
00000 123
00000 456
00100 789
00000
00000
zero-padded s f cropped result
000000O0CO0OO (I 23 0000000
0000000O0O0 (456 0l]0 0 0 00]0
0000O00O0CO0OO [7 809 01009 8 70]0
0000000O0O0 010 6 54 0]0
Correlation 0000 10000O0 0103 210]0
0000000O0O 00 0 0 00]0
0000000O0O0 0000000
0000000O0O
000000000
zero-padded s rotated f  cropped result
000000000 |9 87 0000000
0000000O0O0 (654 0l0 0 0 00]0
000000000 (321 001 2 30]0
000000000 0l0 456 0]0
Convolution [0 0000 1 0000 00 78 90]0
00000000O0 0l0 0 0 00]0
00000000O 0000000
00000000O
000000000

FIGURE 2. In this figure,s is the image that we are interested in studying wiiile

is a filter window of size 3 3. The processes of 2D correlation and convolution are
illustrated on the top and bottom panels, respectively. dth bncidencess is first
padded with two rows of zeros on the top and bottom and twaoneontuof zero on the
left and right. The first non-zero result of correlation amehwlution is highlighted

as one slides through the zero-paddeddrom the upper left corner to the lower-right
corner. At the end of a series of matrix multiplications, w&m the boxed region as
the final result of correlation and convolution.

Although in practice, filters are often smaller in size. Amatimportant detail to notice is the sub-
traction in f in the second equation captures exactly the’d@@tion mentioned earlier. Now that
we have acquainted ourselves with the notation and defsited convolution, we will next briefly
discuss how convolution is used in a lot of image processupdj@ations.
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2. Convolution as Filters

Convolution is considered as a formsgatial filteringin manipulating images. Common synonyms
include convolution mask, convolution kernel, convolvanghask with an image, etc. The name filter
is borrowed from frequency domain processing. Filterinigneto accepting/passing or rejecting
certain frequency components. For examplive-passfilter passes low-frequency information. In
images, such filters correspond to the action of smoothifiuoring. On the other hand,lagh-pass
filter damps low frequency information while maintains higequency content. In images, such
filters correspond to the action of sharpening. The theorkiaw to construct appropriate filters for
various tasks has grown tremendously over the past few dechut detailed information, please refer
to [23]. We will only introduce a few simple yet fundamental filtédrsm the literature here.

2.1. Smoothing Spatial Filters.

e Linear filters. The linearity in this context refers to thdliépto represent the filter in a
matrix form. A typical technique in constructing such figes through the use of integration.
Namely, summing and averaging. An averaging filter resoltmiimage with reduced sharp
transitions in intensities. Because random noise typiaadnsists of sharp transitions in
intensity levels, the most obvious application of smoagghis noise reduction. However,
smoothing also has the undesirable side effect of edgeifdurA typical 3x 3 averaging

filter looks like
1 111

“11 1 1.
911 1 1

The appropriate size of the filter depends on the applicatiigure[3 depicts the various
effects created by using filters of various sizes. In genenadraging filters of larger size
have a more significant effect of blurring.

Another type of averaging filter is a weighted average filteere neighbor pixels are
inversely weighted as a function of distance from the centerparticular, the diagonal
neighbors are considered as further away from the orthdgeighbors of the center. A
typical 3x 3 weighted average filter looks like the following.

(21
212 4 2|,
1611 2 1

The result of applying this filter to an image is shown in Fajdrfor convenience.

An important application of spatial averaging is to blur amage for the purpose of
getting a gross representation of objects of interest, thatithe intensity of smaller objects
blends with the background and larger objects become ‘“ilgband easy to detect. The
size of the filter/mask establishes the relative size of thjeats that will be blended with
the background. As an illustration, consider Figure 5(diici is an image from the Hubble
telescope. Figurg 5(b) shows the result of applying & 15 averaging mask to this image
We see that a number of objects have either blended with ttlggbaund or their intensity
has diminished considerably. It is typical to follow an cgten like this with thresholding
to eliminate objects based on their intensity. The resulisihg the thresholding function
with a threshold value equal to 25% of the highest intensitithe blurred image is shown
in Figure[®(c). Comparing this result with the original ineagve see that is is a reasonable
representation of what we would consider to be the largegfhtest objects in that image.

e Nonlinear filters. Filters of this sort can not be expresseelnin a closed matrix form. This
sort of filter is based on ordering (ranking) the pixels corgd in the image area encom-
passed by the filter, and then replacing the value of the cpixtel with the value determined
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(a) Original image (b) size 8 3 filter (c) size 5x 5 filter
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FIGURE 3. (a) Original image, of size 906712 pixels. (b)-(f) Results of smoothing
with square averaging filter of sizes= 3,5,9, 15, and 35, respectively.
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FIGURE 4. (a) Original image, of size 906712 pixels. (b) Result of applying the

(111 1 1 2 1
filter 10 1 2 1. (c)Result of applying the fiIte+1L6 2 4 2|.
111 1 21
by the ranking result. The best-known filter in this categerthemedianfilter (among oth-
ers such as max and min filters), which replaces the value ofe lpy the median of the
intensity values in the neighborhood of that pixel. Medidterfs are quite popular because,
for certain types of random noise, they provide excellemsarveduction capabilities, with
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(b)

FIGURE 5. (a) Image of size 399 395 pixels from the Hubble Space Telescope. (b)
Image Filtered with a 15 15 averaging filter. (c) Result of thresholding (b) with 25%
of highest intensity.

considerably less blurring than linear smoothing filtersiofilar size. They are particularly
useful in the presence of impulse noise (a.k.a. salt-apggrenoise), intensity spikes caused
by error in data transmission.

For example, suppose that a3 neighborhood has valu¢$0, 20, 20,20, 15, 20, 20, 25,
100). These values are sorted(@$, 15, 20, 20, 20, 20, 20, 25, 100), which results in a median
of 20. Thus, the principal function of median filters is todermpoints with distinct intensity
levels to be more like their neighbors. In fact, isolatedstdus of pixels that are light or
dark with respect to their neighbors and whose area is lesanthy/2 (one-half of the filter
area), are eliminated by anx m median filter. In this case, “eliminated” means forced to
the median intensity of the neighbors. Larger clusters theetad considerably less.

Figurel6(a) shows an X-ray image of a circuit board heavilyuated by salt-and-pepper
noise. To illustrate the point about the superiority of naediiltering over average filtering
in situations such as this, we show in Figlie 6(b) the redyttracessing the noisy image
with a 3x 3 neighborhood averaging mask, and in Fidgure 6(c) the resulsing a 3x 3
median filter. The averaging filter blurred the image and dsa reduction performance
was poor. The superiority in all respects of median overayefiltering in this case is quite
evident. In general, median filtering is much better suitethtaveraging for the removal of
salt-and-pepper noise.

2.2. Sharpening Spatial Filters. The principal objective of sharpening is to highlight triilosis

in intensity. Uses of image sharpening vary and includeiegtibns ranging from electronic printing
and medical imaging to industrial inspection and autonasrguudance in military systems. Contrary
to averaging, sharpening can be accomplished by spatiatetitiation. This boils down to numeri-
cally taking derivatives of sequence of numbers. The d@vies of a digital function are defined in
terms of differences. There are various ways to define thésgathces. However, we require that
any definition we use for a first derivative (1) must be zeroréaa of constant intensity; (2) must be
nonzero at the onset of an intensity step or ramp; and (3) beusbnzero along ramps. Similarly, any
definition of a second derivative (1) must be zero in consiasds; (2) must be nonzero at the onset
and end of an intensity step or ramp; and (3) must be zero akimg@s of constant slope. Because
we are dealing with digital quantities whose values aredjriite maximum possible intensity change
also is finite, and the shortest distance over which thatgdaan occur is between adjacent pixels.
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FIGURE 6. (a) X-ray image of circuit board corrupted by salt-angyper noise. (b)
Noise reduction with a & 3 averaging filter. (c) Noise reduction &3 median filter.

A basic definition of the first-order derivative of a one-dmemnal functionf (x) is the difference

of

o f(x+1)— f(x).
We used a partial derivative here in order to keep the not#tie same as when we consider an image
function of two variablesf (x,y), at which time we will be dealing with partial derivative®af the
two spatial axes. We define the second-derivativé(gj as the difference

o f 1)+ f 1) —2f
52 = Tt 1)+ f(x—1) —2f(x).

It is easy to verify that these two definitions satisfy theditons stated above. To illustrate this, and
to examine the similarities and differences between first- second-derivatives of a digital function,
consider the example in Figuré 7. Center of the Fidire 7 sheoaection of a scan line (intensity
profile). The values inside the small squares are the irttevesiues in the scan line, which are plotted
as black dots above it. As the figure shows, the scan line @& intensity ramp, three sections of
constant intensity, and an intensity step. The circlescetei the onset or end of intensity transitions.
The first- and second-order derivatives computed usingwoeptreceding definitions are included
below the scan line and plotted on the bottom of the figure.
Let us consider the properties of the first and second der@saas we traverse the profile from left
to right. First, we encounter an area of constant intengibyere both derivatives are zero there so
condition (1) is satisfied for both. Next, we encounter arensity ramp followed by a step, and
we note that the first-order derivative is nonzero at the toofsthe ramp and the step; similarly, the
second derivative is nonzero at the onset and end of botlathe and the step; therefore, property (2)
is satisfied for both derivatives. Finally, we see that prop€) is satisfied also for both derivatives
because the first derivative is nonzero and the second isafmng the ramp. Note that the sign of the
second derivative changes at the onset and the end of a stempr In fact, we see in the bottom of
Figure[T that in a step transition a line joining these twaigalcrosses the horizontal axis midway
between the two extremes. Ttaero crossingroperty is quite useful for locating edges.
Edges in digital images often are ramp-like transitionsiemsity, in which case the first derivative
of the image would result in thick edges because the dera/ainonzero along a ramp. On the other
hand, the second derivative would produce a double edgeizektipick, separated by zeros. From
this, we conclude that the second derivative enhances fiad deich better than the first derivative,
a property that is ideally suited for sharpening images.oAs&econd derivatives are much easier to
implement than first derivatives, so we focus our attentiinally on second derivatives.
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FIGURE 7. lllustration of the first and second derivatives of a 1-Qit@l function
representing a section of a horizontal intensity profilefran image.

Here, we consider the implementation of 2-D, second-ordavatives and their use for image sharp-
ening. We are interested imotropicfilters, whose response is independent of the direction @f th
discontinuities in the image to which the filter is applie other words, isotropic filters aretation
invariant, in the sense that rotating the image and then applying ttee §ives the same result as
applying the filter to the image first and then rotating theiltes
It can be shown that the simplest isotropic derivative ojoenia the Laplacian, which, for a function
(image)f (x,y) of two variables, is defined as
5 0°f  9°f

o= o oy2’
Because derivatives of any order are linear operationd,dpéacian is a linear operator. To express
this equation in discrete form, we use the definition inticetipreviously, keeping in mind that we
have to carry a second variable. In thdirection, we have

0°f
(52) 52 =[x+ 1y)+T(x—1y) - 2f(xy)
and, similarly, in they-direction we have

0°f

(53) Fy+1)+f(xy—1)—2f(xy)

oy
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Therefore, it follows that the discrete Laplacian of twoighles is

(54) 2 (x,y) = f(x+1,y) + F(x—=1,y) + F(x,y+ 1)+ f(x,y— 1) —4f(x,y).
This equation can be implemented using the filter mask

(x,y—1) 0 1 O
(55) (x=L1y) (xy (x+lLy)|— |1 -4 1

(x,y+1) 0O 1 O

which gives an isotropic result for rotations in incremewit90°.

The diagonal directions can be incorporated in the defmitibthe digital Laplacian by adding two
more terms to Equatior_(b4), one for each of the two diagoitettions. The form of each new
term is the same as either Equatibnl (52) ot (53), but the coatek are along the diagonals. Because
each diagonal term also contains-2f (x,y) term, the total subtracted from the difference terms now
would be—8f(x,y). This new definition can be implemented with the mask

1 1 1
(56) 1 -8 1).
1 1 1
This mask yields isotropic results in increments of.4%u are likely to see in practice the Laplacian

masks
0O -1 O -1 -1 -1
-1 4 - and -1 8 -—1f.
0O -1 O -1 -1 -1

They are obtained from definitions of the second derivativasare the negatives of the ones we used
in Equations[(52) and (53). As such, they yield equivalestilts, but the difference in sign must be
kept in mind when combining (by addition or subtraction) glagian-filtered image with another
image.

Because the Laplacian is a derivative operator, its usdigigh intensity discontinuities in an image
and deemphasizes regions with slowly varying intensitglevThis will tend to produce images that
have grayish edge lines and other discontinuities, allisoyp®sed on a dark, featureless background.
Background features can be “recovered” while still presgythe sharpening effect of the Laplacian
simply by adding the Laplacian image to the original. As dagarlier, it is important to keep in mind
which definition of the Laplacian is used. If the definitioredshas a negative center coefficient, then
we subtract rather than add, the Laplacian image to obtain a sharpesedt.r Thus, the basic way in
which we use the Laplacian for image sharpening is

g(x,y) = f(x,y) +c[O*f (xy)],
wheref(x,y) andg(x,y) are the input and sharpened images, respectively. Theardnst = —1 if
the Laplacian filters in Equatiof (b5) dr {56) are used, @ardl if either of the other two is used.
Figure[8(a) shows a slightly blurred image of a CT scan. FEfi(b) shows the result of filtering
this image with the Laplacian mask in Equatibnl(55). Findfigure[8(c) shows the result of adding
the original image to the Laplacian. By doing this, it restbthe overall intensity variations in the
image, with the Laplacian increasing the contrast at thatlons of intensity discontinuities. The net
result is an image in which small details were enhanced amtdlkground tonality was reasonably
preserved.
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5. CONVOLUTION IN DIGITAL IMAGES

FIGURE 8. (a) Blurred image of a CT scan. (b) Laplacian mask in Equaft3).

Image sharpened using the mask in (b).

()



CHAPTER 6

Fourier Analysis

This chapter is concerned primarily with establishing anfdation for the Fourier transform and how
itis used in basic image filtering. Most of the materials iis tthapter follows23)].

The most significant contribution of the French mathemarticlean Baptiste Joseph Fourier in the
field of image processing is perhaps the fact that any perigiction can be expressed as the sum
of sines and/or cosines of different frequencies, eachiptield by a different coefficient (we now
call this sum aourier serie. It does not matter how complicated the function is; if ipsriodic
and satisfies some mild mathematical conditions, it can peesented by such a sum. This is now
taken for granted but, at the time it first appeared, the quinitet complicated functions could be
represented as a sum of simple sines and cosines was noinatiglve, see e.g., Figuié 1, so it is not
surprising that Fourier’s ideas were met initially with pkeism.

Even functions that are not periodic (but whose area undectinve is finite) can be expressed as
the integral of sines and/or cosines multiplied by a weigtiimction. The formulation in this case
is theFourier transform and its utility is even greater than the Fourier series imyrtaeoretical and

WA
AVAVAVAVAYAVAVAY
AVAVAVAV
/\J

FIGURE 1. The function at the bottom is the sum of the four functiobswe it.
Fourier’s idea in 1807 that periodic functions could be espnted as a weighted sum
of sines and cosines was met with skepticism.

93
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applied disciplines. Both representations share the itapbcharacteristic that a function, expressed
in either a Fourier series or transform, can be reconsulugexovered) completely via an inverse
process, with no loss of information. This is one of the mogiartant characteristics of these repre-
sentations because it allows us to work in the “Fourier doitend then return to the original domain
of the function without losing any information. Ultimatelywas the utility of the Fourier series and
transform in solving practical problems that made them lyideidied and used as fundamental tools.
We will be dealing primarily with functions (images) of fieitduration, so the Fourier transform is
the tool in which we are interested. The material in the fellg sections introduces the Fourier
transform and the frequency domain. It is shown that Fodeehniques provide a meaningful and
practical way to study and implement a host of image prongsspproaches.

