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Preface

I wish to acknowledge Dr. Michael Kirby at Colorado State University for enlightening me with his
wisdom and philosophy in the wonderful field of geometric data analysis. Without a proper training
with him, these lecture notes would not have been possible.
Although majority of the figures have been either recreated or generated by the author from codes
in MATLAB, you will find that the first three chapters of the notes are nearly taken verbatim from
Kirby’s book entitled, “Geometric Data Analysis — An Empirical Approach to Dimensionality Re-
duction and the Study of Patterns.” Pieces of the notes are presented in a way that is mirrored through
my personal encounter of the materials in research. With thehelp of appropriate citations, readers
should find it easy to locate the origin of the materials. For example, Chapter 4 is inspired by Mr.
Justin Marks’ Master Thesis titled “Discriminative Canonical Correlations: An Offspring of Fisher’s
Discriminant Analysis.” Chapters 5, 6, and 7 follow rather closely with the book “Digital Image Pro-
cessing” by Rafael Gonzalez and Richard Woods with a hint of “Discrete Wavelet Transformations”
by Patrick Van Fleet in Chapter 6.
These notes are intended as the primary source of information for MATH 521: Matrix Methods for
Data Analysis and Pattern Recognitionas taught in California State University, Long Beach during
the 2012-2013 academic year. Seeing how widespread the techniques of data analysis and pattern
recognition have become, it was seemingly impossible to identify a single textbook that will serve the
need for this course. Furthermore, while geometric perspective in learning patterns in real data sets
is essential and almost inevitable, it is often overlooked in practice. I want to make a strong point
in the importance of utilizing geometric tools for analyzing large data sets encountered in real life
applications.
The notes are indefinitely incomplete and almost certainly contain errors. Any other use aside from
classroom purposes and personal research, please contact me at jen-mei.chang@csulb.edu. Any sug-
gestion, comment, and error should also be sent to me. I wish you find these notes helpful in your
discovery of the wonderful realm of data analysis and pattern recognition.
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CHAPTER 1

Vector Spaces and Linear Transformation

This chapter starts by reviewing some basic vector and matrix manipulations in Section 1 and then
goes on to cover materials concerning vector spaces, lineartransformations, and matrix algebra from
linear algebra and numerical linear algebra. Representingdata in terms of good coordinates requires
a change of basis. The ideas behind such linear transformations are described in Section 2. Basic
operations on important subspaces are visited in Section 3.The fundamental notion of a projection
matrix is defined and developed in Section 4 along with a detail discussion on the one of the most im-
portant type of projection matrices, orthogonal projection matrices. To place this material in context,
an application to discovering novelty in patterns is given.In Section 5, we will review the basic com-
putations and facts concerning eigenvalues and eigenvectors that leads naturally to the discussion on
the theory of singular value decomposition in Section 6, where numerous applications are presented.
We will follow the discussions in [31] and [17] closely throughout this chapter.

1. Vectors, Matrices, Angles, and Distances

In this section, we review some of the most fundamental toolsused in geometric data analysis.

1.1. Vectors and Matrices.Pretending we know the definition of avector, then one interpre-
tation of amatrix is simply a collection of vectors. Another definition of a matrix that is more
commonly adapted treats a matrix as a rectangular array of data. For example,

X =







♣ ♠ ♥
♠ ♥ ♦
♥ ♦ ♣
♦ ♣ ♠







is a 4-by-3 (4× 3) matrix with four rows and three columns. In general, we label the entries in a
matrix by its relative positive in the matrix as shown in Figure 1 The entrya3,2 (or a32) encodes the

FIGURE 1. An illustration of am-by-n matrix.

value in the 3rd row and 2nd column, i.e., row first, column second.
In order to develop mathematical properties of these collections of data, we often represent these data
with numbers. For example, in digital photography a 8-bit black and white image of sizem-by-n
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8 1. VECTOR SPACES AND LINEAR TRANSFORMATION
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(a) blurred zero (b) true zero

FIGURE 2. An illustration of matrix representation of black and white images.

is represented by a matrix of sizem×n where entries in the matrix are integer numbers between 0
and 255 (8 bit= 28 = 256 possible intensity values, called grayscale.). The entries with value 0 are
completely black while the entries with value 255 are completely white. Color images can be repre-
sented using various formats. For example, the RGB format stores images in three channels, which
represent their intensities on the red (R), green (G), and blue scales (B), respectively. Mathematical
manipulations of matrices give visual changes to images. For example, in a signal processing appli-
cation (image de-blurring), we are given a “mess-up” image of the true image and asked to recover
the original image. The matrix representation of the “blurred” image is given below and looks like
the one given in Figure 2(a).

Z̃ =














2 215 234 89 131 141 186 255
255 255 225 29 10 200 206 255
255 255 1 102 229 255 78 122
255 136 214 255 201 255 10 214
135 10 255 255 255 255 135 255
135 10 192 255 255 201 122 255
198 135 255 229 145 136 255 255
255 198 100 198 197 255 255 255














,

The matrix representation of the true image is given here andit looks like the image given in Fig-
ure 2(b).

Z =














255 255 255 87 136 136 186 255
255 255 225 29 10 200 206 255
255 255 1 102 229 255 78 122
255 136 214 255 255 255 10 214
135 1 255 255 255 255 135 255
135 1 255 255 255 201 122 255
198 135 255 229 145 136 255 255
255 198 100 198 197 255 255 255














The mathematics that goes into recovering the true images depends heavily on the properties of the
image matrix and results from (numerical) linear algebra. This is why we are interested in the analysis
of matrices.



1. VECTORS, MATRICES, ANGLES, AND DISTANCES 9

A simple way to compare two vectors is to compare their norms.The most commonvector norms
are

||x||1 =
n

∑
i=1

|xi| 1-norm,

||x||2 =

√
n

∑
i=1

x2
i 2-norm or Euclidean norm,

||x||∞ = max
1≤i≤n

|xi | max-norm.

The 2-norm is the generalization of the standard Euclidean distance inR3 to Rn. All three norms
defined here are special cases of thep−norm:

||x||p =
(

n

∑
i=1

|xi |p
)1/p

.

Associated with the Euclidean vector norm is theinner productbetween two vectorsx andy in Rn,
which is defined

(x,y) = xTy.

Generally, avector normis a mappingRn → R with the properties

PROPERTY1.1. For vectorsx,y∈ Rn andα a constant,

(1) ||x|| ≥ 0 for all x
(2) ||x||= 0 if and only ifx= 0
(3) ||αx||= |α|||x||, α ∈ R

(4) ||x+y|| ≥ ||x||+ ||y||, the triangle inequality

In data mining applications, it is common to use thecosine of the anglebetween tworeal vectors as
a distance measure:

cosθ(x,y) =
xTy

||x||2||y||2
.