1. Review of Complex Exponential Functions

One of the most famous functions in all of mathematicEuger’'s formula The result expresses a
complex exponential function int terms of cosine and sirtee flesult has numerous applications and
we will see that the formula is important we we design toolgrtacess digital signals and images.

Recall Taylor’s series fo# = 1+t + tz—z. + 5—3, +.--. Thus,

o _ o (i8)2 (i6)®
e' = 1+(|9)+T+T
. 62 i3 04

= 1+i0— oy — ot

%2 o4 . 03 ©o°

= cosf+isind.

Thus we have Euler’'s formula
€% = cosh +isiné.
So€? gives a graph of a circle on the complex plane. We can easihpate the conjugate as follows:
€9 = cosf +isinf = cos —isind =e'°.

We will also be needing the notion oith roots of unity later in the discussion of Fourier transform.
In particular, theN'™ roots of unity are given bye?™*/N}N-1 For example, the® roots of unity
are

=1 €72=i, d7=-1, €&¥2=_j
Now, we define a family of complex exponential functions
(57) Ex(x) =",

wherek € Z andx € C. These functions ar%kﬂ-period. They givek copies of Sine and Cosine in each
interval of length 2r.

THEOREM 1.1. {E(X) }kez forms a basis for the space of &lir-periodic square-integrable functions
f(x), i.e., f(x) is such that/”_ | f(x)|?dx < co.

ProoOF We will show that{ Ex(x)} forms an orthogonal set. It will then follow th&Ey(x)} is a
basis since it is easy to see that it spans the space afrgdeBiodic functions. Recall the definition of
complex inner product:
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s -
over any interval of 2Zr. (Alternatively, one can defingf (x),g(x)) = %T / f(x) - g(x) dxso that the
set forms an orthonormal basis.) o

Forj,keZ,
n — T . o
(58) / Ek(W)Ej(W)dW:/ e'kWe_'JWsz/ g (K=DwWgw
—TT T T

If j =k, Equation[(5B) gives If j #Kk, letu= (k— j)w, thendw = I(ledu. And Equation[(5B8)
becomes

1 (k=j)m .
—/ cosu-+isinudu
k=] J-k-in
1 (k=j)m (k=j)m
= —/ cosudu+—/ sinudu
K—jJ-k=im k=] J-(k-jn
2 (k—j)m (k=j)m
= —/ cosu],du= ——sinu =0
Thus,
21 if k=
E..Ei) =
(B Bj) {o it K|,
which establishes the claim. OJ

2. Fourier Series

As we saw at the end of Sectibh 1,fifis a 2r-periodic function and well-behaved (s piecewise
continuous and has a finite number of jump discontinuitid®n we can represent it as a linear
combination of the family of complex exponentidBy(X) }kez. Such a linear combination is called
aFourier series

DEFINITION 2.1. Suppose that is a 2rr-periodic, absolutely integrable function, then the Feuri
series off is given by

[ee]

(59) f=3 o

k:—OO

As long asf(x) is a continuous function and the derivative exist,athen the right hand side of
Equation[(5D) converges ti(x). If f is piecewise continuous ands a jump discontinuity, then the
series converges to one-half the sum of the left and rightdiof f atx. Notice that this value may
or may not be the value df(x).

Now, a natural question to ask is how to find tés in the Fourier series. It turns out that the
procedure we follow to obtain thg’s is a natural consequence of teg's being orthogonal, i.e.,
ck = (f,Ex). In particular, consider the following
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00

f = 5 ad™

k=—00
(OB = 3 E0E®)
keZ
/nf(x)Ek(x)dx — /" Ex(X)Ex(x) dx
-1 77Tk€
= Ex(X)Ex(x)d
S | BB
2n
= 2Tk

Thus, we obtain the Fourier coefficients

(60) - %T/Zfoo?(x)dx: %T/if(x)e”‘xdx

ExAMPLE 2.1. In this example, we find the Fourier series for the satht@anction f (x) = x when
—m<x< mandf(x) = f(x+42m), given in Figuré .

/] V)
Yaanas

—15 —-10 -5 o

FIGURE 2. The sawtooth function.

We first compute the Fourier coefficientg’s:

s 1 .
_ = ékxd
C /rr27TX X
1 n T
= — (/ xcoskxdx—i/ xsinkxdx)
21T 7T —TT
i T
= O——.Z/ xsinkxdx
21 0

i T
= ——/ xsinkxdx
TTJo
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We now integrate this by parts. Let= x, du= dx, dv= sinkxdx andv = —1/kcoskx

i i[-1
——/ xsinkxdx = —— {—XCOSkX
T Jo T k

Hence,

which results the following Fourier series for
_1)kj
(61) fg= 3 g
& K

It is not hard to see that if a function is odd (even), then dgsrfer coefficients are imaginary (real)
and the series can be reduced to one of sines (cosines).hthiklsnake sense to you s an odd
function, so we should need sine functions to represenhiteéd, one can show that Equatibnl (61)
can be reduced to

=2 Z sm (kx)

eIX +e —IX epx e—ix
by grouping+1,+2,--- terms and using the facts cos ——— and sik= ——

Let’'s get an idea of what this series looks like. We define #tpusnce of partial sums by

=2 Z sm (kx)

and plotf, for various values of in Figure [3). Asn gets larger, siftnx) becomes more and more
oscillatory. You will see a little undershoot and overshaiothe points of discontinuity of. This is
the famous Gibbs phenomenon.

As you can see, the computation of Fourier coefficients casob@ewhat tedious. Fortunately, there
exists an entire calculus for computing Fourier coeffigerthe idea is to build Fourier series from
a “library” of known Fourier series. In general, we can alwdwild the Fourier series of a function
that is expressed as a translation of another function.

PrROPOSITION2.1. (Translation Rule). Suppose thaixj has the Fourier series representation

fo=75 ciek
keZ
and suppose that(g) = f(x—a). If the Fourier series representation fofx is
g(x) = Y e
keZ

then ¢ = €ac,.
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@ ) (b)

2 4 6 -6 -4 -2 0 2 4 6 -15 -10 -5 o 5 10 15

e ©) 0

-6 -4

FIGURE 3. (a) The sawtooth function gn-1t, 11). (b) 1-term Fourier partial sum. (c)
5-term Fourier partial sum. (d) 20-term Fourier partial sge) 50-term Fourier partial
sum. (f) 100-term Fourier partial sum.

PROOF L o
_ = —ikx _ = . _ikx
dx = 27_[/ng(x)e dx 2n/nf(x ae "dx

Now we do au-substitution. Lett= x—a. Thedu= dxandx = u+a. Changing endpoints gives the
formula

1 e —ik(u+a)
d« = 27_[/naf(u)e du
1 ika/"a _iku
S i
2ﬂe o (ue " "du
1

—ika —iku
— -~ f
e / (u)e du

_ e—ikaCk
O
Although there are several such rules for obtaining Foseeies coefficients, we only state one more.

PROPOSITION2.2. (Modulation Rule). Suppose thatx) has the Fourier series representation

fx)=S gk

and suppose that(g) = €™ (x) for some e Z. If the Fourier series representation fofx) is

gx) = 5 ke
kez
then 4 = ¢c_m.

Finite-Length Fourier Series
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You might have decided that it is a little unnatural to comstia series for a function that is already
known. In many applications we typically do not know the ftioe that generates a Fourier series
— indeed, we usually have only the coefficientor samples of some function such as an image. In
those cases, what do we expect the Fourier coefficients! tast2l

EXAMPLE 2.2. Suppose we have a finite-length Fourier series
L .
Hx) =Y he*.
kZO

Letho = h, = 7 and f; = 1. All other values forhy are zero. Let us construct the Fourier series for
thesehy, and plot of graph ofH (x)|, for —-m< x < .

H(x) = i hy e
K=0
= %+%e‘x+%eizx
_ (%e—ix+%+%éx)
) iX —iX
= X (% 4 :_ZL . el%)
= & (%Jr%cosx) = %eix(1+COS>().

. 1) ; 1 . - ,
And the Fourier spectrumtl (X)| = ‘é €| |1+ cosx| = §(1+ cosx), since we know tha#* describes

a circle of radius 1 centered at the origin, so its modulus. iAo, —1 < cosx < 1 so that 0<
1+ cosx < 2. We can then drop the absolute value signs from this fadtbe graph ofiH (x)| for
—mm < x < xis shown in Figur€l4.

1
FIGURE 4. A graph of5(1+ COSX).

Many scientists and engineers use the plot of spectrum tgrdtése process they apply to signals and
images. In this settings represent$requency with x = 0 being the lowest frequency. We will see
that functions/H (x)| with large values at or near O will mean that the process coctsd from the
he’s will leave data that are homogeneous (non-oscillatorgimnilar values) largely unchanged. If
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values ofH (x) are near zero for values wiearr, then we will see that the process constructed from
thehy’s will take oscillatory data ad replace them with very smvallues.

Conversely, when values ¢l (x)| are large at or neam, the process constructed from thgs will
leave highly oscillatory data unchanged. If valuegtéfx)| area near O foxk near zero, then the
process constructed from thg’s will take homogeneous data and replace them with very Ismal
values.

This important example describes in a nutshell exactly hewse Fourier series throughout the dis-
cussions. The numbelg, hy,-- -, h_ are values that we use to process data that comprise sigmhls a
images. We have seen that the Fourier series can tell us lese grocesses will act on homogeneous
or highly oscillatory data.

3. The Fourier Transform of Functions of One Variable

3.1. The Continuous Case.TheFourier Transfornof a continuous functiorf(t) of a continuous
variablet, denotedZ { f (t)}, is defined by the equation

(62) FLE() = /_Z f(t)e 12t gt

whereu is also a continuous variable. Becauss integrated out, { f(t)} is a function of only
U . We denote this fact explicitly by writing the Fourier trémsn as.# { f(t)} = F(u); that is, the
Fourier transform of (t) may be written for convenience as

(63) F(u) = / Z f(t)e 2mmt iy,

Conversely, givelt (1), we can obtairf (t) back using thénverse Fourier transformf (t) =.% ~1{F (u)},
written as

(64) ()= [ Foe?™du

where we made use of the fact that variajlés integrated out in the inverse transform and wrote
simply f(t) instead of the more cumbersome notatfdgt) = .7 ~1{F(u)}. Equations[(63) and(64)
comprise the so-calleléburier transform pair

We need one more building block before proceeding. We inited the idea of convolution in Sec-
tion[§ . You learned in that section that convolution of twadtions involves flipping (rotating by
180) one function about its origin and sliding it past the oth&t.each displacement in the sliding
process, we perform a computation, which in the case of @d& was a sum of products. In the
present discussion, we are interested in the convolutibn@tontinuous functiond(t) andh(t), of
one continuous variablé, so we have to use integration instead of a summation. Theotdion of
these two functions, denoted as before by the opexatsrdefined as

00

(65) £(t) % h(t) :/ f(1)h(t — 1) dT

where the minus sign accounts for the flipping just mentiphésithe displacement needed to slide
one function past the other, amds a dummy variable that is integrated out. We assume for haiv t
the functions extend from o to 0. At the moment, we are interested in finding the Fourier fians

of Equation[(6F). We start with Equatidn {62):

F{)*h(t)) = /_0; {/w f(r)h(t—r)dr} g2t gy

—00

_ /Z F(1) [/o:oh(t—r)em”“tdt] dr.
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The term inside the brackets is the Fourier transform(of- 7). By thecircularity property, which
will be shown later in this Chapter, we havg{h(t — 1)} = e "?™MTH (1), whereH () is the Fourier
transform ofh(t). Using this fact in the preceding equation gives us

FLE(t)«ht)} = /0:0 (1) [H(u)e 2] dr

= Hw [ (e 2rdr

= H(u)F(u).
If we refer to the domain dof as thespatialdomain, then the domain @f is realized as th&equency
domain. The preceding equation tells us that the Fouriesteam of the convolution of two functions
in the spatial domain is equal to the product in the frequetwmpain of the Fourier transforms of the
two functions. Conversely, if we have the product of the tremsforms, we can obtain the convolution
in the spatial domain by computing the inverse Fourier fiams. In other words,f(t) «h(t) and
H(u)F(u) are a Fourier transform pair. The result is one-half of ¢bavolution theorenand is
written as

(66) f(t) xh(t) < H(W)F (W).

The double arrow is used to indicate that the expression@right is obtained by taking the Fourier
transform of the expression on the left, while the expressio the left is obtained by taking the
inverseFourier transform of the expression on the right. Followangimilar development would

result in the other half of the convolution theorem:

(67) fh(t) < H(u)«F(p),

which states that convolution in the frequency domain idagaus to multiplication in the spatial
domain, the two being related by the forward and inversestoams, respectively. As you will see
later in this chapter, the convolution theorem is the fotiotetor filtering in the frequency domain.

4. The Discrete Case

In practice, continuous functions have to be convertedargequence of discrete values before they
can be processed in a computer. This is accomplished by sapguid quantization. In the following
discussion, we examine sampling in more details.

With reference to Figurl 5, consider a continuous functfdh), that we wish to sample at uniform
intervalsAT of the independent variable One way to model sampling is to multipf(t) by a
sampling function equal to a train of impulsA3 units apart. Then the valudy, of an arbitrary
sample in the sequence is given B{kAT ), shown in Figurél5(d). A natural question to consider is
whether or not we caaniquelyrecoverf from fy, and if so, when?

Figurel6(a) is a sketch of the Fourier transfofiy), of a functionf (t), and FiguréB(b) shows the
transformF (1), of the sampled function. The quantityAAT is the sampling rate used to generate the
sampled function. So, in Figuré 6(b) the sampling rate wgh Bhough to provide sufficient separa-
tion between the periods and thus preserve the integrigf pf. In Figure6(c), the sampling rate was
just enough to presenke(u), but in Figurd 6(d), the sampling rate was below the minimagquired

to maintain distinct copies d¥ () and thus failed to preserve the original transform. Figty &

the result of arover-sampledignal, while Figurél6(c) and (d) are the resultafically-sampling
andunder-samplinghe signal, respectively.
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FIGURE 5. (@) A continuous function. (b) Train of impulses used tadeldhe sam-

pling process. (c) Sample function formed as the producapatd (b). (d) Sample
values obtained.

F(u)

A ANAANNA.

0 “2IAT -1/AT 0 1/AT
() (b)
Fiy) F

-2/AT -1/AT 0 1/AT 2/AT -2/AT -1/AT 0 /AT 2/AT

(©) (d)

FIGURE 6. (a) Fourier transform of a band-limited function. (b)-{dansforms of
the corresponding sampled function under the conditiormef-sampling, critically-
sampling, and under-sampling, respectively.
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F(u) ﬁ‘gm
_ll’lmax :umax
0 " -1 0 L 1
- lumax lumax 2AT 2AT AT

() (b)

FIGURE 7. (a) Transform of a band-limited function. (b) Transforesulting from
critically sampling the same function.

The Sampling Theorem

A function f(t) whose Fourier transform is zero for values of frequencigside a finite interval
(band) [—umax, Umax about the origin is called band-limitedfunction. Figurel/(a), which is a
magnified section of Figuid 6(a), is such a function. Sirhil&igure[7(b) is a more detailed view of
the transform of a critically sampled function shown in Figl@(c). A lower value of 1IAT would
cause the periods iﬁ(u) to merge; a higher value would provide a clean separatiowdsst the
periods.

We can recoveff (t) from its sampled version if we can isolate a copyFdfu) from the periodic
sequence of copies of this function containedfifu), the transform of the sampled functidrt).
SinceF(u) is a continuous, periodic function with period AT. Therefore, all we need is one
complete period to characterize the entire transform. ifhjdies that we can recovdi(t) from that
single period by using the inverse Fourier transform.