With this measure two vectors are close if the cosine is closeto one andx andy areorthogonalif
xTy = 0, i.e., angle between them isπ/2. If x andy are two nonzero vectors inCn, then the angle
betweenx andy is defined to be

∠(x,y) := cos−1

∣
∣yHx

∣
∣

||x||2||y||2
.

What if we want to compare a collection of data to another collection of data? This is considered
as a many-to-many (set-to-set) classification paradigm. See [1, 10] for a detailed discussion on this
classification structure.

1.2. Angles Between Subspaces.An r-by-c gray scale digital image corresponds to anr-by-c
matrix where each entry enumerates one of the 256 possible gray levels of the corresponding pixel.
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Thus, an imageJ can be realized as a column vector of length equal to the product of J’s resolutions.
Now, for a subjecti, we collectk distinct images (which corresponds tok column vectors) and stack
them into a single data matrix so that

X(i) =
[

x(i)1

∣
∣
∣ x(i)2

∣
∣
∣ · · ·

∣
∣
∣ x(i)k

]

with rank(X(i)) = k. Then the column space ofX(i) gives ak-dimensional subspace inRn.
For subspaces, we have a similar but recursive way to measurepairwise distances.

DEFINITION 1.1. Principal Angles. (Real case) IfX andY are two vector subspaces ofRn such
that R(X) = X , R(Y) = Y , and p = dim(X) ≥ dim(Y) = q ≥ 1, then theprincipal angles θk ∈
[0, π

2 ],1≤ k≤ q betweenX andY are defined recursively by

cos(θk) = max
u∈X

max
v∈Y

∣
∣uTv

∣
∣=
∣
∣uT

k vk
∣
∣(1)

subject to||u||2 = ||v||2 = 1, uTui = 0 andvTvi = 0 for i = 1,2, . . . ,k−1. The vectors(u1,u2, . . . ,uq)
and(v1,v2, . . . ,vq) are called the left and right principal vectors of the pair ofsubspaces, respectively.

To visualize this recursive definition, consider Figure 3. The first (minimum) principal angle between
subspacesX and Y is found by finding a directionu in the span ofR(X) and a directionv in
the span ofR(Y) whose angle is the smallest compared to angles between any other combination.
These direction vectors that give rise to the minimum principal angle are called the first left and right
principal vectors, respectively. Once the first angle is found, the second principal angle is computed
in the orthogonal complements of the spaces spanned byu andv found previously. The smallest angle
arises from all possible linear combinations of the vectorsin (X −u)⊥ and(Y − v)⊥ is called the
second principal angle. The process continues until it runsout of dimension to search.
A numerically stable algorithm that computes the principalangles between subspacesX andY is
given in the following Theorem [6]. This algorithm is accurate for large principal angles (> 10−8).

THEOREM 1.1. Assume that the columns of QX ∈ Rn×p and QY ∈ Rn×q form orthonormal bases for
two subspacesX andY ofRn with q≤ p. Let M= QT

XQY and the SVD of this p×q matrix be

M =UCVT , C= diag(σ1, . . . ,σq),
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FIGURE 3. An illustration of principal vectors between two subspaces.

where UTU =VTV =VVT = Iq. If we assume thatσ1 ≥ σ2 ≥ ·· · ≥ σq, then the principal angles and
the principal vectors associated with this pair of subspaces are given by

cosθk = σk(M), L = QXU, R= QYV.(2)

PROOF. [6]. SinceM = UCVT , we haveUTMV = C. It is known that the singular values and
singular vectors of the matrixM can be characterized by

σk(M) = max
||u||2=1

max
||v||2=1

uTMv= uT
k Mvk,

subject touTu j = vTv j = 0 for j = 1, . . . ,k−1. If we let l = QXu∈ R(QX), r = QYv∈ R(QY), then
it follows that

||l ||2 = ||u||2, ||r||2 = ||v||2, uTu j = lT l j , vTv j = rT f j .

Now, sinceuTMv= uTQXQYv= (QXu)T(QYv) = lTr, so

σk(M) = max
||l ||2=1

max
||r||2=1

lTr = lT
k rk,

subject tolT l j = rT r j = 0 for j = 1, . . . ,k− 1. Equation 2 follows directly from the definition of
principal angles and vectors. �

An example is overdue at this point.

EXAMPLE 1.1. LetX be thexy-plane andY theyz-plane inR3. Notice thatX = span{i, j} and
Y = span{ j,k}. Let

QX =





1 0
0 1
0 0



 and QY =





0 0
1 0
0 1



 .

It is easy to see thatR(QX) = X ,R(QY) = Y , andQT
XQX = QT

YQY = I . Now, let

M = QT
XQY =

[
1 0 0
0 1 0

]




0 0
1 0
0 1



=

[
0 0
1 0

]

.

SVD of M gives

M =

[
0 −1
−1 0

][
1 0
0 0

][
−1 0
0 1

]

.
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Thus, cosθ1 = 1 and cosθ2 = 0, which then givesθ1 = 0 andθ2 = π/2. The ordered left principal
vectors are the column vectors of

L = QXU =





1 0
0 1
0 0





[
0 −1
−1 0

]

=





0 −1
−1 0
0 0



 ,

and the ordered right principal vectors are the column vectors of

R= QYV =





0 0
1 0
0 1





[
−1 0
0 1

]

=





0 0
−1 0
0 1



 .

Notice that the principal angles make sense, since two spaces share a dimension (they-axis), which
explains the minimal principalθ1 being 0.

A sine-based algorithm for calculating small principal angles is available in [35]. This algorithm,
presented in Algorithm 1, is often used to ensure precision of the minimum principal angles.

Algorithm 1 Small and Large Principal Angles [35]
This algorithm computes the principal angles between two subspaces given by the real matricesX
andY, whereX is in Rn×p andY is inRn×q. Principal angles are defined to be between 0 andπ/2

and listed in ascending order.
Input: matricesX (n-by-p) andY (n-by-q).

Output: principal anglesθ between subspacesR(X) = X andR(Y) = Y .
(1) Find orthonormal basesQx andQy for X andY such that

QT
x Qx = QT

y Qy = I and R(Qx) = X ,R(Qy) = Y .

(2) Compute SVD for cosine:QT
x Qy = HΣZT , whereΣ = diag(σ1, . . . ,σq).

(3) Compute matrix

Y =

{

Qy−Qx(QT
x Qy) if rank(Qx)≥ rank(Qy);

Qx−Qy(QT
y Qx) otherwise.