Extracting fromF (1) a single period that is equal 1) is possible if the separation between copies
is sufficient, see Figurg 6. In terms of Figlide 7(b), suffitiemparation is guaranteed if 2AT >

Hmax or

(68) % > 2lmax

This equation indicates that a continuous, band-limitectfion can be recovered completely from a
set of its samples if the samples are acquired at a rate e@rgedce the highest frequency content
of the function. This result is known as teampling theoremWe can say based on this result that
no information is lost if a continuous, band-limited furectiis represented by samples acquired at
a rate greater than twice the highest frequency contenteofuinction. Conversely, we can say that
the maximumfrequency that can be captured by sampling a signal at a y&€ Ik pumax = %
Sampling at the Nyquist rdtsometimes is sufficient for perfect function recovery, Iatre are cases
in which this leads to difficulties. Thus, the sampling treorspecifies that sampling must exceed
the Nyquist rate.

To see how the recovery &f(u) from F(u) is possible in principle, consider Figuire 8, which shows
the Fourier transform of a function sampled at a rate sidhtiher than the Nyquist rate. The function

A sampling rate equal to exactly twice the highest frequency
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e
_:umax lumax
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AT A
> u
0
F(u)=H(u) F(u)
> u
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FIGURE 8. Extracting one period of the transform of a band-limitexdtion using an
ideal lowpass filter.

in the middle of Figurél8 is defined by the equation

AT —Hmax < U < Umax
H —
(1) {O otherwise

When multiplied by the periodic sequence in the top of Fig@iréhis function isolates the period
centered on the origin. Then, as the bottom of Figuire 8 shawsbtainF (1) by multiplying F (1)
by H (p): N

F(1) =H(WF(p).
Once we havé& () we can recovef (t) by using the inverse Fourier transform:

(1) :/ZF(meiZ"“tdu.

The last three equations prove that, theoretically, it issgale to recover a band-limited function
from samples of the function obtained at a rate exceedinggtitie highest frequency content of the
function. As we discuss in the following section, the regment thatf (t) must be band-limited

implies in general thaf (t) must extend from-o to o, a condition that cannot be met in practice.
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As you will see shortly, having to limit the duration of a fulmn prevents perfect recovery of the
function, except in some special cases.

FunctionH (u) is called dowpasdilter because it passes frequencies at the low end of thadrery
range but it eliminates (filters out) all higher frequenciktss called anideal lowpass filter because
of its infinitely rapid transitions in amplitude (between@a\T at location—umax and the reverse
at Umax), a characteristic that cannot be achieved with physieaitednic components.

Aliasing

A logical question at this point is: what happens if a bamditled function is sampled at a rate that
is less than twice its highest frequency? This correspamtiset under-sampled case discussed in the
previous discussion. Top of Figure 9 is the same as Figung w(dch illustrates this condition. The
net effect of lowering the sampling rate below the Nyquise ria that the periods now overlap, and
it becomes impossible to isolate a single period of the foang regardless of the filter used. For
instance, using the ideal lowpass filter in the middle of Feg® would result in a transform that is
corrupted by frequencies from adjacent periods, as themadf Figurd® shows. The inverse trans-
form would then yield a corrupted function tf This effect, caused by under-sampling a function,
is known asfrequency aliasingr simply aliasing In words, aliasing is a process in which high
frequency components of a continuous function “masquérasléower frequencies in the sampled
function. This is consistent with the common use of the taliass, which means “a false identity”.
Unfortunately, except for some special cases, aliasintyigys present in sampled signals because,
even if the original sampled function is band-limited, ininfrequency components are introduced
the moment we limit the duration of the function, which we ayjw have to do in practice. In practice,
the effects of aliasing can be reduced by smoothing the iiymation to attenuate its higher frequen-
cies (e.g., by defocusing in the case of an image). This pgy@alledanti-aliasing has to be done
beforethe function is sampled because aliasing is a sampling tbeueannot be “undone after the
fact” using computational techniques.

The Discrete Fourier Transform (DFT) of One Variable

The material up to this point may be viewed as the foundatidhase basic principles, so now we are
ready to derive the DFT. The Fourier transform of a sampladdHimited function extending from
—oo t0 o is acontinuous, periodi¢unction that also extends frome to . In practice, we work
with a finite number of samples, and the objective of thisieads to derive the DFT corresponding
to such sample sets.

From the definition of the Fourier transform in Equation](6&)e can obtain thdiscrete Fourier
transform pair

M-1 _
(69) F(u)= Z)f(x)e'z"ux/“" u=0,1,2....M—1
X=
and
(70) f(x):iMilF(u)eiznux/M x=0,12...,M—-1
M n; ) ) ) )

where we used the functional notation instead of subsdaptsimplicity andM is the total number
of samples taken over one complete period. Cle&{y) = F, and f(x) = fx. It can be shown that
both the forward and inverse discrete transforms are iefineriodic, with periodM. That is,

F(u) = F (u+kM)
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ﬁfu)
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> 4

_lumax 0 IleaX

FIGURE 9. Top: Fourier transform of an under-sampled, band-lidhtenction. Mid-
dle: The same ideal lowpass filter used in Figure 8. Bottone pitoduct of top and
middle. The interference from adjacent periods resultéiasiag that prevents perfect
recovery ofF () and, therefore, of the original, band-limited continuowsdtion.

and
f(x) = f(x+kM)
wherek is an integer. This is called theeriodicity. The discrete equivalent of the convolution is

(71) £(x) xh(x) = lef(m)h(x— m)
m=0

forx=0,1,2,...,M — 1. Because in the preceding formulations the functions aregic, their
convolution also is periodic. Equation_{71) gives one ptiad the periodic convolution. For this
reason, the process inherent in this equation often isregfeo ascircular convolution and is a
direct result of the periodicity of the DFT and its inversehidlis in contrast with the convolution
you studied earlier, in which values of the displacemgntyere determined by the requirement of
sliding one function completely past the other, and werdiret to the rangé0, M — 1] as in circular
convolution.
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5. The Fourier Transform of Functions of Two Variables

The 2-D Continuous Fourier Transform Pair

Let f(t,z) be a continuous function of two continuous variablesgndz. The two-dimensional,
continuous Fourier transform pair is given by the expressio

(72) F(u,v):/ / f(t,z)e 2K+ VD) gt dz
and
(73) f(t,z):/ / F(u,v)e2mHva g dy

wheremuandv are the frequency variables. When referring to imagesdz are interpreted to be
continuousspatial variables. As in the 1-D case, the domain of the variapleend v defines the
continuous frequency domain

The 2-D Discrete Fourier Transform and its Inverse

The 2-Ddiscrete Fourier transform (DFTis given by

M—-1N-1

(74) F(uv) = f (x,y)e 12+ )
2. 2

wheref (x,y) is a digital image of siz& x N. This is computed through repeated applications of 1-D
version of the transform, i.eM 1-D DFT of lengthN andN 1-D DFT of lengthM.

Given the transfornf (u,v), we can obtainf (x,y) by using theinverse discrete Fourier transform
(IDFT)

1 M-1N-1 e
— F(u,v)e?m+n)
N 2, 2,

forx=0,1,2,....M—1andy=0,1,2,...,N—1. The rest of this section is based on properties of
the 2-D discrete Fourier transform pair and their use forgenfiltering in the frequency domain.

(75) f(xy) =

Properties
1. Relationships Between Spatial and Frequency Intervals

Suppose that a continuous functib(t, z) is sampled to form a digital imagéx,y), consisting of
M x N samples taken in the andz-directions, respectively. L&T andAZ denote the separation be-
tween samples. Then the separations between the corresgalistrete, frequency domain variables
are given by

1
MU= VAT
and
1
A=z

respectively. Note that the separations between samplbe iftequency domain are inversely pro-
portional both the spacing between spatial samples andutméer of samples.

2. Translation and Rotation
It can be shown by direct substitution into Equatidnd (74) @&B) that the Fourier transform pair



108 6. FOURIER ANALYSIS

satisfies the following translation properties

(76) f(x, y)eizn(UOX/M+VOY/N) & F(u—Uo,V— Vo)
and
(77) f(X—Xo0,Y— Yo) < F (u,V)e 120x0u/M-+yov/N).

That is, multiplyingf (x,y) by the exponential shown shifts the origin of the DFTtig, vp) and, con-
versely, multiplyingF (u,v) by the negative of that exponential shifts the originf@X,y) to (xo, Yo).
Notice that translation has no effect on the magnitude (spe of F(u,Vv).

Using the polar coordinates

X=c0sO y=rsinf u=wcosp V= wsing
results in the following transform pair:
(78) f<r79+60> <:>F(CU,CP—|—60)

which indicates that rotating(x,y) by an anglef, rotatesF (u,v) by the same angle. Conversely,
rotatingF (u, v) rotatesf (x,y) by the same angle.

3. Periodicity

As in the 1-D case, the 2-D Fourier transform and its inverseir&initely periodic in theu andv
directions; that is

F(u,v) =F(u+kiM,v) = F(u,v+kN) = F(u+kiM,v+kaN)

and

f(xy) = F(x+kiM,y) =F (X,y+kaN) = F (x+kiM,y+ kzN)
wherek; andk; are integers.
The periodicities of the transform and its inverse are ingoarissues in the implementation of DFT-
based algorithms. Consider the 1-D spectrum in Figure 18{a)transform data in the interval from
0 toM — 1 consists of two back-to-back half periods meeting at pilipi2. For display and filtering
purposes, it is more convenient to have in this interval apgleta period of the transform in which
the data are contiguous, as in Figlré 10(b). It follows frogué&tion [76) that

f (x)€2TX/M) o F (4 — ).

In other words, multiplyingf (x) by the exponential term shown shifts the data so that thenorig
F(0), is located atip. If we letup =M /2, the exponential term become& which is equal tq —1)*
because is an integer. In this case,

f(x)(-1)* < F(u—M/2).

That is, multiplyingf (x) by (—1)* shifts the data so th&t(0) is at thecenterof the interval0,M — 1],
which corresponds to Figurel10(b), as desired.

In 2-D the situation is more difficult to graph, but the priplel is the same, as Figure]10(c) shows.
Instead of two half periods, there are now four quarter pisrimeeting at the poiriM /2,N/2). The
dashed rectangles correspond to the infinite number of gendthe 2-D DFT. As in the 1-D case,
visualization is simplified if we shit the data so tHa0,0) is at (M/2,N/2). Letting (up,Vp) =
(M/2,N/2) in Equation[(76) results in the expression

f(x,y) (-1 < F(u—M/2,v—N/2).

Using this equation shifts the data so tR40,0) is at the center of th&zequency rectangldefined
by the intervalg0,M — 1] and[0,N — 1], as desired. Figufe1L0(d) shows the result.
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FIGURE 10. Centering the Fourier transform. (a) A 1-D DFT showingirdimite
number of periods. (b) Shifted DFT obtained by multiplyih@k) by (—1)* before
computingF (u). (c) A 2-D DFT showing an infinite number of periods. The solid
area is thel x N data arrayF (u,Vv), obtained with Equatiori (T4). This array consists
of four quarter periods. (d) A shifted DFT obtained by muitipg f (x,y) by (—1)**Y
before computingr (u,v). The data now contains one complete, centered period, as in

(b).
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4. Fourier Spectrum and Phase Angle

Because the 2-D DFT is complex in general, it can be expreagealar form:
(79) F(u,v) = F(u,v)[e?t

where the magnitude
F(uv)] = [R(u,v) +1%(u,v)] Y2
is called the~ourier (or frequency spectrumand

o(u,v) = arctan{él:\\?)]

is thephase angleFinally, thepower spectrunis defined as
P(u,v) = |F(u,v)|? = RP(u,v) +12(u,v).

Randl are the real and imaginary partsfofu,v) and all computations are carried out for the discrete
variablesu=0,1,2,.... M—1andv=0,1,2,...,N— 1. Therefore|F(u,v)|, @(u,v), andP(u,v) are
arrays of sizeM x N.
The Fourier transform of a real function is conjugate synmmo@thich implies that the spectrum has
evensymmetry about the origin:

F(uv)| = F(-u,-v)].
The phase angle exhibits the followingdsymmetry about the origin:

@(u,v) = —phi(—u, —v).
It follows from Equation[(74) that

M—1N-1

FE.O)=5 5 1x)

which indicates that the zero-frequency term is propodidta the average value d{x,y). That is,
1 M-1N-1

F(0,0) = MNW X;) yZ) f(xy)

= MNf(xy)
wheref denotes the average valuefofThen,
IF(0,0)[ = MN[f(x,y)|-

Because the proportionality constanlN usually is large|F (0,0)| typically is the largest component
of the spectrum by a factor that can be several orders of raimiarger than other terms. Because
frequency componentsandv are zero at the origirf; (0,0) sometimes is called théc component
of the transform. This terminology is from electrical erggning, where “dc” signifies direct current
(i.e., current of zero frequency).

ExampPLE 5.1. FigurdIll(a) shows a simple image of380 and Figuré_11(b) shows its spectrum
and displays it in image form. The origins of both the spatrad frequency domains are at the top left.
As expected, the area around the origin of the transformatosithe highest values (thus appears red
in the image). However, the four corners of the spectrumasargimilarly high values. The reason
is the periodicity property. The reason is the periodicitggerty discussed in the previous section.
To center the spectrum, we simply multiply the image in (a) b%)*"Y before computing the DFT.
Figure[11(c) shows the result, which clearly is much easieidualize (note the symmetry about the
center point).
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Because the dc term dominates the values of the spectrurdyti@nic range of other intensities in
the displayed image are compressed. To bring out thosdsjeta perform a log transformation,
1+log|F(u,v) ||3. Figure[11(d) shows the display of that. The increased tiemddf detail is evident.

HH Ei
(€)

FIGURE 11. (a) Image. (b) Spectrum showing red spots in four corrfejentered
spectrum. (d) Result showing increase detail after a logstaamation. The zero
crossings of the spectrum are closer in the vertical dwadtecause the rectangle in
(a) is longer in that direction. The coordinate conventisedihere places the origin
of the spatial and frequency domains at the top left.

It follows from Equations[(Z7) and(¥8) that the spectrumnisensitive to image translation, but it
rotates the same angle of a rotated image.

The components of the spectrum of the DFT determine the &umdpk of the sinusoids that combine to
form the resulting image. At any given frequency in the DFaopfimage, a large amplitude implies
a greater prominence of a sinusoid of that frequency in tregen Conversely, a small amplitude
implies that less of that sinusoid is present in the imageausTtvhilethe magnitude of the 2-D DFT
is an array whose components determine the intensitiesimtiage the corresponding phase is an
array of angles that carry much of the information about vehéiscernable objects are located in the
image.

2We commonly use log map to map a narrow range of low intensilyes into a wider range of output levels, see,
e.g., Figuré 1R
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FIGURE 12. Some basic intensity transformation functions. AlMasrwere scaled to
fit in the range shown.

5. The 2-D Convolution Theorem
Extending Equatiori (71) to two variables results in thediwihg expression for 2-ircular convo-
lution:

M—-1N-1

(80) f(x,y)*xh(x)y) = Zo Zo f(m,n)h(x—m,y—n)

forx=0,1,2,....M—1 andy=0,1,2,...,N— 1. The 2-D convolution theorem is given by the
expressions

(81) f(x,y)xh(x,y) < F(u,v)H(u,v)
and, conversely,
(82) f(x,y)h(x,y) < F(u,v)«H(u,v).

6. The Basics of Filtering in the Frequency Domain

In this section, we lay the the groundwork for all the filtgritechniques discussed in the remainder
of the chapter.

6.1. Additional Characteristics of the Frequency Domain.We begin by observing in Equa-
tion (74) thateachterm of F (u,v) containsall values off (x,y), modified by the values of the expo-
nential terms. Thus, with the exception of trivial casessitally is impossible to make direct associa-
tions between specific components of an image and its transtdowever, some general statements
can be made about the relationship between the frequencgaimnts of the Fourier transform and
spatial features of an image. For instance, because freguerirectly related to spatial rates of
change, it is not difficult intuitively to associate frequess in the Fourier transform with patterns of
intensity variations in an image. For example, the slowasting frequency componeni£v=_0)is
proportional to the average intensity of an image. As we nawvay from the origin of the transform,
the low frequencies correspond to the slowly varying intgreomponent of an image. As we move
further away from the origin, the higher frequencies begindrrespond to faster and faster intensity
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changes in the image. These are the edges of objects and@othponents of an image characterized
by abrupt changes in intensity.