(4) SVD for sine:[H,diag(µ1, . . . ,µq),Z] = svd(Y).
(5) Compute the principal angles, fork= 1, . . . ,q:

θk =

{

arccos(σk) if σ2
k < 1

2;

arcsin(µk) if µ2
k ≤ 1

2.

If you are a little rusty about the definitions of linear independence of vectors and rank of a matrix,
please refer to Appendix A.

1.3. Distances Between Subspaces.Now that we have a way to compute angles between sub-
spaces, we introduce a class of metrics that are used to calculate distances between them.
Recall that the (real)Grassmann manifoldor Grassmannian(of k-planes inn-space) is the setG(k,n)
of k-dimensional vector subspaces ofRn (for fixed k≤ n). The (differential) topology onG(k,n) can
be described in several ways: First, as a quotient (homogeneous space) of the orthogonal group,

(3) G(k,n) = O(n)/O(k)×O(n−k).

Next, as a submanifold of projective space,

(4) G(k,n)⊂ P(ΛkRn) = P(
n
k)−1(R)
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via the Plücker embedding. Finally, as a submanifold of Euclidean space,

(5) G(k,n)⊂ R(n2+n−2)/2

via a projection embedding described recently in [11].
While the manifold structures onG(q,m) obtained from these three constructions are equivalent (dif-
feomorphic), they naturally lead to different geometries on the Grassmannian. The standard invariant
Riemannian metric on orthogonal matricesO(n) descends via (3) to a Riemannian metric on the
homogeneous spaceG(k,n). The resultinggeodesicdistance functiondg (arc length) on the Grass-
mannian in terms of the principal anglesθ1, . . . ,θq betweenX, Y ∈ G(k,n), is (see, e.g., [16])

dg(X,Y) =

(
k

∑
i=1

θ2
i

)1/2

= ‖θ‖2.

If one prefers the realization (4), then the Grassmannian inherits a Riemannian metric from the Fubini-
Study metric on projective space (see, e.g., [25]), and the resultingFubini-StudydistancedFS is given
in terms of the principal angles by

dFS(X,Y) = cos−1

(
k

∏
i=1

cosθi

)

.

Finally, one can restrict the usual Euclidean distance function onR(n2+n−2)/2 to the Grassmannian via
(5) to obtain theprojection For chordaldistancedc (so called because the image of the Grassmannian
under (5) lies in a sphere, so that the restricted distance issimply the distance along a straight-line
chord connecting one point of that sphere to another; see [11]) which, in terms of the principal angles,
has the expression

dc(X,Y) =

(
k

∑
i=1

(sinθi)
2

)1/2

= ‖sinθ‖2.

This projection F distancedc has recently been used in the context of sphere-packing/coding theory
in the Grassmannian, where it is significantly more efficientthan the “standard” geodesic distancedg
[11], [2]. As a slight variation on the last formula, we may also consider the so-calledchordal Frobe-
niusdistancedcF, given in terms of the principal angles by

dcF(X,Y) = ‖2sin
1
2

θ‖2.

See [16] for additional details.
Now, the set-to-set classification problem can be transformed to a problem onG(k,n) if we realize
the linear span of a set ofk images as ak-dimensional vector subspace of the space of all possible
images at a given resolution. Our objective is to match an unlabeledsetof images by comparing its
associated point with a collection of given points onG(k,n). As a consequence of the encoding of
sets of images as points on a Grassmann manifold we may avail ourselves of a variety of well-known
distance measures between points on the manifold as discussed above.
Note that the standard distance between subspaces that is often presented in linear algebra is de-
termined by the largest angle between the two subspaces. This ignores the geometric information
associated with the smaller angles. We have observed that inmany instances it is in fact the smallest
(not largest) principal angle that carries the most significant information.

2. Linear Transformation and Matrices

The empirical scientific approach for the investigation of aphysical system consists of the following
basic steps:
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• Data collection
• Model building
• Prediction

The passage from data collection to model building is a significant step, which involves extracting
information from the data to permit a characterization of the process. The goal of this modeling phase
is to provide knowledge that was not available in the raw dataitself. This general approach permits
us to learn and deepen our understanding of complicated phenomena. For example, the apparent
order observed in financial markets and weather systems provides ample evidence that our ability to
understand, manipulate, predict and control patterns is extremely important and potentially rewarding.
The naturally question to ask then: how can massive quantities of data be distilled into a few basic
facts, or laws, which serve to describe a process? It has beenobserved that there is a tendency in na-
ture for physical systems toself-organize. In a very general sense, this tendency for self-organization
is revealed by the formation of patterns, the essence of which is reflected by a coherence, or correla-
tion, of measurable physical quantities. Furthermore,the formation of patterns appears to reduce
the dimension of the space required to characterize the system. One premise of this course is that
systems that exhibit self-organization may be investigated by exploiting the reduced dimension of re-
sulting patterns. The primary tool for accomplishing this is an appropriate coordinate transformation,
i.e., one that reveals the reduction in dimension associated with coherent structures, or patterns. Thus,
this course is essentially about discovering useful transformations, i.e., transformations that help us
reveal underlying processes that are hidden in large data sets. Very often data sets are large because
their coordinate systems are too general. Good coordinate systems — or equivalently, good bases
— may be obtained by incorporating some knowledge of the data. We will be primarily concerned
with exactly how to transfer the knowledge from the data to the coordinate system. When carried out
effectively, this program replaces massive data sets by manageable ones which retain the information
essential to understanding the process or phenomenon.
With that, let us now review the necessary machinery that will help us in obtaining those dimensionality-
reducing mappings. First, the notion of linearity and nonlinearity in mappings.

DEFINITION 2.1. A mapping (transformation)f : U →V is said to belinear if

f (αx+βy) = α f (x)+β f (y)

for all x,y∈U andα,β ∈ R. A mapping is said to benonlinearif it is not linear.

The prototype linear mapping can be considered as a matrix multiplication, since ifA∈ Rm×n is an
m-by-n matrix, then the mappingLA : Rn → Rm that is given byLA(u) = Au is a linear mapping
that takes a vectoru in Rn to Rm. While it is not surprising that matrix multiplication is a linear
mapping, it is notable that every linear transformation between finite-dimensional vector spaces may
be represented as multiplication of a vector by an appropriate matrix. This representation is achieved
by the introduction of a coordinate system, or basis, for thespace. For example, then column vectors

e(1) = (1,0, · · · ,0)T

e(2) = (0,1, · · · ,0)T

...

e(n) = (0,0, · · · ,1)T

form a basis forRn known as thestandard basis.
Thus anyu ∈ Rn can be written as

u = α1e(1)+α2e(2)+ · · ·+αne(n).
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The n-tuple (α1,α2, . . . ,αn) determines thecoordinatesof the pointu with respect to the standard
basis. We emphasize the dependence of the coordinates ofu on the choice of basis. For example,

given another basisB for Rn consisting of the vectors
{

v(1),v(2), · · · ,v(n),
}

, we may representu as

u = x1v(1)+x2v(2)+ · · ·+xnv(n).

Now then-tuple(x1,x2, . . . ,xn) determines the coordinates of the pointu with respect to the new basis
B. A central issue in analyzing patterns in data is determining and utilizing the good basis for a given
set of data. Indeed, a central theme of this course is the construction of empirical bases which are very
effective for representing specific data sets. Motivated bythis, we now develop the basic mechanics
of changing coordinate systems.

Change of Basis.

To start, let
{

v(i)
}n

i=1
and

{

w(i)
}n

i=1
both be bases forRn, calledB1 andB2, respectively. Letu be

an arbitrary element ofRn. Thus in terms of the basisB1 we write

u = x1v(1)+x2v(2)+ · · ·+xnv(n),

and in terms ofB2 we write

u = y1w(1)+y2w(2)+ · · ·+ynw(n),

giving the representation, or coordinates,

uB1 = (x1 · · ·xn)
T

with respect toB1, and
uB2 = (y1 · · ·yn)

T

with respect toB2. Equivalently, we may write

u =VuB1 =WuB2,

whereV andW are the matrices of basis vectors forB1 andB2, respectively.

EXAMPLE 2.1. Given that the basis vectors definingB1 are

v(1) =
(

1
0

)

and v(2) =
(

1
1

)

and that the basis vectors definingB2 are

w(1) =

(
0
1

)

and w(2) =

(
1
−1

)

,

find uB2 given

uB1 =

(
2
1

)

.

Plugging intoVuB1 =WuB2, we have
(

1 1
0 1

)(
2
1

)

=

(
0 1
0 −1

)

uB2,

from which it follows that

uB2 =

(
4
3

)

.

One of the most important types of matrices for our purposes is the orthogonal matrix.
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DEFINITION 2.2. A real square matrixU is said to beorthogonalif

UTU = I .

Note that the requirement thatU be square means that an orthogonal matrixU is invertible with
inverse

U−1 =UT .

Thus, one of the obvious attractions of an orthogonal matrixis that its inverse is easy to compute. An
orthonormal set of vectors may be used to construct an orthogonal matrix. An orthogonal matrix acts
as a very useful change of basis in that it preserves Euclidean distances (norms). IfU is an orthogonal
matrix, we have

||Ux||22 = (Ux)TUx

= xTUTUx

= xTx

= ||x||22.
Because the Euclidean norms are preserved, the mappingU is referred to as anisometry. Note that
distances in thel1-norm are not preserved. In addition, if the determinant of an orthogonal matrix is
one, then we may view the transformation geometrically as a rigid rotation of the space.

Other Classes of Transformations and Homogeneous Coordinates.

In the 2-dimensional case, there are a few matrices we shouldbe familiar with which are given here.
(1) Scaling matrices.

Msa=

[
sx 0
0 sy

]

.

If sx = sy, then it’s a uniform scaling. Otherwise, it is non-uniform or anisotropic.
(2) Shearing matrices. A shear parallel to thex-axis:

Msx=

[
1 λ
0 1

]

and a shear parallel to they-axis:

Msx=

[
1 0
λ 1

]

.

(3) Reflection matrices are computed based on the Householder transformation. Two common
ones are reflection about thex-axis

Mrx =

[
1 0
0 −1

]

and the reflection about they-axis

Mry =

[
−1 0
0 1

]

.

In general, to reflect a vector about a line thatgoes through the origin, let < lx, ly > be a
vector in the direction of the line, then

Mrl =
1

l2
x + l2

y

[
l2
x − l2

y 2lxly
2lxly l2

y − l2
x

]

.

Note that this technique only works if the plan runs through the origin. If it does not, we
need to use anaffine transformation.
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(4) Rotation matrix (about the origin).

Mrt =

[
cosθ −sinθ
sinθ cosθ

]

whereθ is measured counterclockwise.
(5) Translation matrix does not have a nice matrix representation in the Euclidean coordinates.

It can be given easily in thehomogeneous coordinates.
(6) Projection matrices is the heart of our discussion in this chapter, we will, therefore, delay it

until Section 4.

For example, to rotate a vectorp= [xy]T in thexy-plane 45◦ counterclockwise about the origin, we
perform the operation

[
x′

y′

]

=

[ √
2

2 −
√

2
2

−
√

2
2

√
2

2

][
x
y

]

.

In practice (image processing applications),homogenous coordinatesallow affine transformationsto
be easily represented by a matrix. Also they make calculations possible in projective space just as
Cartesian coordinates do in Euclidean space. Therefore, wewill describe these transformations using
the homogeneous coordinates next. Before that, a few definitions are in order.

DEFINITION 2.3. A similarity transformationis a conformal (angle-preserving) mapping whose
transformation matrixA can be written in the form

A= PBP−1,

whereP is an invertible square matrix.

Examples of similarity transformation include scaling, translation, and rotation.

DEFINITION 2.4. In geometry, anaffine transformationor affine mapbetween two vector spaces
consists of a linear transformation followed by a translation, i.e.,

x 7→ Ax+b

Examples of affine transformation include similarity transformation and shearing.
Another important category of transformation is theperspective projection (projective transforma-
tion) that is of great importance in 3D computer graphics. Whereasparallel projections are used to
project points onto the image plane along parallel lines, the perspective projection projects points
onto the image plane along lines that emanate from a single point, called the center of projection.
This means that an object has a smaller projection when it is far away from the center of projection
and a larger projection when it is closer.

DEFINITION 2.5. Theprojective spacegenerated from a particular vector spaceV is denoted

PV = {1−dimensional subspaces ofV} .
The case whenV = R2 or V = R3 are theprojective lineand theprojective plane, respectively.
Alternatively,

Pn =
{

1−dimensional subspaces ofKn+1} .

DEFINITION 2.6. Thehomogeneous coordinatesof a projective pointp ∈ P2 is [x : y : z], where
v= (x,y,z)T is any vector in the 1-dimensional subspace which definesp.

Note that the homogeneous coordinates are not unique: any vector on that line can be used to define
the homogeneous coordinates.Thus, we have the following facts:

PROPOSITION2.1. Let p∈ P2.
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(1) Any three real numbers x,y, and z which are not all zero can be the homogeneous coordinates
of a point of the projective plane.