Filtering techniques in the frequency domain are based datifniog the Fourier transform to achieve
a specific objective and then computing the inverse DFT tougetback to the image domain. It
follows from Equation[(7P) that the two components of thes$farm to which we have access are
the transform magnitude (spectrum) and the phase angleedkiedd from before that visual analysis
of the phase component generally is not very useful; thetspa¢ however, provides some useful
guidelines as to gross characteristics of the image fronchwttie spectrum was generated.

6.2. Frequency Domain Filtering Fundamentals.Filtering in the frequency domain consists
of modifying the Fourier transform of an image and then cotimguthe inverse transform to obtain
the processed result. Thus, given a digital imade,y), of sizeM x N, then basic filtering equation
in which we are interested has the form

(83) g(xy) = F [H(uVF(u,v)]

where.Z ~listhe IDFT,F(u,v) is the DFT of the input imagé,(x,y), H(u,V) is afilter function(also
called simply thdilter, or thefilter transfer functio, andg(x,y) is the filtered (output) image. Func-
tionsF,H, andg are arrays of siz&1 x N, the same as the input image. The prodd¢t, v)F (u, V)

is formed using array multiplication. The filter function difies the transform of the input image to
yield a processed outpu(x,y). Specification o (u,v) is simplified considerably by using func-
tions that are symmetric about their center, which requivat= (u,v) be centered also. As explained
in Sectiorb, this is accomplished by multiplying the inpagige by(—1)*"Y prior to computing its
transform.

We are now in the position to consider the filtering procesoime details. One of the simplest filters
we can construct is a filtddl (u, v) that is O at the center of the transform and 1 elsewhere. Ttes fi
would reject the dc term and pass all other termB @f, v) when we form the produdi (u,v)F (u,v).
We know that the dc term is responsible for the average iiiyeofsan image, so setting it to zero will
reduce the average intensity of the output image to zero.

As noted eatrlier, low frequencies in the transform are eelabd slowly varying intensity components
in an image, such as the walls of a room or a cloudless sky irudoor scene. On the other hand,
high frequencies are caused by sharp transitions in iriterssich as edges and noise. Therefore,
we would expect that a filtdf (u, v) that attenuates high frequencies while passing low frecjaen
(appropriately called dowpass filtey would blur an image while a filter with the opposite property
(called ahighpass filtey would enhance sharp detail, but cause a reduction in inirghe image.

6.3. Summary of Steps for Filtering in the Frequency Domain.

(1) Given an input imagé (x,y) of sizeM x N, obtain the padding parameté&?saandQ. P and
Q are taken so that

P>M+m—1,Q>N+n—1,

wherem andn are sizes for the filtelH. Typically, m=M andn = N. Thus, selecP = 2M
andQ = 2N. (Please refer t@3] for the discussion on wraparound error and zero padding.
Rule of thumb: zero-pad images and then create filters inrdgri€ncy domain to be of the
same size as the padded images. Images and filters must @ntfeessze when using the
DFT.)

(2) Form a padded imagi(x,y), of sizeP x Q by appending the necessary number of zeros to
f(x,y).

(3) Multiply fp(x,y) by (—1)*"Y to center its transform.

(4) Compute the DFTF (u,Vv), of the image from step (3).
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(5) Generate a real, symmetric filter functidh(u,Vv), of sizeP x Q with center at coordinates
(P/2, Q/Z)E. Form the produc6(u,v) = H(u,Vv)F(u,v) using array multiplication; that is,

G(i, ) =H(i, HF(, ]).
(6) Obtain the processed image:

gp(x.y) = {real.Z G(u,v)]] } (~1)*"

where the real part is selected in order to ignore parastiggdex components resulting from
computational inaccuracies, and the subsaquiptdicates that we are dealing with padded
arrays.

(7) Obtain the final processed resugtx,y), by extracting theM x N region from the top, left
quadrant oBp(Xx,y).

6.4. Correspondence Between Filtering in the Spatial and Fequency Domains.The link
between filtering in the spatial and frequency domains incthrevolution theorem. In practice, we
prefer to implement convolution with small filter masks be&s@ of computational coasts and speed.
However, DFT and IDFT give us a more intuitive idea. One watat@® advantage of the properties
of both domains is to specify a filter in the frequency domaompute its IDFT, and then use the
resulting, full-sized spatial filter asguidefor constructing smaller spatial filter masks.

In the following discussion, we use Gaussian filters to iliaie how frequency domain filters can be
used as guides for specifying the coefficients of some of thalsnasks. Filters based on Gauss-
ian functions are of particular interest because both thedal and inverse Fourier transforms of a
Gaussian function area real Gaussian functions.

We limit the discussion to 1-D to illustrate the underlyingngiples. Two-dimensional Gaussian
filters are discussed in the next section.

Let H(u) denote the 1-D frequency domain Gaussian filter:

(84) H(u) = Ag /20

whereg is the standard deviation of the Gaussian curve. The carnespg filter in the spatial domain
is obtained by taking the inverse Fourier transforniidt):

(85) h(x) = vV2noAe 2o,

These equations are important for two reasons: (1) TheyRoeger transform pair, both components
of which are Gaussian amdal. This facilitates analysis because we do not have to be coedavith
complex numbers. In addition, Gaussian curves are inegnd easy to manipulate. (2) The functions
behave reciprocally. Whet (u) has a broad profile (large value @§, h(x) has a narrow profile, and
vice versa. In fact, as approaches infinity (u) tends toward a constant function angk) tends
toward an impulse, which implies no filtering in the frequgaad spatial domains, respectively.
Figure[13(a) and (b) show plots of a Gaussian lowpass filtéheénfrequency domain and the cor-
responding lowpass filter in the spatial domain. Supposewilawvant to use the shape bfx) in
Figure[13(b) as guidefor specifying the coefficients of a small spatial mask.Thg &imilarity be-
tween the two filters is that all their values are positiveu3,hwe conclude that we can implement
lowpass filtering in the spatial domain by using a mask witlpasitive coefficients. For reference,
Figure[13(b) shows two of the masks discussed in Settion & e reciprocal relationship between
the width of the filters, as discussed in the previous paggrdhe narrower the frequency domain
filter, the more it will attenuate the low frequencies, réigsgl in increased blurring. In the spatial
domain, this means that a larger mask must be used to indveas@g.

3If H (u,v) is to be generated from a given spatial filtefx,y), then we formhp(x,y) by padding the spatial filter to
sizeP x Q, multiply the expanded array kiy-1)**Y, and compute the DFT of the result to obtain a centétéa v).
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FIGURE 13. (@) A 1-D Gaussian lowpass filter in the frequency domém.Spatial
lowpass filter corresponding to (a). (c) Gaussian highpéss in the frequency do-
main. (d) Spatial highpass filter corresponding to (c). Tinels2-D masks shown are
spatial filters discussed in Sectigh 5.

X

More complex filters can be constructed using the basic Gaus$snction of Equation[(84). For
example, we can construct a highpass filter agifferenceof Gaussians:

H(u) = Ae/20f _ Bg*/20
with A > B ando; > 0,. The corresponding filter in the spatial domain is
h(x) = v2nowAe 2T _ \/2n10,Be 25X

Figure[13(c) and (d) show plots of these two equations. We again the reciprocity in width, but
the most important feature here is tiék) has a positive center term with negative terms on either
side. The small masks shown in Figlre 13(d) capture thisgutep

6.5. Image Smoothing Using Frequency Domain FiltersThe remainder of this chapter deals
with various filtering techniques in the frequency domaine #égin with lowpass filters. Edges
and other sharp intensity transitions (such as noise) image contribute significantly to the high-
frequency content of its Fourier transform. Hence, smatiiblurring) is achieved in the frequency
domain by high-frequency attenuation; that is |wpasdiltering. In this section, we consider three
types of lowpass filters: ideal, Butterworth, and Gaussi@hese three categories cover the range
from very sharp (ideal) to very smooth (Gaussian) filterifitpe Butterworth filter has a parameter
called thefilter order. For high order values, the Butterworth approaches thd fdea. For lower
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Ideal Butterworth Gaussian
1 ifD(u,v) <Dg 1 _p2 2
H(u,v) = ’ H(u.v) = H(u.v) = e P*(uv)/2D§
(uv) 0 ifD(u,v) > Dg (uv) 1+ [D(u,V)/Dg]2" (V)

TABLE 1. Lowpass filtersDyg is the cutoff frequency andis the order of the Butter-
worth filter.

order values, it behaves more like a Gaussian filter. ThesBtitterworth filter may be viewed as
providing a transition between two “extremes”.

6.5.1. Ideal Lowpass Filters A 2-D lowpass filter that passes without attenuation all diestries
within a circle of radiug from the origin and “cuts off” all frequencies outside thiscte is called
anideal lowpass filte{ILPF); it is specified by the function

H(uv) = 1 ifD(u,v) <Dg
" )10 ifD(u,v) > Dg

whereDyg is a positive constant and(u, V) is the distance between a poift v) in the frequency
domain and the center of the frequency rectangle; that is

D(u,v) = [(U—P/2)*+ (v—Q/2)’]
where, as beford? andQ are the padded sizes. The ideal lowpass filter is radiallynsgtnic about
the origin, which means that the filter is completely defingéadial cross section.

6.5.2. Butterworth Lowpass FiltersThe transfer function of a Butterworth lowpass filter (BLPF)
of ordern, and with cutoff frequency at a distanDg from the origin, is defined as

1
1+[D(u,v)/Do]®"
whereD(u,v) is defined similarly as before. Unlike the ILPF, the BLPF &fen function does not
have a sharp discontinuity that gives a clear cutoff betvpessed and filtered frequencies. For filters
with smooth transfer functions, defining a cutoff frequetaus at points for whicli (u,v) is down
to a certain fraction of its maximum value is customary.
6.5.3. Gaussian Lowpass FiltersgGaussian lowpass filters (BLPFs) of two dimension is given by

1/2

H(u,v) =

H(u,v) = —D2(u,v)/202.

Here we do not use a multiplying constant as in Sedfion 5 ierotd be consistent with the filters
discussed in the present section, whose highest value is hefdore,g is a measure of spread about
the center. By lettingr = Dg, we can express the filter using the notation of the otherdiite this
section:

H(u,v) = esz(u,v)/ZD%
whereDy is the cutoff frequency. WheD(u,v) = Do, the GLPF is down to 0.607 of its maximum
value. All three filters are summarized in Table 1.

6.6. Image Sharpening Using Frequency Domain Filtersin the previous section, we showed
that an image can be smoothed by attenuating the high-freggw®mponents of its Fourier transform.
Because edges and other abrupt changes in intensitiesa@ated with high-frequency components,
image sharpening can be achieved in the frequency domaiighpdss filtering, which attenuates the
low-frequency components without disturbing high-fregeyeinformation in the Fourier transform.
We consider only zero-phase-shift filters that are radigylsnmetric. A highpass filter is obtained
from a given lowpass filter using the equation

(86) HHP(U,V) =1- HLP(U,V)
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Ideal Butterworth Gaussian
0 ifD(u,v) <Dg 1

H(u,v) =
1 ifD(u,v) > Dg (uv) 1+ [Do/D(u,v)]2n
TABLE 2. Highpass filtersDg is the cutoff frequency andis the order of the Butter-
worth filter.

H(u,v) = H(u,v) = 1— e D(u)/205

whereH, p is the transfer function of the lowpass filter. That is, whiee kbwpass filter attenuates
frequencies, the highpass filter passes them, and vice. @tsded by this principle, we obtain three
highpass filters given in Table 2. A variety of applicatiossng these and other filters cab be found

in [23].
7. Implementation

We have focused attention thus far on the theoretical caa@m on examples of filtering in the
frequency domain. Ont thing that should be clear by now is¢benputational requirements in this
area of image processing are not trivial. Thus, it is impdrta develop a basic understanding of
methods by which Fourier transform computations can be Iffisgpand speeded up. This section
deals with these issues.

7.1. Separability of the 2-D DFT. The 2-D DFT is separable into 1-D transform. We can write
Equation[(74) as

M-1 N-1
87 F(uv) = g 1M T £y y)e12WY/N
(87) (u,v) X; y;) (XY)
" i2rux/M

88 = F(x,v)e"
(88) X; (%,V)
where

N—1 _
(89) F(x,v) = Z) f(x,v)e 2N,

=

For each value ok and forv=0,1,2,...,N — 1, we see thaf (x,v) is simply the 1-D DFT of a row
of f(x,y). By varyingx from 0 toM — 1 in Equation[(8B), we compute a set of 1-D DFTs for all rows
of f(x,y). The computations in Equation (87) similarly are 1-D transfs of the columns df (X, V).
Thus, we conclude that the 2-D DFT 6fx,y) can be obtained by computing the 1-D transform of
each row off(x,y) and then computing the 1-D transform along each column ofékalt. This

is an important simplification because we have to deal onti whe variable at a time. A similar
development applies to computing the 2-D IDFT using the IDBT. However, as we show in the
following section, we can compute the IDFT using an algonitfiesigned to compute the DFT.

7.2. Computing the IDFT Using a DFT Algorithm. Taking the complex conjugate of both
sizes of Equatiori (75) and multiplying the resultsNdiX yields

M—-1N-1 _
(90) MN f*(x,y) = F*(U,V)e—|2n(ux/M+vy/N)_
2 &

But, we recognize the form of the right side of this resultlas DFT ofF*(u,v). Therefore, Equa-
tion (90) indicates that if we substituge (u, v) into an algorithm designed to compute the 2-D forward
Fourier transform, the result will dN f*. Taking the complex conjugate and multiplying this result
by MN yields f (x,y), which is the inverse of (u, V).
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Computing the 2-D inverse from a 2-D forward DFT algorithrattls based on successive passes of
1-D transforms (as in the previous section) is a frequentcgoar confusion involving the complex
conjugates and multiplication by a constant, neither ofolwlis done in the 1-D algorithms. The key
concept to keep in mind is that we simply ingtit(u,v) into whatever forward algorithm we have.
The result will beMN f*(x,y). All we have to do with this result to obtaif(x, y) is to take its complex
conjugate and multiply it by the constaiN. Of course, wherf (X,y) is real, as typically is the case,

f*(xy) = f(xy).

7.3. The Fast Fourier Transform (FFT). Work in the frequency domain would not be practical
if we had to implement Equations (74) andl(75) directly. Brfdrce implementation of these equa-
tions requires on the order 6MN)? summations and additions. For images of moderate size (say,
1024x 1024 pixels), this means on the order of a trillion multiptions and additions for just one
DFT, excluding the exponentials, which could be computetband stored in a look-up table. This
would be a challenge even for super computers. Without theogiery of thefast Fourier transform
(FFT), which reduces computations to the ordetil log, MN multiplications and additions, it is
safe to say that the material presented in this chapter wmeikf little practical value. The compu-
tational reductions afforded by the FFT are impressiveaddé&or example, computing the 2-D FFT
of a 1024x 1024 image would require on the order of 20 million multipion and additions, which
is a significant reduction from the one trillion computasanentioned above.

Although the FFT is a topic covered extensively in the litera on signal processing, this subject
matter is of such significance in our work that this chaptenbemplete if we did not provide at least

an introduction explaining why the FFT works as it does. Tige@thm we selected to accomplish

this objective is the so-callesliccessively-doublinghethod, which was the original algorithm that
led to the birth of an entire industry]].

This algorithm assumes that the number of samligss an integer power of 2, i.e\] = 2" for some

n. But this is not a general requirement of other approachagp&evl = 2K, then

F (u) _ MZ; f (X)e—i2nux/M

2K-1

_ f (X) e—iZHUX/ZK
2
K

1 _ K-1 _
= Z) f(2x)e 12m29/2K Z) f(2x+ 1) 12m@+1)/2K - (gplitting into even and odd paits
X= X=

K-1 : K-1 . _
= f(zx)e—IZTIUX/K + f(2x+ l>e—|2nux/K . @i2mu/2K
X;) x;)

= Fe(u)+e M2 Fyu).