(2) [x : y : z] = [x′ : y′ : z′] if and only if there isλ 6= 0 such that x′ = λx,y′ = λy, and z′ = λz.

In general, the homogeneous coordinates of a point of projective space of dimensionn are usually
written as[x : y : z : · · · : w], a row vector of lengthn+1. Two sets of coordinates that are proportional
denote the same point of projective space: for any non-zero scalarc from the underlying fieldK,
[cx : cy : cz: · · · : cw] denotes the same point. Therefore this system of coordinates can be explained
as follows: if the projective space is constructed from a vector spaceV of dimensionn+1, introduce
coordinates inV by choosing a basis, and use these inP(V), the equivalence classes of proportional
non-zero vectors inV.
The idea of a projective space relates to perspective, more precisely to the way an eye or a camera
projects a 3D scene to a 2D image. All points which lie on a projection line (i.e., a “line-of-sight”),
intersecting with the focal point of the camera, are projected onto a common image point. In this case
the vector space isR3 with the camera focal point at the origin and the projective space corresponds
to the image points. See Figure 4 for an illustration.

focal point 

projection line 

(line of sight) 

common image

point

],,[ zyx

z

y
x

FIGURE 4. Illustration ofP2 and perspective geometry.

Let p = [x : y : z] ∈ P2. Recall that this represents the line inR3 passing through the origin and the
point (x,y,z). If this line is not in thexy-plane, that is, ifz 6= 0, then using the scaling property of
homogeneous coordinates we see that

p= [x : y : z] =

[
x
z
,
y
z
,1

]

.

This gives anormal formfor such points, in that it is a unique representation of the form [a : b : 1]
since

[a : b : 1] = [c : d : 1] if and only if a= bandc= d.

The points ofP2 that this does not work for are exactly the points[x : y : 0], where the homogeneous
z coordinate is zero. In terms of the lines ofR3, these are the horizontal lines in thexy-plane.
In this way we see that for many of the points of the projectiveplaneP2, we have associated two
real numbers. Geometrically, we can think of this as follows. let H be the plane inR3 defined by
z= 1. Every line through the origin that is not parallel to this plane will meetH in a unique point.
Conversely, every point ofH may be joined to the origin by a unique line. In this way we havea
correspondence between the points of the Euclidean planeH and the points ofP2, except thez= 0
points.
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Since the plane is naturally anR2, we have a natural pairing

R2 →֒ P2

which associates an ordered pair(a,b) in R2 to the point[a : b : 1] in P2. The inverse mapping sends
a point[x : y : z] ∈ P2 to the ordered pair(x/z,y/z) ∈ R2. This inverse map is not defined at the points
wherez= 0. What about those points whenz= 0? It is useful to “step down” one dimension to
get a feeling for this concept. Suppose that instead of studying the space of lines through the origin
in R3, we study the lines through the origin inR2. We all know that each of these lines may be
described by a real number — its slope. If a line through the origin contains the point(x,y), then its
slope ism= y/x. This associates a single real number to each line through the origin,except for the
vertical line. Indeed, the slopem= y/x can be viewed as they-coordinate of the intersection of the
line with the vertical linex= 1, in complete analogy with the situation described above. What should
we associate to that one missing line, the vertical line? Theslope construction clearly indicates that
we should think of the vertical line as having “infinite” slope. Therefore a reasonable model for the
set of lines through the origin inR2 is the set of real numbers (including the slope of the line)plus
one extra infinite point:

lines though 0 inR2 = R∪∞.

One important feature of this point of view is that the “infinite” point∞ is approached by either letting
the slope valuem go to positive infinity, or by going to negative infinity. Therefore, this infinite point
is somehow a “two-sided” infinity, being approached from either very large positive slope numbers
and from very large negative slope numbers. Similarly, if weconsider a point[x : y : z]∈P2 with z 6= 0,
and letzapproach 0, what do we find? Ifz 6= 0, then we have a point of the Euclidean plane(x/z,y/z).
As z approaches 0, keepingx andy fixed, we see that this Euclidean point has coordinates goingto
infinity. Therefore we conclude that the points ofP2 with z= 0 are somehow “at infinity” when we
think of them in relation to the Euclidean plane points wherez 6= 0. We can also see this geometrically,
using thez= 1 planeH: as a line inR3 through the origin moves and approaches a horizontal line, its
intersection withH is a point which is moving away from he origin, and its coordinates are going to
infinity. This convinces us that the extra points ofP2−R2 should be considered as being “at infinity”.
Now, we will give matrix representatives for the similaritytransformation in homogeneous coordi-
nates. It is strongly recommended that you verify the effects of these matrices yourselves.

• Scaling matrix.

S=





sx 0 0
0 sy 0
0 0 1



 .

• Translation matrix.

T =





1 0 tx
0 1 ty
0 0 1



 .

• Rotation matrix.

R=





cosθ −sinθ 0
sinθ cosθ 0

0 0 1



 .

See Appendix 3 for a discussion on the registration problem in face recognition using these linear
transformations.
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3. Subspaces

Because data sets lie initially within large vector spaces,it is important to be able to decompose, or
analyze , such spaces into smaller ones. In this section we further develop our tools for decomposing
patterns into especially useful subspaces. One of the main ideas to be developed is that of the projec-
tion matrix, but first, we examine the general problem of decomposing a vector space into the sum of
independent subspaces. To begin, we recall the basic definition of a subspace of a vector space.

DEFINITION 3.1. Asubspace Wof a vector spaceV is a subset of vectors such that

(1) (W is closed.) Ifw,w′ ∈W anda,b∈ R thenaw+bw′ ∈W.
(2) (W contains the zero vector.)0∈W.

PROPOSITION3.1. The set of vectors

W =

{

w : w= ∑
i

αiv(i)
}

that is spanned by the vectors
{

v(i)
}

is a subspace.

EXAMPLE 3.1. Any line through the origin ofRn is a one-dimensional subspace. Any space spanned
by a collection ofk< n independent lines through the origin forms ak-dimensional subspace ofRn.

An important parameter space whose elements are subspaces is called the Grassmann manifold.

DEFINITION 3.2. TheGrassmannian G(k,n)or theGrassmann manifoldis the set ofk-dimensional
subspaces in ann-dimensional vector spaceKn for some fieldK, i.e.,

G(k,n) = {W ⊂ Kn | dim(W) = k} .

PROPOSITION3.2. If W1 and W2 are both subspaces, then so is their intersection W1∩W2.

DEFINITION 3.3. Thesumof the vector subspacesW1 andW2 is written asW = W1+W2 and is
defined to be the set

W1+W2 = {w1+w2 : w1 ∈W1,w2 ∈W2} .