With simple calculations, we can obtak{u+ K) = Fe(u) — Fo(u) - € ?™/2K These calculations
reveal some interesting properties of these expressiongvi4foint transform can be computed by
dividing the original expression into two parts. Computihg first half ofF (u) requires evaluation of
the two(M /2)-point transforms ik andF,. The other half then following directly from the equation

F(u+K) = Fe(u) — Fo(u) - €22 without additional transform evaluations.



CHAPTER 7

Wavelet and Multiresolution Analysis

1. Introduction

Although the Fourier Transform has been the mainstay offcam-based image processing since the
late 1950s, a more recent transformation, calleditireelet transformis now making it even easier to
compress, transmit, and analyze many images. Unlike thadfdtansform, whose basis functions
are sinusoids, wavelet transform are based on small wae#iedevavelets of varying frequency
andlimited duration This allows them to provide the equivalent of a musical edor an image,
revealing not only what notes (or frequencies) to play ks &hen to play them. Fourier transforms,
on the other hand, provide only the notes or frequency inébion; temporal information is lost in
the transform process.

In 1987, wavelets were first shown to be the foundation of agshwnew approach to signal process-
ing and analysis callethultiresolutiontheory B9]. Multiresolution theory incorporates and unifies
techniques from a variety of disciplines, including suldbanding from signal process, quadrature
minor filtering from digital speech recognition, and pyrdaliimage processing. As its name im-
plies, multiresolution theory is concerned with the repregation and analysis of signals (or images)
at more than one resolution. The appeal of such an approautvisus — features that might go
undetected at one resolution may be easy to detect at and@hlikough the imaging community’s
interest in multiresolution analysis was limited until thée 1980s, it is now difficult to keep up with
the number of papers, theses, and books devoted to the subjec

In this chapter, we examine wavelet-based transformatrons a multiresolution point of view. Al-
though such transforms can be presented in other ways ppisach simplifies both their mathemat-
ical and physical interpretations. We begin with an ovemwa# imaging techniques that influenced
the formulation of multiresolution theory. Our objectigto introduce the theory’s fundamental con-
cepts within the context of image processing the simultasklrovide a brief historical perspective
of the method and its application. The bulk of this chaptdocsised on the development and use of
the discrete wavelet transform.

A powerful, yet conceptually simple structure for represenimages at more than one resolution is
theimage pyramid9]. Originally devised for machine vision and image compi@sspplications,
an image pyramid is a collection of decreasing resoluticeges arranged in the shape of a pyramid.
As can be see in Figufé 1(a), the the base of the pyramid csnaiigh-resolution representation of
the image being processed; the apex contains a low-resolagproximation. As you move up the
pyramid, both size and resolution decrease. Base levelisig®M x N, apex level is of size & 1.
The number of maximum levels that can be computed dependseoimiage resolutiony! andN.
Without loss of generality, el = min(M, N), then the maximum number of levels one can take is
J =log,N. The image resolution at a general leyés M /2) x N/2), where 0< j < J. Figure[d(b)
gives an idea how image size changes as we move up the imagmidyi\We are now ready for the
formal discussion of the Multiresolution analysis.

119
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FIGURE 1. (a) Animage pyramid. (b) An illustration of how image regmn changes
as one moves up the pyramid.

2. The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined by

(91) X(b,a) \/%/o;x(t)w (%’) dt,

wherea,b € R (typically a represents thecaleparameter and is theshift parameter) and’ is the
complex conjugate of the possibly complex functipn One interpretation of the transforKib, a)

is that it provides a measure of similarity between the digfta and the continuously translated and
dilatedmother wavelet)(t). The inverse wavelet transform is then provided by

©2) 0= [ xeaw(0) T

where

comon |w|<:;|>|2dw

Here.Z (Y (t)) = Y(w), i.e., the Fourier integral transform gf(t). Together, Equations(P1) aid{92)
form the CWT pair.

2.1. Discretization of the CWT. The number of instances for which the CWT of a signal may
be computed analytically is very small. In general, the eabn of the CWTX (b, a) is actually done
numerically at a discrete set of points. So, consider therelization of theb, a)-plane. We consider
the restriction oX(b,a) to a collection of fixed values;:

aj=al where a>1 and jcZ.



2. THE CONTINUOUS WAVELET TRANSFORM 121
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FIGURE 2. The dyadic sampling grid wittr = 2, B = 1. The horizontal axis repre-
sents the shifb and the vertical axis represents scale

Observe that the width of the functiap((t — b)/a’) is dependent on the magnitudeaf. In fact is
it a’ times wider, in terms of its suppHrlthan the mother wavelet, i.e.,

t—b -
suppy <W) = a’suppp(t).

This fact must be taken into account when discretizing thif§ gariableb. The discretized shift size
should be proportional to the width of the dilated waveldtisTimay be accomplished by taking
bl =kBal, B> O(typically between and 10).

Putting these all together, we write the wavelet on the disoed grid as

1 t—b
Jab = ﬁ'-l’ (T)
~1/2j t— kBaJ
oy (L8
= a Py(at—kB)
= (V)
and the discretized wavelet coefficient from Equation (9dyla be

[o0]

X (by,a;) = 21/2/ X PZ Tt —Kdt.
ExAMPLE 2.1. Leta =2 andB = 1. This coarse sampling of tlib, a)-plane producesdyadicgrid,

that is used a lot in practice. See Figlre 2 for an illustratio

In general, calculations of these wavelet coefficients caexpensive, one needs to be smart about
choosing appropriate and values.

IThe support of a functiorfi(x), denoted supg (x), is the closure of the subset of its domain (i.e., that subkét
and its boundary) for whicli(x) # 0. A function is said to have compact support if its suppodased and bounded.
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3. Multiresolution Analysis (MRA)

In MRA, ascaling functionfather wavelet) is used to create a series of approximatda function
or image, each differing by a factor of 2 in resolution from earest neighboring approximations.
Additional functions, calledvavelets(dilated and shifted versions of mother wavelgt are then
used to encode the difference in information between adfeggproximations.

3.1. Series ExpansionsA signal or functionf(x) can often be better analyzed as a linear com-
bination of expansion functions

(93) f(x) = Zakfpx(x),

wherek is an integer index of a finite or infinite sum, the are real-value@xpansion coefficients
and thegx(x) are real-value@éxpansion functiondf the expansion is unique — that is, there is only
one set oby for any givenf (x) — the g (x) are calledbasisfunctions, and the expansion gek(x) },

is called abasisfor the class of functions that can be so expressed. The ssiple functions form a
function spacehat is referred to as th@osed sparof the expansion set, denoted

V = Span{@(x)}-

To say thatf (x) € V means thaf (x) is in the closed span dfg(x)} and can be written in the form
of Equation[(9B).

For any function spac¥ and corresponding expansion $&k(x)}, there is a set oflual functions
denoted{ @ (x)} that can be used to compute the coefficients of Equatiori{93) for anf(x) € V.
These coefficients are computed by takingititegral inner produc@of the dualg@(x) and function
f(x). Thatis

(94) = (X, 109) = [ @XIT(x dx

Depending on the orthogonality of the expansion set, thispzdation assumes one of three possible
forms.

Case 1 If the expansion functions form an orthonormal basisMpmeaning that

0 j#£k

(@, G(0) = B = {1 T

the basis and its dual are equivalent, ig®(x) = @(x). So,
(95) k= (@&(x), f(x)).
Case 2 If the expansion functions are not orthonormal, but areréimogonal basis fov, then
(@ (%), %(x)) =0 j#k
and the basis functions and their duals are cdtiedthogonal The ay are computed using
Equation[(94), and their biorthogonal basis and its duasaod that
0 j £k
1 j=Kk

2The inner product of two real or complex-valued functigw) andg(x) is (f(x),g(x)) = / f(x)g(x) dx, wheref (x)
is the complex conjugate df(x).
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Case 3 If the expansion set is not a basis ¥6rbut supports the expansion defined in Equafioh (93),
it is a spanning set in which that is more than one setdbr any f (x) € V. The expansion
funct}ijé)ns and their duals are said to tweercompleter redundant. They form fxramein
whic

AT < ZI(%(X), F0)1* < BIIF ()]

for someA > 0, B < e, and allf (x) € V. Dividing this equation by the norm squaredfdk),
we see thaf andB “frame” the normalized inner products of the expansion taehts and
the function. Equations similar to Equatidn94) and (95) ba used to find the expansion
coefficients for frames. A = B, the expansion set is calledight frameand it can be shown

that [12]
00 = 3 3 (@00, 1) 400

3.2. Scaling Functions.Consider the set of expansion functions composed of integeslations
and binary scalings of the real, square-integrable funahi); that is the se{qqi(x)}, where

(96) @ (x)=2712¢(27Ix—k)

for all j,k € Z andp(x) € L?(R). Here,k determines the position ca;q(j(x) along thex-axis, andj
determines the width ornj(x) — that is, how broad or narrow it is along tkeaxis. The term 21/2
controls the amplitude of the function. Because the shapé @f (x) changes withj, () is called

ascaling function By choosingp(x) properly,{¢, (x)} can be made tb?(R), which is the set of all
measurable, square-integrable functions. Further define

V; = span{g. (x)}

to be the subspace spanned by the seij of) ranging all values ok. As will be seen in the following
example, decreasingdecreases the size ¥f, allowing functions with smaller variations or finer
details to be included in the subspace. This is a consequétice fact that, ag decreases, thgi (x)

that are used to represent the subspace functions becormeeaand separated by smaller changes
in X.

ExamMPLE 3.1. Consider the unit-height, unit-width scaling funat{@g]

1 0<x<«1
97 = -
(97) o) {O otherwise

Figure[3 show six of the many expansion functions that candmeigited by substituting this pulse-
shaped scaling function into Equatidn(96). Notice thauFef3(a) and (b) are members\¢gf and

do not belong td/; since members of; (e.g., FiguréB(c) and (d)) are too coarse to represent them.
On the other hand, Figuté 3(e) and (f), which are elementé in could be used to represent the
functions in Figuré13(a) and (b) since they are of higherlcesm.

The simple scaling function in the preceding example obbgsféur fundamental requirements of
multiresolution analysis4]:

3The norm off (x), denoted| f(x)||, is defined as the square root of the absolute value of the pmoeduct of f (x)
with itself.
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@ @ (x) = p(x) (b) @X(x) = p(x—1)
1 1 i
0 Loceees 0 A N
(IJ 1 2 3 0 1 2 3
(©) & (x) = Z0(3%) (d) ¢l (x) = J50(3x—1)
1 i 1 i
0 T T T Tt 0 E “““““““
(IJ 1 2 3 0 1 2 3
(d) @ H(x) = V2¢(2x) () @ H(x) = vV2p(2x— 1)
V2 | V2 i
1 1 i
0 T 0 E -
(IJ Y5 1 2 3 0 s 1 2 3

FIGURE 3. Some Haar scaling functions.

MRA Requirement 1: The scaling function is orthogonal tanitsger translates

This is easy to see in the case of Haar function, because weihéas a value of 1, its
integer translates are 0, so that the product of the two i$@8.Haar scaling function is said
to havecompact supportwhich means that it is O everywhere outside a finite intecafied
thesupport In fact, the width of the support is 1; it is O outside the hgden interval0, 1).

It should be noted that the requirement for orthogonal ietteéganslates becomes harder to
satisfy as the width of support of the scaling function beestarger than 1.



3. MULTIRESOLUTION ANALYSIS (MRA) 125

nevcv,

/

FIGURE 4. The nested function spaces spanned by a scaling function.

MRA Requirement 2: The subspaces spanned by the scalingfuatlow scales are nested
within those spanned at higher scales.

As can be seen in Figufé 4, subspaces containing high-tesofunctions must also
contain all lower resolution functions. That is

Vo C---CVoCcVICVWCV.1CV.2C--CV o

Moreover, the subspaces satisfy the intuitive conditiat thf(x) € V;, then f(2x) €
Vj_1.
MRA Requirement 3: The only function that is common to jai\f (x) = 0.

If we consider the coarsest possible expansion functioas {i= «), the only repre-
sentable function is the function of no information. That is

Ve = {0}.
MRA Requirement 4: Any function can be represented withraryiprecision

Though it may not be possible to expand a partictifag) at an arbitrarily coarse resolu-
tion, all measurable, square-integrable functions carepeesented by the scaling functions
in the limitasj — —oo. That is,

Vo = {L2(R)}.
Under these assumptions, the coarser scale can be regeebgrihe finer scale as a weighted sum:
@iﬂ => hnga) (X).
n

But _ _ _
@) =27 1292 x—n),
thus _ _ _
@) = S hn-2712p(2 Ix—n).
n
Whenj+1=0=k(j = —1), we get the generic non-subscripted expression

(98) @(x) = Y haV2p(2x—n) = V2 hnp(2x—n).

The h, coefficients in this recursive equation are cakedling coefficientsThis equation is funda-
mental to multiresolution analysis and is called thBnement equatigrthe MRA equationor the
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FIGURE 5. The relationship between scaling and wavelet functi@tssp.

dilation equation It says that the expansion functions of any subspace camilidrom double-
resolution copies of themselves — that is, from expansiactions of the next higher resolution
space. Tho choice of a reference subspace is arbitrary.

ExXAMPLE 3.2. The scaling coefficients for the Haar function lage= h; = 1/\f2, thus
1 1
X) = V2 —=(2x) +
@(x) (v§¢ Niad
3.3. Wavelet Functions. Given a scaling function that meets the MRA requirementh@firevi-

ous section, we can definexavelet functiony(x) that, together with its integer translates and binary
scalings, spans the difference between any two adjaceimgsabspaced/; andV;_1. The situation

is illustrated graphically in Figuig 5. We define the &g (x)} of wavelets and its subspace closure
as

(99) Wl (x) = 271227 Ix— k)
and

(2x) (2x— 1)) =@(2X) + @(2x—1).

W; = spap{y (%)}
The scaling and wavelet function subspaces in Figure 5 &@tedeby
(100) Vi-1=VjeW,

where & denotes the union of spaces. The orthogonal complemewf of V;_; is W;, and all
members o¥j are orthogonal to the membersWwf. Thus,

(@), (x) =0
for all appropriatg,k,| € Z.
Since wavelet spaces reside within the spaces spanned bgxtieigher resolution scaling functions,
any wavelet function — like its scaling function counteipar can be expressed as a weighted sum
of shifted, double-resolution scaling functions. Thais,can write

(101) W)= V2 gnp(2x— 1)

where thay, are called thevavelet coefficientdJsing the condition that wavelets span the orthogonal
complement spaces and that integer wavelet translatesrtti@gonal, it can be shown that, is
related tchy by

on = (—1)"h1n.
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EXAMPLE 3.3. Inthe previous examplieg =h; = % Usinggn = (—1)h;_n, we getgo = (—1)0h1f0 =
% andg; = (—-1)thy_ = —%. Substituting these values into Equatibn (101), we get

(X)) = @(2x) — @(2x—-1),
which is plotted in Figur€l6(a). Thus, the Haar wavelet fiorcts

1 0<x<1/2
(102) Y(x)=1< -1 1/2<x<1
0 otherwise

Using Equation[{99), we can now generate the universe oédaaid translated Haar wavelets. Two
such Waveletswg(x) andyy, 1(x) are plotted in FigurEl6(b) and (c), respectively. Note thavelet
Yo 1(x) for spacaN._ is narrower thanp2(x) for We; it can be used to represent finer detail.
Figure[6(d) shows a function of subspaée; that is not in subspacé. Although this function
cannot be represented accuratelygnEquation[(10D) indicates that it can be expanded ugjrand
Wp expansion functions. The resulting expansion is

F3) = fa(x) + fa(x)

where
100 = Y2800 — 289
and
a0 = —22 4000~ 2248,

Here, fa(x) is an approximation off (x) usingVp scaling functions, whilefy(x) is the difference
f(x) — fa(x) as a sum ofA\p wavelets. The two expansions, which are shown in Figlire &idel)
(), divide f(x) in a manner similar to a lowpass and highpass filter. The leguencies off (x)
are captured irfy(X) — it assumes the average valuefdk) in each integer interval — while the
high-frequency details are encodedfitx).

4. Wavelet Transforms in One Dimension

4.1. The Wavelet Series ExpansionsWe begin by defining thevavelet series expansiarf
function f(x) € L2(R) relative to wavelety(x) and scaling functiomp(x). Recall thatj = V.1 &
Wi, 1, which can be factored further

Vi = Vi1 ®Wji
= Vj20Wj20Wji1
= Vj13OWj13BWj120W 11

= VoW, @ --- DWj41.
Thus,
fx) = fi(x)+fl(x)
— Z@@@+2d@u>

J
— C‘] J+ d'ur (x).
Z X r:]ZHZ L4 (X)
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@) Y§(x) = Y(x) (b) Y2(x) = Y(x—2)
(©) Yo *(x) = v2y(29) (d) F() € V-1 = VoW
5 | |

1
5
-

(d) fa(x) € Vo (f) fa(x) € Wo

[

FIGURE 6. Haar wavelet functions Mp andW._;.

Thecy's are normally calledpproximationand/orscaling coefficientshedy’s are referred to as the
detailand/orwavelet coefficients

If the expansion functions form an orthonormal basis orttigame, which is often the case, the
expansion coefficients are calculated as

(103) o= (f(x),¢)) = /_Z f(0@ () dx= /_0; (02712 (27Ix— k) dx

and

(104)  dl = (F(0, @) = /0; F QW) () dx = /0; F(0)27 /2 (27Tx— k) dx
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ExAMPLE 4.1. Consider the function
ES 0<x<1
y= 0 otherwise

shown in Figurél7(a). Using Haar wavelets — see Equatioisa®d [102) — and a starting scale
j = —2. Along with the scaling and wavelet functions

W=, W=wK, Ypl=V2p(29, ¢t=vap(2x-1),
Equations[(103) and (ID4) can be used to compute the folpasipansion coefficients:

9 = /lx2 0(x)dx—/lxzdx— 21
“© = 0 L —Jo 3 0_3
dO /l 2 0( )d /1/2 2d /1 Zd 1
= X g (X) dx = x“dx— [ x“dx=—=
0 0 Yo 0 1/2 4

1 1/4 1/2 V2
a-l = / 2w L(x dx:/ 2% dx— 2P dX = — ~—
0 0 Yo ~(x) 0 V2 1/4 V2 32

1

1 3/4 1
dt = /xzwl_l(x)dx:/ V2x2dx— | V2dldx= _3v2
0 1/2 3/4 32

Thus, the wavelet series expansionyas

10 1 0 V2. 4 3vV2
=300+ |38 | + | 33 6 00 - S|+
S—— R L
o W e

V—1:%69WO

N J/

V_2=V_1EW_1=VoEWoEW-1

The first term in this expansion usegsto generate a subspaggapproximation of the function being
expanded. This approximation is shown in Figure 7(b) anbesaiverage value of the original func-
tion. The second term uselg to refine the approximation by adding a level of detail frorbspace
Wp. The added detail and resultiig, approximation are shown in Figuré 7(c) and (d), respegtivel
Another level of detail is added by the subspt#tg coefficientsd51 anddl‘l. This additional detail

is shown in Figur€l7(e), and the resultiig, approximation is depicted in Figulré 7(f). Note that the
expansion is now beginning to resemble the original fumctis finer scales (greater levels of detail)
are added, the approximation becomes a more precise rafaege of the function, realizing it in
the limitasj — —co.

4.2. The Pyramidal Algorithm. Wavelet analysis on a dyadic grid is a formrotiltiresolution
analysis (MRA) This framework is a powerful tool for representing scal®imation in data by
decomposing it in terms of scaling and wavelet functionsessdbed above. Furthermore, the MRA
framework is the natural setting for deriving the pyramidigorithm referred to next, which is used
for efficient computation of the multiresolution decompi@si and reconstruction of a function (or
Mallat's algorithm E0Q)).

The decomposition of the functiol(x) into spaces requires a means to compute the contefr{ixpf
associated with each of the subspaces. This is accomplightid appropriate projection operators.
The entire discussion will be tremendously simplified by fhet that there is an especially simple
relationship between these operators as revealed by titeoredhips between their expansion coeffi-
cients.
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FIGURE 7. A wavelet series expansionpf= x? using Haar wavelets.

With this in mind we define the projection operat®&sandQj such that for anyf (x) € L?(R)
PifcV, and Q;f cW,.
As a consequence of the results established in the preveatiss, we have
P_1f =P f+Q;f.
The Pyramidal Decomposition (finer to coarser)

Given the scaling coefficient{sclj(’1 : k € Z} for some fixed resolutiof), we seelsimpleexpression
for {c}} and{d/}.
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PrRoPOSITION4.1. In the MRA framework,

(105) G =Y hn 2h (X
and .
(106) Pe) =Y gn-x@h 1.

ProOF Recall thatp(x) = V2 ha(2x—n) andg! (x) = 271/2p(2 Ix—k). Thus,
n

@(27ly—K) = V25 hp(27 1y — 2k —n).
Let m= 2k+n, we have n
927 ly—k) =v2Y a2 1-Yy—m),
which gives the claimed expression i
Gy) =222 ly—k) = 5 hy a2 179202 0Dy —m) = 3 hy gl ().
Equation[(10B) can be shown simiIZrIy. i O

To determine a recursion relation for the scaling coeffisgfirst write
c=(f.q).
By Equation [[I0b) in Propositidn 4.1, this becomes
dh = (1.3 2t
m
= Y hmad f @)
m
= Z hm72kCr]’nil-
m
Similarly, we can get a recursion relation for the Waveleetfﬁoients,dli with Equation [(106):
de = (f, )
- <f7 Z gm72kqlr'|71>
m
= Y o a(f, gh 1)
m
= Z gm72kcgn_l~
m
EXAMPLE 4.2. We can now use these recursion formulas to get a sintpfdienulas for the Haar

scaling and wavelet coefficients. Witlh = h; = 1/v/2, go = 1/v/2, andg; = —1/+/2, the recursion
formula for the Haar scaling and wavelet functions become

-1, -1
(107) o — & o
g V2
and
j—1 j—1
(108) dli — CZk o CZk+l )

V2
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Notice that the coefficients (o:f< at a given levef are seen to bemoothedersions of the coefficients

at the higher resolution levgl— 1; while the coefficients oﬁli at a given levelj are produced by
differencing the scaling coefficients which createsharpenedversions of the coefficients at the
higher resolution levej — 1.

The Pyramidal Reconstruction (coarser to finer)

Now we derive the recursion relations going the other waypd@3p to the recursion relation for the
decomposition, illustrated in Figuié 8(a), we start witk fanction at its coarsest level and add on
the detail from each of the wavelet subspaces, illustrateigure[8(b). Letf!(x) = P;f(x) and
sl(x) = Q;f(x). At each level we have

P-1f(x) =P f(x)+Qjf(x),
or as functions, o o
fI7lx) = I (x) +s(x) = Zc{((qi(x) + dewﬁ(x),
wherefl e V; ands’ € W,. This decomposition is represented in terms of the subspaéégurd 8(a).
The scaling coefficients at th{g — 1)th level is
ot = (el

= <;c&<qi<x>+;diw¢<x>,mgl>
= ;c.i<cni,m—l>+gdi<wd,¢n"—l>,

where
@™ = (Yhnaghta™
m
— th—2k<§q%il7§qu
m
= hn—2k
and

W™ = (Y dnaghtha™

m
= S gm adgh Ll
m
= On—2k-
Thus, we have the general reconstruction formula

(109) cit= Z hn—2k01j< + Zgn—dei-
In the case of the Haar wavelet, the reconstruction formalas
1 V205
(110) chet = (ck+db)
and
. V2 .
(112) Cheir =5 (ch—dk)-
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Vi_1 ——=V, —\>Vj+1... Vj+1/Vj Vi1 \ )
Wi Wisr Wi W, Wj-1
(a) (b)

FIGURE 8. (a) The relationship of the wavelet and scaling subspadés pyramidal
decomposition. Only the data represented in the finestutso scaling subspace is
required. (b) The relationship of the wavelet and scalingspaces in the pyramidal
reconstruction. Only the data represented in the coarssstution scaling subspace
is required, in addition to all the wavelet-subspace ptajes, for perfect reconstruc-
tion.

EXAMPLE 4.3. Haar Multiresolution AnalysisWe are now in a position to compute a wavelet decom-
position of a function (or vector). We take as an example geocthposition of the vectdr=[9120.
Viewing f as a function, we can write

9 ifxe [0,7),
()= 1 ifxe [3.3),
2 ifxe [3.3),
0 ifxe [3,1).

We need to arbitrarily specify the size of the smallest stalstart the pyramidal decomposition
algorithm. We will choose dinf = 4 = 27J. Thus the finest resolution required is at the l&xe}.
We shall see that the decomposition in this case will invtiheesubspaces

Vo, = spaf2¢(4x—k):keZ},
V.1 = span{v2¢(2x—k):keZ},
Vo = spad@(x—Kk):keZ},
where the coefficients normalize the functions so that tmeyehonormal.

At the finest resolution, = —2, the scaling coefficient&lj(} are found by projectiori onto the basis
for V_,. Thus, sincd?_»f € V_o, we write

P2f(x) = Y 6 %q %),

keZ
where

6’ = (.g?)

k/4

l=5, ==, %=1 ¢?=0, ¢?=0 vk>3 and k<O
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Now projectf ontoV_1 via P_; f(x) and onto/N_1 via Q_1f(x). We have

P1f(x) = chlmKl(x) and Q_1f(x) = delwk%x)
where, using the recursion formulas,

-2 -2
C.“+C c,~—C
-1_ “k 2k+1 and dlzl _ k 2k+1,

V2

V2 V2’
140 1

BRI

Therefore,
P-1f(X) = co e *(¥) + ¢t H(X) = 59(2x) + p(2x— 1)
and

4 1
Q_1f(X) =dg ot (¥) +dy tyy H(x) = ﬁwoﬂ ﬁwfl,

which can then be rewritten (using the Haar relations) as

-2 2 -2 2
010 %[% %]+1[¢2 @

V2 NARRY:
1 2

4 2
- 5 [ﬁ (9(4x) — p(dx— 1»} b (0= 2) - plax-3)
= 4p(4X) —4@(4X— 1)+ @(4x—2) — p(4x—3) e W_1.

The projection ont&p proceeds similarly via the computation®ff (x). The scaling coefficients at
the levelj = 0 are found using

1, 1
0_ Cox T Cxi
V2

The single nonzero scaling coefficient is given by

5 .1
Q_v2 V2 _g
0 V2
and the associated wavelet coefficient is
S5 1
dO — \/é \/é -2
0 V2

So, we have
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and
Qof(x) = dgyg(x)
- [
= N ®» —¢
- % <\/§q0(2x) —V2p(2x— 1))
= 2¢(2x) —2¢(2x—1) € Wp.
In summary,

f(X) = szf(X) eV_o
= P_lf(X) +Q_1f(X) eV_1H6W_1
= Pof(X)—l—Qof(X)—l—Q,]_f(X) EVobWo BW_1.

4.3. Discrete Wavelet Transform (DWT). Like the Fourier series expansion, the wavelet se-
ries expansion of the previous sections maps a function ohérmous variable into a sequence of
coefficients. If the function being expanded is discret (a sequence of numbers), the resulting co-
efficients are callediscrete wavelet transform (DW.TFjor example, iff (n) = f(xo + nAx) for some
X0, A%, andn=0,1,2,...,M — 1, then the wavelet series expansion coefficients faj become the
forward DWT coefficients for sequencgn):

112 === 3 1),

(113) =~ ¥ FOw(n)

and

(114) i =—5 (Zc&“%‘“(n) - de“)

EXAMPLE 4.4. To illustrate the use of Equations (112) through1tdpsider the discrete function
of eight points:f(0) =448, f(1) =768, f(2) = 704, f(3) = 640, f(4) = 1280, f (5) = 1408,f(6) =
1600, f(7) = 1600. Becaus®! = 8 =27/, there will be 3 § = —3) steps (levels) of MRA with
j=-3,—2,—1, and 0. We will use the Haar scaling and wavelet functiomsemsume that the eight
samples off (x) are distributed over the support of the basis functionscivis 1 in width. Notice

that at the finest Ieveq:?‘ = %8 Z f(n)v/8p(8n—k) = f(n). At the next level, we use the recursion
n

formulas:

-3 -3
C, t+C
Clzz _ 2K 2k+1 and dlzz —

V2

3 -3
Co — Coxi1

V2
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Thus, in matrix notations, we get the system

Hj
I 1 T f Y1
%5 % 0 0 0 0 0 0] o
1 1 9 o o0 o448 608
ZvE g o || e 672
vaovzo 704 1344
73 V3| |640| _ 1 |1600| _ {yﬂvz}
% _% O 0 0 0 O oO0f]|1280 2 |-160 Yilw ,
1 1 9 o o o | |ta408 32
v2ooov2 . 1600 —64
5 T (13 01 | 1600) . 0 |
i V2o V2l

The action of left multiplying the signédl by the Haar matriH; produces the vectgn that consists
of theapproximatiorcoefficients irfv_» in its upper half and thdetail coefficients inV_» in its lower
half. To get the approximation and detail at the next leyet (1), we consider only the components
ofy;inV_o, i.e.,

'12 )’1|v,2

L 1 o1

va vz o 608 640

0 0 5 H||672| 1 |1472| {yz\vl
1 1 - 5 —

L L 0 0 ||1344 " 2|32 Yalw.
Yoy 1 1] |1600 128 :
! V2 V2]

with
yo=[yoh , VYelw, VYilw, =[640 1472 -32 -128 -160 32 -64 (.

Lastly, to obtain the approximation and detail componentiseabottom level = 0, we consider only
the components gb inV_1, i.e.,

1 Hsl
v v {640} _ 1 {1056} _ l)’3|vo}
L 55| 11472 7 2 [-416) T |ysl,

with
1
ya=[Valy, Yahw Vlw, y1|W_2]T:ﬁ[1056 —416 —32 —128 —160 32 —64 Q.

Notice that this process is entirely reversible since iig are invertible. A simply compression
method takes advantage of this fact. For example, a thréstorhpression method eliminates all
entries below a threshold value and retains all entries @litovin this example, set64/+/2 and

—160/+/2 iny; to 0 to obtainy; = %[608, 6721344 16000,32,0,0]T, then a compressed version

of f is given byf = H 9.

5. Wavelet Transforms in Two Dimension

The one-dimensional transforms of the previous sectioaseasily extended to two-dimensional
functions like images. In two dimensions, a two-dimensiataling function,(x,y), and three
two-dimensional waveletg)" (x,y), ¢V (x,y), and@P (x,y) are required. Each is the product of two
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g, )—l 24 )— (@)

n, ) —[24)— @)
g, ) — 24— (@)

n, |J—|24]— ac

FIGURE 9. The analysis filter bank.

one-dimensional functions. Excluding products that poedone-dimensional results, likgx) @(x),
the four remaining products produce teparablescaling function

(115) P(x.y) = p(x)@(y)
and separable, “directionally sensitive” wavelets

(116) Yr(xy) = wX)e(),
(117) P’ (xy) = o) Y(y),
and

(118) YP(xy) = wou(y).

These wavelets measure functional variations — intensityations for images — along different
directions: " measures variations along columns (for example, horiteuiges),yV responds to
variations along rows (like vertical edges), aifl corresponds to variations along diagonals. The
directional sensitivity is a natural consequence of thesagplity in Equations(116) t¢ (118); it does
not increase the computational complexity of the 2-D tramafdiscussed in this section.

Given separable two-dimensional scaling and wavelet fonst extension of the 1-D DWT to two
dimensions is straightforward. We first define the scaledtelated basis functions:

Gha(xy) = 272927 Ix-m 2 ly—n)
(Wha(xy))' = 27292 x-m27ly—n). i={H.V.D}.