PROPOSITION3.3. The sum of two subspaces is a subspace.

The fact that the sum of two subspaces is a subspace provides us with a nice way to decompose a
vector, viz., ifx ∈ W andW = W1+W2, we can always writex = w1+w2 wherewi ∈ Wi . After a
little bit of experimenting with this decomposition it is apparent that it is not unique. This ambiguity
will generally be undesirable, but can be avoided by restricting the relationship betweenW1 andW2
as described below.

Independence of Subspaces.

To make the decomposition of a vector unique we require that the subspaces be independent.

PROPOSITION3.4. If W1 and W2 are independent subspaces and V= W1+W2, w1 ∈ W1, w2 ∈ W2,
then the decomposition ofx ∈V given by

x = w1+w2

is unique.
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Direct Sum Decompositions.

From above we see that the decomposition is unique if the subspaces are independent and we can
distinguish the decomposition from the mere addition of subspaces by writing

W =W1⊕W2

as thedirect sum decompositionof W. These ideas may be extended to the case of more than two
subspaces. A special but important instance of independentsubspaces is orthogonal subspaces.

DEFINITION 3.4. A vectorv ∈V is said to beorthogonalto a subspaceW ⊆V if v is orthogonal to
everyw ∈ W. Two subspacesW1 andW2 are said to beorthogonal subspacesif every w1 ∈ W1 and
w2 ∈W2 the inner product satisfies(w1,w2) = 0.

Given a subspaceW of the vector spaceV, the space of all vectors orthogonal toW in V is called the
orthogonal complementof W, writtenW⊥.

EXAMPLE 3.2. LetV = R3. Then thex-axis and they-axis are orthogonal subspaces ofR3. Also, the
orthogonal complement of thexy-plane is thez-axis.

An important special case of the direct sum decomposition occurs when the subspaces are orthogonal.
In this situation we distinguish the notation by writing⊕̇.

PROPOSITION3.5. If two subspaces are orthogonal, then they are independent.

Important Subspaces.

In this section, we describe the basic subspaces that will beof use in what follows. It is implicit,
unless otherwise stated, thatA is anm×n matrix.

DEFINITION 3.5. Therangeof A, denotedR(A), is the set of all vectorsv such thatv = Ax, i.e.,

R(A) = {v ∈ Rm : v = Ax for some x ∈ Rn} .
The expressionv = Ax may be rewritten

v = [a(1)|a(2)| · · · |a(n)]
= x1a(1)+x2a(2)+ · · ·+xna(n).

This expression reveals thatv lies in the span of the columns ofA. Hence the range ofA, R(A), is
also referred to as thecolumn spaceof A.

DEFINITION 3.6. Thenull spaceof A, denotedN (A), is the set of all vectorsy such thatAy= 0, i.e.,

N (A) = {y ∈ Rn : Ay = 0} .
DEFINITION 3.7. Therow spaceof A, denotedR(AT), is the set of all vectorsx such thatx = ATv,
i.e.,

R(AT) =
{

x ∈ Rn : x = ATv for some v ∈ Rm} .

DEFINITION 3.8. Theleft null spaceof A, denotedN (AT), is the set of all vectorsv such that
ATv = 0, i.e.,

N (AT) =
{

v ∈ Rm : ATv = 0
}
.

PROPOSITION3.6. For any m×n matrix A one has

N (A)⊥ R(AT),

i.e., they are orthogonal subspaces ofRn, and

N (AT)⊥ R(A),

i.e., they are orthogonal subspaces ofRm.
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The range, or column space, of anm× n matrix A determines a subspace ofRm. The number of
independent vectors in this subspace, i.e., its dimension,is a very special and useful quantity for a
matrix known as itsrank.
We have a very useful counting rule:

PROPOSITION3.7. Let A be an m×n matrix. Then

r +dimN (A) = n,

where r is the rank of A.

From this relationship between the dimensions it follows that the spacesN (A) andR(AT) decom-
poseRn, i.e.,

Rn = N (A)⊕̇R(AT).

An analogous statement holds true for the decomposition ofRm, i.e.,

r +dimN (AT) = m

and
Rm = N (AT)⊕̇R(A).

4. Projection Matrices and Orthogonal Projections

The direct sum provides a framework within which a vector space may be systematically split into
subspaces that provide a unique expression for the decomposition of any vector in the space. In this
section we describe a mapping, referred to as aprojector, or projection matrix, which takes a vector
and executes this decomposition.

DEFINITION 4.1. A matrixP is said to be aprojection matrixif

P2 = P.

Such matrices are said to beidempotent.

EXAMPLE 4.1. It is easy to verify that the matrix

P=

(1
2

1
4

1 1
2

)

is a projection matrix. Note that it has rank 1 and that

R(P) =

{

α
(

1
2

)

: α ∈ R

}

.

See Figure 5 for possible actions of a projection matrix.

Invariant Subspaces

DEFINITION 4.2. LetV be a vector space andL a linear operation onV. If W is a subspace ofV, we
sayW is invariantunderL for eachw ∈W we haveLw ∈W. In order words,L(W)⊆W.

Furthermore, ifW1 andW2 are subspaces invariant underA (whereA is the matrix that corresponds
to the linear operatorL) with V = W1⊕W2, then we sayA is reducedor decomposedby W1 andW2.
We now show that a projection matrix naturally decomposes a vector space into a pair of invariant
subspaces, i.e.,

V = R(P)⊕R(I −P).

First, any vectorv ∈V may be decomposed into elements ofR(P) andR(I −P) via

v = Pv+(I −P)v.
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FIGURE 5. (a) A nonorthogonal, orobliqueprojection. (b) An orthogonal projection.

Note that the mappingI − P is also a projection matrix (known as thecomplementary projection
matrix) since

(I −P)2 = I −2P+P2

= I −2P+P

= I −P.

We may also employ the notationQ= I −P to represent the projection matrix onto the null space. The
subspaceR(P) is invariant under the action ofP may be concluded from the following proposition:

PROPOSITION4.1. v ∈ R(P) if and only ifPv = v.

PROOF. First assumev∈R(P), i.e.,v= Px for somex∈Rn. SoPv=P2x= Px= v. Conversely,
assume thatPv = v. It follows directly thatv ∈ R(P). �

Similarly, it may be argued that the spaceR(I −P) is invariant under the action of the projectorI −P.
It is left to show that the subspaces are independent.

PROPOSITION4.2. R(P)∩R(I −P) = {0}.