Rather than an exponemts a superscript that assumes the valde¥, andD. The discrete wavelet
transform of imagd (x,y) of sizeM x N is then

_ 1 M-1N-1
C#n,n = \/—Z)Z) Xy%nxy>
1 M—-1N-1

(drjn,n) = \/— Z) Z) Xy Wmn(x Y)) i:{Hv\/’D}-

Like the 1-D discrete wavelet transform, the 2-D DWT can bplamented using digital filters and
downsamplers. With separable two-dimensional scalingveantlet functions, we simply take the
1-D FWT of the rows off (x,y), followed by the 1-D FWT of the resulting columns. Figlie ®wsk
the process in block diagram form.
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LL HL

civ | (@)
ol

Original image (d A )V (d A )D

LH HH

FIGURE 10. The 2-dimensional wavelet transform takes an image ereth, and
applies four combinations of smoothing and differencinghbtain the transform in
the middle. At the next level, we perform the same operatioranly the upper left
sub-image as shown in the right.

150 200 250 50 100 150 200 250

(b) (c)

FIGURE 11. (a) Original fingerprint. (b) The resulted 4 sub-imagésra single level
of discrete wavelet transform. (c) Result after 2 levels 8D corresponding to the
right panel in FiguréJlo.

In general, the 2-dimensional wavelet transform procegdsdmting four sub-images of the original
image. The image in quadrant Il is the result of reducing #s®lution of the columns and rows of
the original image. This is achieved by applying the 1-disienal scaling transform (thus, lowpass
filter) to both the columns and rows; for short we refer to éhegerations as L column, L row. The
image in quadrant | is obtained by applying the scaling fians to the rows and wavelet transform
to the columns of the original image, i.e., H column and L rQuadrant Ill is obtained via L column
and H row while quadrant IV is obtained via H column and H roWwe3e operations are summarized
in Figure[10. An example is shown in Figureg 11.

The image in quadrant Il may be used to calculate the nexitdééviee decomposition. The result is to
divide this quadrant into four new quadrants. This basie isey be applied to the upper left corner
image as many times as deemed useful, illustrated in thepagtel of Figuré 0.

The two-dimensional wavelet transform has found a numbenpbrtant applications, including an
FBI fingerprint identification system as well as JPEG 200@aadard for image storage and retrieval.



CHAPTER 8

Suggested Exercises

1. Set One

1.1. Theory.

(1) Let the basis# be the standard basis, i.el!) = (10)T, e = (01)", and the basis, be
given by the two vectorg™ = (11)T, v(? = (—-11)T. Givenug, = (11)7, find u,.

1.2. Computing.

(1) Write a code to generate 1000 random numbers containéaeamit circle. Apply several
random matrices to this data and describe your results iteth@nology of bases and change
of bases. How do your results differ if the multiplying matis constrained to be orthogonal?

(2) Given an algorithm3g] for computing small principal angles between two subspapeen
by the real matriceX andY, whereX is in R"™P andY is in R"9 (Principal angles are
defined to be between 0 amri2 and listed in ascending order):

Input: matricesX (n-by-p) andY (n-by-q).
Output: principal angle®) between subspaceg(X) = 2" andZ(Y) = %'.
(a) Find orthonormal bas&3, andQy for 2" and#  such that

UX=QQ =1 and Z(Q)=2,2(Q)=%.
(b) Compute SVD for cosineQ] Q, = HZZ", whereZ = diag(ay, .. ., 0g).
(c) Compute matrix
_ Qy— Qu(Qg Qy) if rank(Qx) > rank(Qy);
Q—Qy(QJQx)  otherwise

(d) SVD for sine:[H,diag(Uy, - . ., lg), Z] = svd(Y).
(e) Compute the principal angles, floe=1,....q

_ Jarccogox) if o <3

] arcsin( ) if p2<i

(&) Implement this algorithm in MATLAB under the functionmaprinAngles. Your func-

tion should have the input and output arguments:

[theta] = prinAngles(X1,X2)
wheretheta is the principal angles listed from the smallest to the Istg¥l is the
first set of images listed by the columns, ax2l is the second set of images listed the
columns as well.

(b) To verify that your implementation is correct, downldadel.mat and face2.mat from

the course website where facel.mat contains 21 distingesiaf person 1 in its columns
and face2.mat contains 21 distinct images of person 2 iroltexans and test your im-
plementation with this data. Note: in case you want to sed thleamages look like, the

139
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images are of resolution 160138. The following MATLAB commands will display
the first image of person 1:

>> | oad facel
>> | magesc(reshape(facel(:,1),160,138)), col or map(
gray), axis off

(3) Write a function in MATLAB using the homogeneous coouwties that scales (enlarge and
shrink) a 2D image about a poiRt= [tx, ty, 1]". Specifically, the first line of your function
will be (other than the comments)

function [newlmg] = scale(Img, alpha, P)

wherealpha = [sX, sy] is the scale parameter that controls how much scaling isexpii
x-direction and iny-direction, respectively. Make sure your routine works pplging it to
an image of your choice. The MATLAB commands that are usefuéh

>> meshgrid
>> jnterp2

>> imread

>> | magesc

>> reshape

For example, to find out how to use meshgrid, type
>> Help neshgrid

in the MATLAB command prompt.

(4) Writ a routine in MATLAB using the homogeneous coordasthat translates a 2D im-
age horizontally and a routine that translates the imagecedly. Specifically, one of your
functions should have the input and output arguments

[newimg] = translateH(Img, tx)

wheretx is the amount of horizontal translation applied (make sun@rks for both positive
and negative values). Test your routine by applying it toraage of your choice.

(5) Write a routine in MATLAB using the homogeneous coordasathat rotates a 2D image
about a poinP = [tx, ty, 1]'. Specifically, your function should have the input and otitpu
arguments

[newlmg] = rotate[Img, theta, P]

wheretheta is the amount of rotation applied in counterclockwise adaéon. Make sure
your routine works by applying it to an image of your choice.

2. Set Two

2.1. Theory.

(1) LetW; andW, be vector subspaces al=W; +Ws. Show, by giving an example, that the
decomposition of a vectore W is not unique, i.e.,

i i
X=W1+W2=Wq+Wy,

wherew; # W/l, Wy # Wy, Wl,W'1 cW, W2,W/2 e Ws.
(2) Consider the matrix
1 -1
A=1|2 -2
3 -3
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Determine bases for the column space, row space, null spaddeft null space oA.
(3) LetV =R3, let

and definaV; = span(u®,u(@). Find the orthogonal projection afontoW;. Also find the
projection matrixP associated with this mapping.

(4) Reconsider Problem 3. Find vectors such thatUU Tx andx # UU Tx where the matrix)
consists of the basis vectors from Problem 3. Draw a pictushbw the set of vectors for
whichUUT acts as the identity.

(5) Determine the SVD of the data matrix

-2 -11
0O -1 0
-1 1 2|’
1 11

and compute the rank-one, -two, and -three approximatmAs t
(6) Propose a method to compute a random orthogonal tranafmm.

2.2. Computing.

(1) Consider the training set consisting of the followingeth patterns consisting ob&4 arrays
of black squares

Using Kohonen's novelty filter, find the novelty in the patter

Proceed by assuming that the black square entries have iwame&lue one and the blank
entries have numerical value zero. Concatenate the colofreech pattern to make vectors
in R20,

(2) Compute the SVD of the matrik whose entries come from the pattern
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and display the reconstructioAs, Ay, Az, A4. Again, treat the squares as ones and the blanks
as zeros. Your reconstructions should be matrices with nigalevalues. Interpret your
results.

(3) This assignment requires the use of a MATLAB image. Ckogsur favorite image for
this exercise (be sure to choose an image whose resolutairigast 300-by-300.). All the
necessary MATLAB syntax is described as follows. To begiadithe MATLAB image into
the matrixA using

>> A = imread('mylmage.tif’);
% adj ust accordingly with the i mage extension

If your image is in colorA will have three dimensions where the first two give the resmhu
of the image and the last one contains a layer of red, a laygreei, and a layer of blue. To
turn a color image into a monochrome one, use the MATLAB comuna

>> B = rgb2gray(A);

You don’t necessarily have to work with a black and white ymiet but it is definitely easier
and computationally cheaper to start with one. The full aeduced SVD may then be
executed simply by

>> A = double(A); % data matrix has to be in double
precision in order to perform mathematics on
it

>> [U,SV] = svd(A);

>> [U_thin,S_thin,V_thin] = svd(A,0);

%Wothe zero (not the letter "0") indicates econony
si ze

%% ‘ doubl e’ converts any 8-bit single (uint8) into
16-bit doubl e precision

where U (resp. Uhin), S (resp. Shin), and V (resp. Mhin) are the left-singular vectors,
the singular values, and the right-singular vectors (respguced). A rank approximation
of the image may be found via

>> A k = U(,1k)  *=S(1:k,1:k)  *V(,1Kk);
The resulting image may be displayed using

>> | magesc(A_K);
% may use the option: axis off, axis square for
better display

or
>> | mage(A_K);
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For better viewing, one can reset the colormap to gray seateshe command
>> i magesc(A k), col ormap(gray)

Now, do the following:

(a) Plot the singular value distribution of your image, whtrex-axis is the counting index
while they-axis is the magnitude of the singular values. If we definecthaulative
energyof A € R™" with rankr to be

E, — Zr:1o-iz
k = =r 2
2i=10
identify the number of singular values;§) needed to retain at least 95% of the energy.
This number is often calledumerical rankof the matrixA. Is the numerical rank for
your image large or small? Explain why.

(b) Compute the rank-10, rank-50, rank-100, and rank-2@@agmations to your cho-
sen image along with theslative errorsof approximation (use the title, xlabel, and
ylabel commands to specify appropriate information), ldigphem on the same figure
(using subplot), and interpret your results. (Recall thatabsoluteerror of a rankk

approximation is measured by tke- 1th singular value, so theelative error is given
by Ok+1/01.)

wherek <,

3. Set Three

3.1. Theory.
(1) Show that
Ov(v,v) =2v
and that ifC is a symmetric matrix, then
Ov(v,Cv) = 2Cv.
(2) Show that
(¢7.Co%) = (CoV, o).

AssumeC is symmetric.
(3) Does periodic data imply that the ensemble average @@ matrixC will have eigenval-

ues with multiplicity greater than 1? @ has eigenvalues of multiplicity greater than 1, is

the data necessarily periodic?
(4) Given the data matrix

-2 -1 1
0O -1 0

X=1-1 1 2|
1 -11

compute the eigenvalues and eigenvectop$ Xt andXTX. Foru®, confirm the statement
P

a1 3 vx®),

0 &1

wherej = 1,...,rankX.
(5) It was shown that the expansion coefficients may be coedgpusing formula

A=3VT,
providing an alternative to the direct computation via
A=UTX.
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Compute the number of add/multiplies required to computea both formulas, using the
data matrix and eigenvectors given in the previous Probl&imich way is computationally
cheaper in general? Why?

3.2. Computing.

(1) The object of this programming assignment is to write dectm apply thesnapshotmethod
to a collection ofP high-resolution image files. Your program should computel(arder)
the eigenpictures. It should also have a subroutine to mé@terthe projection of a given
picture onto the bedd-element subspac®(is typically chosen empirically). Your program
report should include the following information:

(a) A display of the ensemble-average image.

(b) A picture of a mean-subtracted image, for one of the imafp@sen at random from the
ensemble.

(c) A collection of eigenpictures (based on mean-subtdadia) for a broad range of
eigenvalues. The eigenpictures must be mapped to integeheanterval0, 255.

(d) Partial reconstructions of a selected image for vari@aise ofD. Include the recon-
struction erroff|Xx — xp|| in each case and confirm that you obtain perfect reconsructi
whenD is equal to the rank of the data matrix.

(e) Agraph ofAj/AmaxVsi, wherej; is theith eigenvalue of the mean-subtracted, ensemble-
averaged covariance matrix. How does this plot help youroeténg the besD value
to use?

() Now, devise (describe) a classification algorithm thaésithis idea of best basis to
classify a probe (testing) data against a given galleryr yBar reference: this process
is calledPrincipal Component Analysis Why is this more efficient than classifying
data points in their resolution dimension?

The data for this problem may be downloaded from the courdesitee The data file
facesl.mat contains 109 images whose dimensions are 1@0. It is a single matrix, where
each column has length 20, which is 1206« 160. The format of the data is “uint8”, which
stands for unsigned integer, 8 bits. Before you use the datklf, change it to “double”
format.

(2) Test your theory from 1(f) on the following data set: Dggmat can be downloaded from
the course website. It contains three variabl€sillery, Probe, andphoto_size, where
Gallery is a 1024x 500 matrix with 50 digits of O in its first 50 columns, 50 diga&9 in its
last 50 columns, etc. The row dimension comes from the résalof the images stored in
photo_size. The variableProbe stores a set of novel digits from 0 to 9 that do not appear
in the Gallery. UséPrincipal Component Analysi® classify the probe images against the
gallery images. How well did the algorithm perform? Repord analyze your result.

4. Set Four
4.1. Theory.
(1) Consider the two eigenvector problems
Cyu = A
and
Cyv = Agv

where the matrices are related ®y= Cs+ al, wherea is a real number anbis the usual
identity matrix. Show that it is an eigenvector dEy, then it is also an eigenvector GE
associated with eigenvalug = Ay — a.
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(2) LetAbe areamx n. Show that the matrik defined as
M = a?l + AAT

is nonsingular, where= I, anda is a nonzero real number.
(3) Show that the between-class scatter ma8gxjn the multi-clasg-isher Discriminant Anal-
ysisis given by

S= _ini(mi —m)(m; —m)",

whereM is the total number of distinct classegjs the number of data points in classn;

is the class mean of th class, andn is the mean across alldata points. You may use
the facts that

M n
Sr =S +Sw, SN:; %(x—mi)(x—mi)T, and ST:;(xi—m)(xi—m)T.

4.2. Computing.

(1) This project concerns the application of the KL procediar incomplete datall]. Let the
complete data set be translation- invariant:

181
k=1

wherem=1,...,M, with M dimension of the ambient space (size of the spatial grid}, an

(m—1)2m
M

. Select an ensemble of mas{<en<“)}, u=1,....P, where 10% of the indices

are selected to be zero for each mask. Each pattern in thenpiete ensemble may be
written as

u=1... P, with Pthe number of points in the ensemble. kgt=
(u—1)2m

andt, =

where (f“”) .

(a) Compute the eigenvectors of this ensemble using theygagprithm [L8].

(b) Plot the eigenvalues as a function of the iteration, andinue until they converge.
(c) Plot your final eigenfunctions corresponding to the 1@dat eigenvalues.

(d) Plot the elemerit™ and the vectokp repaired according to Equation

1 N1
=5 S Esm[k(xm—t“)]. LetP =M = 64 andN = 3.
k=1

D
(119) X~Xp=S d0".
nzl

Determine the value dd that provides the best approximation to the original noppya
pattern vector.

(2) This project allows you to apply the two-clakgear Discriminant Analysis (LDApn a
simple EEG data. You will download the zipped file EEG_LDA from the course website.
Once you unzip the archive, you will find 20 files whose file narfodow the format “class-
C seq-T", where C stands for the task number (C = 2 and C = 3) andnids for the trial
number which ranges from 0 to 9. The participants were askembant in task 2 and to
perform visual rotation in task 3. The EEG data were coll@atel 9 channels with sampling
at 256 Hz over 10 trials for each task. Upon loading the files Mariable “classC seq T”
is a 19-by-1040 matrix, where each row represents a readimg éne of the 19 channels
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(3)

(4)
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(electrodes on the skull) and each column represents angeatlia single time stamp. A
sample reading for task 2, trial 0 is shown below.

=0 T

et 1 | | | | J

— O -

=0 - =

' L 1 L
(] =200 e Y ] [=1m ] [=1mm] R ] 1200

(a) Write a MATLAB routine to produce an optimal projectiomesttion,w, using the two-
class LDA criterion

w! Sw
W = arg maxJ(w) = arg max
gr (W) gmax o

where
2
S =(ma—my)(ma—my)"T and SW:'Z\ %(x—mi)(x—mi)T

are the between-class scatter matrix and the within-cleaties matrix, respectively.
That is, your code should take in a set of data points with ardledication which
points belong to class one and which points belong to claas®putput a single vector
w that is the solution of the generalized eigenvalue prolfigm= A Syw. (If you are
interested in the implementation of multi-class LDA, sdEf¢r more details on how to
deal with the singularity o8y .)