PROOF. Let v ∈ R(I −P), i.e., v = (I −P)x for somex. SoPv = 0. But, by Proposition 4.1,
v ∈ R(P) if and only if Pv = v; hence we conclude thatv = 0 is the only element common to both
R(P) andR(I −P). �

Lastly, we make a connection between the range of a complementary projector and the null space of
the associated projector.

PROPOSITION 4.3. The range of the complementary projector is the same as the null space of the
projector, i.e.,

R(I −P) = N (P).

PROOF. Let r ∈ R(P), i.e.,
r = (I −P)v.

Projecting this vector gives
Pr = Pv−P2v = 0.

Thus, ifr ∈R(I −P), thenr ∈N (P). Since this is true for an arbitraryr , it follows thatR(I −P)⊂
N (P). Conversely, ifr ∈ N (P), thenPr = 0, i.e., (I − P)r = r . So r ∈ R(I − P). Hence the
result. �
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From these results it is now clear that a projection matrix separates a space into the sum of two
independent subspaces

V = R(P)⊕N (P).

It follows from this discussion that for every splitting

V =W1⊕W2

there exists a projection operatorP such that

R(P) =W1

and
N (P) =W2.

All that is required is to determineP givenW1. We will describe a method for doing this in the
following discussions.

Orthogonal Projection Matrices

We have seen that projection matrices permit the decomposition of a space into invariant subspaces.
The most useful application of this idea is when the resulting subspaces are orthogonal, i.e., when the
projection matrix and its complement produce orthogonal vectors. We begin with a basic definition.

DEFINITION 4.3. Letx = w1+w2 andw1 ∈W1,w2 ∈W2 with W1 ⊥W2. The vectorw1 is called the
orthogonal projectionof x onto W1, andw2 is called theorthogonal projectionof x ontoW2.

Associated with an orthogonal projection is the operator, which we now refer to as an orthogonal
projection matrix, which performs the projection described in the definition above. (Note that the
orthogonal projection matrix should not be confused with anorthogonal matrix.)

DEFINITION 4.4. If the subspacesR(P) andN (P) are orthogonal, then the projection matrixP is
said to be anorthogonal projection matrix.

If P is an orthogonal projection matrix, then we may write the direct sum decomposition of the space
as

V = R(P)⊕̇N (P).

Best Approximations and the Projection Theorem

SupposeW1 andW2 are subspaces of an inner product spaceV such thatV =W1+W2, and letx ∈V
be an arbitrary vector. The notion ofbest approximationto x by a vector inW1 is made explicit as
follows:

DEFINITION 4.5. A best approximation tox by vectors inW1 is a vectorw1 ∈W1 such that

||x−w1|| ≤ ||x−w′
1||

for all w′
1 ∈W1.

In other words, for eachx ∈V, we seek a vectorw1 ∈W1 such that the norm||x−w1|| is a minimum.
We shall assume, unless otherwise stated, that the Euclidean norm is to be employed. The theory is
of course valid for norms in general.

THEOREM 4.1. The Projection Theorem.Of all decompositions of the form

x = w′
1+w′

2

with w′
1 ∈ W1, the orthogonal projection provides the best approximation to x. Equivalently, the

orthogonal projection minimizes the norm||w′
2||. (See Figure 6)
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FIGURE 6. The best approximation to a pointx is the orthogonal projectionw1. Every
other projectionw

′
1 has a larger residualw

′
2.

PROOF. We rewrite

||x−w1
′||2 = ||x−w1+w1−w1

′||2

=
(

x−w1+w1−w1
′
,x−w1+w1−w1

′)

=
(

x−w1,x−w1+w1−w1
′)

+
(

w1−w1
′
,x−w1+w1−w1

′)

= (x−w1,x−w1)+
(

w1−w1
′
,w1−w1

′)

+2
(

x−w1,w1−w1
′)

= ||x−w1||2+ ||w1−w1
′||2+2

(

x−w1,w1−w1
′)

.

Observe thatx−w1 = w2 ∈W2 and thatw1−w1
′ ∈W1. If W1 ⊥W2, i.e., the projection is orthogonal,

then it follows that (

x−w1,w1−w1
′)

= 0.

From this we have
||x−w1

′ ||2 ≥ ||x−w1||2;

in other words,w1
′
= w1 is abest approximationto x. Note that||w2

′|| = ||x−w1
′ || is a minimum

for w1
′
, and sincew2 = x−w1, it follows thatw2

′
= w2 in the case of the best approximation. �

Furthermore, it can be shown that this best approximation isunique. In addition, these results be
extended to the general setting of metric spaces. See alternative texts for the details.
Note that this theorem says nothing about how to selectW1 itself. In other words, given a fixedW1,
the theorem indicates that the orthogonal projection will minimize the error for each vector inV.
However, selectingW1 for a given data set is an entirely different and interestingissue which will be
pursued in the sequel.

Criterion for Orthogonal Projections

PROPOSITION4.4. If
P= PT ,

then the matrixP is an orthogonal projection matrix.
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PROOF. LetP= PT , Px ∈ R(P) and(I −P)x ∈ N (P). Then

(Px)T(I −P)x = xTPT(I −P)x

= xT(P−P2)x

= 0

�

The converse is also true, i.e., ifP is an orthogonal projection matrix, thenP= PT .

EXAMPLE 4.2. It is easy to verify that the matrix

P=

[1
2

1
2

1
2

1
2

]

is an orthogonal projection matrix.

EXAMPLE 4.3. Every matrix of the formvvT is an orthogonal projection matrix if||v||= 1:

(vvT)2 = (vvT)(vvT)

= v(vTv)vT

= vvT .

Note that this projection matrix has rank one and theR(vvT) = span(v). From this example we
observe that any vectoru may be orthogonally projected onto a given vectorv by defining

Pvu = (vvT)u = v(vTu).

Also, the orthogonal complement, orresidualr is then found to be

r = P⊥
v = (I −Pv)u = u− (vTu)v.

Orthogonal Projection Onto a Subspace

We can leverage our ability to projectu onto a single vectorv into a method for computing the
orthogonal projection ofu∈Rn onto a subspaceW. To begin, we assume that we have an orthonormal

basis for the spaceW consisting of the vectors
{

w(1), . . . ,w(k)
}

. We may view each of thew(i) as

spanning a one-dimensional subspaceWi . Clearly, each of these spaces is orthogonal, i.e.,

Wi ⊥Wj , i 6= j.

Furthermore, the sum of these subspaces span ak-dimensional subspace

W =W1+W2+ · · ·+Wk.

From our previous deliberations,
W =W1⊕̇ · · · ⊕̇Wk.

In other words, the orthonormal basis induces a direct sum decomposition of the subspaceW. A
projection ontoW may be constructed from projections onto the individual subspaces.
The projection ofu onto theith subspace is given by

Pw(i)u = w(i)w(i)Tu.