(b) Now, use your subroutine in part (a) to project the EEGdmito a real line. Particu-
larly, we can form a data point iR1%4%<19 by concatenating the columns for each trial,
therefore having 10 data points for task 0 and 10 data poamntsagk 2. You would
then project these 20 points onto the real line withwhund with part (a). Plot the
projected data on the real line and distinguish the classsdiiferent symbols. Do
you see a clear separation? Analyze your results.

Construct a 25@ 10 data set of your choice with correlated noise in the cokinfvou may

construct the noise by first constructing a data set of 250tpam R and map it taR° via

right multiplication by a random 3 10 matrix. This accomplishes the correlation aspect.)

That is, the data matrix will contaiR = 10 noisy signals, each of length= 250 where

each column has had mean removed. Apply the MNF method totfikedata. In particular,

examine the effect of B-mode reconstruction on a singe noisy signal for variousesbf

D. Plot the the result of filtered data, noisy data, as well asotfiginal den-noised data in

the same graph to compare.

Implement a % 3 median filterand apply the filtering process on a corrupted image of “app-

ndt-Chip-5.JPG” located via the course website. Spedyiaabrrupt “app-ndt-Chip-5.JPG”

with salt-and-peppenoise, where the corrupted pixels are either set to the maxiralue

(which looks like snow in the image) or have single bits fligmser. In some cases, single

pixels can be set alternatively to zero or to the maximumevéle., 255 on a 8-bit machine).

Then apply the median filter to de-noise the corrupted im@genpare your result with the

original.
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(5) Given an image “CTimage.JPG” on the course website oRarthe following operations:
(a) Construct a & 3 average filter to smooth the image.
(b) Then use a2 Laplacian filter mask to extract the edges of the smoothedéma
(c) Finally, enhance the smoothed image with the result fpant (b). How does this image
compare to the original?

5. Set Five

5.1. Theory.

(1) Find the Fourier series for theiperiodic square wave function

—k if —m<w<O0
and f 2m) = f

{k it 0<w<m (w+2m = T(®)

(2) Compute by hand the Haar wavelet decomposition (Pyralndiecomposition) of the vector
x" =[1,7,—3,2] by viewing it as

1 ifxe [0,3),
f=17 itxe [7,3),
-3 ifxe [3,3),
2 ifxe [3,1).

Graphically show the projections onto the scaling and wehalbspaces.
(3) Letx € RM, and lety be the 1D DWT ofx. If we write the Haar wavelet transform and its
inverse as matrix operations, i.e.,

y =WXx

and

x =Wy,
what areW and\W? This should be done in terms of the Haar Pyramidal Decortiposi
algorithm, i.e., the expressions W andW depend on the level of the decomposition/re-
construction. Ifx = [576,704,1152 1280 1344 1472 1536 1536, what is its Haar wavelet
transform after 323 = 8) levels of decompositions?

5.2. Computing.
(1) Write a MATLAB code to implement the 1D Discrete Haar Wa¢dransform (1D HWT)
including the algorithms for
e Haar pyramidal decomposition, and
e Haar pyramidal reconstruction.
Compute the six-level decomposition of the data

‘ . n2
n = Sin 10000 + Nn,

wheren=1,...,1024, andn, is selected from a normal distribution with mean zero and
variance 2. (See figure below) Initialize the transform by assumira tke Vp. Include the
following plots in your report:

(@) Rf=fyeViforalli=1,...,6,

(b) Qf =fyeW foralli=1,...,6.

Be sure that each plot has dom#lin1024.
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(2) Test your codes with your favorite image for this probleMake sure your codes are as
general as possible and be sure to plot the results.

(a) Write a function in MATLAB to compute thapproximatiorand each of the thresetail
components of an image. (i.e., you will producextremelyshort codes here) Notice
that the resolution of LL, HL, LH, and HH will bé&1/2 x N/2, where(M,N) is the
resolution of the original image.

(b) Write a subroutine to reconstruct an image fronty the approximationcomponent as
a function of level. Notice that the resolution of the redomsted image will be of size
M x N.

(c) Compress the image up to level 3. Compute the compresatamas a function of
each compression level. Plot the compressed images forleaehalong with their
compression ratio. Note that the compression ratio is detse

_ # of nonzero entries in the transformed
~ # of nonzero entries in the compressed
Some useful MATLAB commands for this problem:

CR

>> dwt2
>> wavedec?2
>> wrcoef2

6. Group Final Project

6.1. Data: Imges of Cats and DogsThe following data are available on the course website.

(1) PatternRecData.mat which contains two variables: #8eldy-198 matrix KLDATA.mat and
a row vector sub-labels of length 160. The data matrix KLDASGtains distinct images of
cats and dogs (courtesy of Dave Bolme and Dr. Ross J. BewgRigpartment of Computer
Science, Colorado State University) in its columns. Theee8 of each animal and they are
randomly placed in the columns of KLDATA. The vector subdbbgives you the identity
(with cat = 1 and dog = 0) of the first 160 patterns.

(2) TIFFtraining.zip which contains TIFF images for thetfit§0 patterns in KLDATA. There
is a little glitch to the file Dog96.tif, which is a 6464 x 2 matrix instead of simply 64 64.
The first layer is what you would need.

6.2. Project Assignment.Use the data given above to build different pattern recogmiar-
chitectures from the methods that you learned in class dvesémester or methods you acquired
elsewhere that are relevant to the problémelude as many methods as the number of members in the
group. Note there is no limit to group size but that the ergin@up will receive the same grade.

Submit a write-up that that are coherent to the format deedrin syllabus. Once you are satisfied
with your pattern recognition routine on the known datassify the last 38 unknown columns in
KLDATA as either cats or dogs. Save the result as a row vedtaems (= dogs) and ones (= cats)
and email it to me by the end of the semester. Alternativélypu wish to classify the raw data
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(instead of the KL data), you would design your classifieatetin either a 4096-by-1 column vector
or a 4096-by-38 matrix and output their class labels as edhis or dogs.
Your final write-up will be sure to include the following itean

(1) Classification errors as a 2-by-2 confusion matrix (ddgssified as dogs, dogs classified as
cats, cats classified as cats, cats classified as dogs). Maccamplish this by splitting the
data into testing and training and provide classificatioonreron the testing set.

(2) Description of the classification method and detailsutibow the classifier is constructed.

(3) Predicted class membership for the 38 unlabeled data.

(4) Codes used in the exploration process. These codes cenrsdréed wherever they fit or
shuffled all the way at the end of the report depending on yaiiing style.

6.3. Suggestions for Possible Approached.he following list is by no means complete. The
purpose is to provide you with some initial directions.

(1) Determine the covariance matrix of the cats and the cavee matrix of the dogs and con-
struct optimal bases for each using maximum noise fractityoject new samples onto the
cat basis and dog basis and see which gives a better reasent

(2) Use vector quantization, e..g, Kohonen's self-orgagiznap on a 2D lattice.

(3) Use eigen-cats and eigen-dogs and the Principal Commpémelysis (PCA) on the raw data.

(4) 2D Discrete Wavelet Analysis (DWT) or Fourier Analysis the raw data for frequency
content information.

(5) Radial Basis Function (map cats to ones and dogs to zeros)

(6) Fisher's Linear Discriminant Analysis (LDA).

(7) Labeled Voronoi cell classification.

(8) One-sided or two-sided tangent distances.

(9) Set-to-set comparison with principal angles and Grassnan distances.

(10) A combination of any of the methods above with weights.

A prize will be given to the team who has the highest clasgiboarate (or lowest misclassification
rate).
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APPENDIX A

Supplementary Materials

1. Linear Independence and Bases
Given a set of vectorév, v, ..., vp} in R™, m > n, the set of linear combinations
spanvi,Vo,...,Vn)={y | y=o1vi+axvo+---+anvp}

is called thespanof the set of vectorsy, o, ..., V,. If we concatenate the vectors into a single matrix
X, l.e.,
X=[vi|va| - |vn],

then the spafvi, Vo, ..., V) is equal to theangeof the (transformation) matriX or thecolumn space
of the transformatiorx, denoted by (X). The vectors/, vo, ..., Vv, arelinearly independenif the
n

only way to write Z ajvj =0iswhena; =0 foralli=1,...,n. A set ofmlinearly independent
=1

vectors inR™M is called aasisin R™. This is equivalent to say that any vectofRA' can be written as

a linear combination of the basis vectors.

If we have a set of linearly dependent vectors, then we cap kdearly independent subset and
express the rest in terms of the linearly independent ondsis Tve can consider the numbeir
linearly independent vectors as a measure of the informabatents of the set and compress the set
accordingly: take the linearly independent vectors asesgntatives (basis vectors) for the set, and
compute the coordinates of the rest in terms of the basis. ederyin real applications we seldom
haveexactly linearly dependent vectdrat ratheralmost linearly dependent vectoldsturns out that

for such adata reduction procedur be practical and numerically stable, we need the basi®rgec
to be not only linearly independent botthogonal So, how do we find out whether or not a set of
vectors is linearly independent or not in large data setsanswer lies within the concept i@&nk.

2. The Rank of a Matrix

The rank of a matrix is defined as the maximum number of linearly indeleat columns. It is a
standard result in linear algebra that the number of liygadependent column vectors is equal to
the number of linearly independent row vectors. In real datawe seldom calculate the exact rank
of the data matrix. Instead, we consider tianerical rankof the data matrix. We will visit this
concept in the main text. If a matrix is not full rank, thenditsaid to beank-deficient
A square matrixA € R™" with rankn (full rank) is callednonsingularand has an invers&* satis-
fying

AR =A"IA=,
If we multiply the linearly independent vectors by a nonsilag matrix, then the resulting vectors
remain linearly independent.

PROPOSITION 2.1. Assume that the vectors,vy,...,vp are linearly independent. Then for any
nonsingular matrix T, the vectors TV \», ..., TV, are linearly independent.

EXAMPLE 2.1. The matrixA = uv' has rank 1.
153
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3. The Similarity Transformation in Registration Problem

Let
s« 00 1 0 ty cosf —sinB6 O a b o
S=|0 s 0|, T=|0 1 ty|,and R=|sin@ cos® Of=|b a O
0O 0 1 0 0 1 0 0 1 0O 0 1

represent the scaling, translation, and rotation mateigpectively. Composition of the three gives a
similarity transform (order doesn’t matter)

asc —bs, atysy—Dbtys,
M =RST= |bs, as, Dbts+ats|.
0 0 1

If the horizontal and vertical scaling are not the same, titsissformation matrix has 6 degrees of
freedom. To simplify the problem, we will assurge=s,. Therefore

A -B C
M=|B A D|,
0 0 1

which has 4 degrees of freedom. To solve the paramét@&@sC, andD, we will need 2 points. Say,
for example, we have two known eye coordinates (left and pgipil positions) given irjxg, yo, 1]
and[xy,y1,1]", which are callegource pointsGiven the correspondirtgrget pointwhere the two
eye coordinates are mapped to at the end of the transfomydtivo, 1]” and[ug,vi,1]", we have
the following relations

Uo A —-B C| |x Up A —B C| |xq
vw|=|B A D Yo ,and vi|l=|B A D Y1
1 0O 0 1|1 1 0O 0 1| |1

Multiplication gives the system of 4 equations

XA—-YoB +C  =Up
YoA+XoB+ +D=vp
x1A—-y1B +C  =us
yiA+xB+ +D=v;

In matrix notation, we have

X0 —Yo 1 Of [A Uo
Yo X 0 1| |B| |w
X1 WY 10 C| Uz
Vi X1 01 D V1
m
Therefore
A Uo
B _1 | Vo
C =m Uy
D V1

With the parameteré, B,C andD are now known, the final similarity transformatit¥hcan be used
to transform any 2D image to a prescribed image plane.
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4. Generalized Singular Value Decomposition

THEOREM 4.1. 22] (Generalized Singular Value Decomposition) If we have R™P with m> p
and Be R"*P, there exist orthogonal l& R™ ™M and V€ R™" and an invertible Xe RP*P such that

(120) UTAX =C =diag(cy,...,cp) G >0
and
(121) VTBX =S=diag(sy,...,S%) S >0

where g= min(p,n).
To see that these assignments do give rise to the relation
SFATAX =C?BTBX,

consider the following. From Equati@n 120 dnd 1121, we l@&Ve- XTATU andS" = XTBTV. Since
C andSare diagonal, s&€"C = C?, STS= <. Thus,

C'Cc = (XTATU)(UTAX) =XTATAX =C? = XT =c2x1a71(AT) !
s's = (X'BTV)(V'BX)=X"B"BX=% = X" =x~B~%(B") !
Equating(XT)~!'s to obtain
ATAX(C?) 1=BTBX($?) L
Multiply through byC? andS? appropriately to get
SPATAX = C?BTBX.
To see how this is related to the symmetric definite generdleigenproblem
NTNy = pu>X*y
in the maximum-noise-fraction problem, first suppose thet+= [, ..., ¢(P)] satisfy
SATA =c?B'™Bx, i=1:p
ands # 0, thenATAx = u?BTBx, wherey; = ¢i/s. Thus,x are termed the generalized singular

vectors of the paifA, B). ReplaceN with A, X with B, andy with x, we see that the maximum-noise-
fraction problem can be solved by using the GSVD method.

4.1. MATLAB Syntax. To compute GSVD of two data matricésc R™P andB € R"*P, use
the command

%6 full version
[UV,X,C,S] = gsvd(A,B);

[U,V,X,C,S] = gsvd(A,B,0); % thin version
so that

(122) A=UCX'"

and

(123) B=VSX,

CTC+ STS= 1 with unitary matriced) andV and non-negative diagonal matric8sand S, also
satisfying

SATAXT)t=c?BTB(XT) 1.
Note that #0l(A) = #col(B), but #ow(A) does not necessarily have to be equal tomB). The
command
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S = gsvd(A,B);
returns the vector of generalized singular values, i.e.,
S = sqgrt(diag(C *C)./ diag(S =*S))
In the economic version, the resultidgandV have at mosp columns, andC andS have at mosp
rows. The generalized singular values dreg(C). /diag(S).
There is a minor bug in the gsvd command. From Equafions 1828, we ge€ = UA(XT)~1 =
UTAXHT andS=VTB(XT)"t =VvTB(X1)T, which are equivalent t&" = X"1ATU andS™ =
X~1BTV. Thus,
C'lCc = CP=X"IATAX HT =xIATAXT) L = x"1=c2XTA1(AT)?
s = =xBBXHT=x"1BBX")!=x1=XxTB1B")?
EquatingX’s to obtain
(CZXTAfl(AT)fl)_l _ (SZXT Bfl(BT)fl)_l
= (CZ)flATA(XT>71 — (SZ)leTB(XT>71
= SATAXT)1=c?BTB(X")?
Thus, lety = (XT)~1 in the maximum-noise-fraction algorithm to achieve theear solutions.
function [Phi] = mnf(N,X)
Wothis algorithmrequires the know edge of N (noise)
%Wotreat N as noise and X as data in the gsvd.

[U,V,A,C,S] = gSVd(N’X7O)7
psi = inv(AD);
Phi = X *psi; % optimal basis vectors

5. Derivation of Generalized Eigenvalue Problem

We establish the generalized eigenvalue problem found oti®d1.1. Recalld(w) = % =
wiSsw . . d oo
WTSyw' SinceSis symmetrlc,dw(w Sw) = 2Sw Thus,
T —wT
0I(w) = W' Syw (2Sgw) —w SBW(ZSNW)‘

(WT Sww)?
SettingdJ(w) = O gives

w' Syw (2Ssw) —w' Ssw(2Syw) = 0.
That is,
D(w)Sw = N(W)Syw = SSwW = ASyw,
_ N(w)
whereA = W
This is a generalized eigenvalue problem.
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