If we write Pi ≡ Pw(i) , then the projection matrix ontoW is given by

P=
k

∑
i=1

Pi =
k

∑
i=1

w(i)w(i)T .(6)
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Given the matrixM = [w(1)| · · · |w(k)], it follows that

P= MMT .

Orthogonalization

In the course of the above computations we assumed that the subspace on which we were to project
was equipped with an orthonormal basis. We now review theGram-Schmidtprocedure for computing

an orthonormal basis starting from a set of vectors
{

v(i)
}m

i=1
. Take as the first element

u(1) =
v(1)

||v(1)|| .

The second element of this set is constructed using the same two-to-one-dimensional projection tech-
nique discussed previously. The projection ofv(2) ontou(1) is given by

Pu(1)v(2) = (u(1)u(1)T)v(2),

so the vector pointing orthogonally tou(1) is the residual

r = (I −Pu(1))v(2).

Simplifying and normalizing this vector gives

u(2) =
v(2)− (u(1)Tv(2))u(1)

||v(2)− (u(1)Tv(2))u(1)||
.

Proceeding in the same fashion with thejth direction we have

u( j) =
v( j)−∑ j−1

i=1 u(i)Tv( j)u(i)

||v( j)−∑ j−1
i=1 u(i)Tv( j)u(i)||

.

Note that if the added directionv( j) is dependent on the previous vectors, thenu( j) = 0.

EXAMPLE 4.4. Consider the matrix

A=







1 1 −1
0 0 0
1 0 −1
0 1 0






.

Find the orthogonal projection matrix that takes an elementofR(4) ontoR(A). Definea(1)=(1010)T

anda(2) = (1001)T. Since the third column is a multiple of the first,R(A) = span(a(1),a(2)). To
find the projection matrixP that maps an element ofR(4) ontoR(A), we first determine an orthonor-
mal basis forR(A). Clearly the columnsa(1) anda(2) are linearly independent, but they are not
orthogonal. Using the Gram-Schmidt procedure we obtain

u(1) =
1√
2
(1010)T

and

u(2) =
1√
6
(10−12)T .
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The projection matrix ontou(1) is given by

P1 = u(1)u(1)T =
1
2







1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0






,

and the projection matrix ontou(2) is given by

P2 = u(2)u(2)T =
1
6







1 0 −1 2
0 0 0 0
−1 0 1 −2
1 0 −1 2






.

From this we have the projection matrix

P= P1+P2 =
1
3







2 0 1 1
0 0 0 0
1 0 2 −1
1 0 −1 2






.

Application: The Novelty Filter.We have seen how a projection matrix may be constructed from an
arbitrary collection of vectors which span a vector subspace. Now we consider a direct application of
these ideas to a pattern processing problem.
Given a data set consisting of an ensemble of pattern vectors, e.g., digital images of human faces, we
generate associated column vectors by concatenating the columns/rows. In other words, each pattern
is available as ann-tuple. Further, let’s assume that we are given a large number k of these images but

thatk< n, probably much less. Thus we have an ensemble
{

v(i)
}k

i=1
wherev(i) ∈ Rn for everyi.

We would like to determine a projection matrix that takes a new pattern and splits it into two com-
ponents: the first component is the portion of the data that resides in the subspace spanned by the
original patterns, ortraining set; the second component is orthogonal to the training set and repre-
sents the portion of the data that isnovel.
With this in mind, we defineW as the basis in which all the training patterns lie and note that dimW =
m≤ k with equality if the original patterns are independent. To determine an orthonormal basis forW
the Gram-Schmidt procedure is applied to the training data.This operation will take us from the set of
generally nonorthogonal and possibly linearly dependent pattern vectors to an orthonormal basis for

W, which we write as the set
{

u(i)
}m

i=1
. In summary,W = span(v(1), · · · ,v(k)) = span(u(1), · · · ,u(m)).

Next, the orthogonal projection matrixP is computed via Equation (6), as well as the complementary
orthogonal projection matrixI −P. The projection of a pattern produces a point inRm,

P : Rn →W,

x ; Px = w ∈ Rm,

and the residual sits inRn−m:
I −P : Rn →W⊥,

x ; (I −P)x = w⊥ ∈ Rn−m.

As before, this is an orthogonal decomposition of

x = w+w⊥.

According to Kohonen [36], we refer to this orthogonal component as thenoveltyof the pattern, and
the general procedure of separating the novelty of a patternfrom the non-novel component as the
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novelty filter. In the face data example, novelty might correspond to a new face, or possibly a new
pose of a training face.
In practice, problems may arise that make the interpretation of the novelty of a pattern more challeng-
ing. First, if the original set of patterns does not include samples of all possible normal patterns, or at
least enough to span this set, then the subspacem will be too small and components of a pattern may
appear novel only because the set of stored patterns is too small. In addition, the effect of noise on
such a subspace representation can be significant. More details on novelty filter can be found in [36].

5. Eigenvalues and Eigenvectors

At the center of our discussion has been the construction of projection matrices to permit the de-
composition of vector spaces. One of the most useful methodsfor construction projectors is to first
determine a basis of eigenvectors for the space in question.
The study of eigenvalue and eigenvectors is probably one of the most important topics of linear
algebra. It has applications in the study of population growth, statistical analysis, face recognition,
medical imaging, control theory, vibration analysis, electric circuits, etc. And this is just a very small
pool. Here, we will briefly introduce the definition of eigenvalue and eigenvectors and illustrate its
use with a face recognition application.
The central question of theeigenvalue problemcan generally be stated as follows. Given ann×
n matrix A, which is usually thought of as a linear transformation, aneigenvectorof that linear
transformation (matrixA) is a nonzero vector which, when applied by that transformation, changes in
length, but not direction. Mathematically, an (nonzero) eigenvectorx of the matrixA is an×1 matrix
such thatAx is a scalar multiple ofx. The scalar is usually denoted byλ (lambda) and is called an
eigenvalueof A. In symbols, the eigenvalue problem can be written compactly as

Ax = λx.(7)

Given ann× n matrix A, how do we find the eigenvalue and corresponding eigenvectors? Take
Equation (7), rewrite it into

λ Ix−Ax = O,(8)

whereI is then×n identity matrix andO is then×n zero matrix. Then factor out thex

(λ I −A)x= O.(9)

This homogeneous system of equations (n unknowns andn equations) has nonzero solutions if and
only if the determinant ofλ I −A is zero, sincex cannot be a zero vector. This condition equation
det(λ I −A) = 0 is called thecharacteristic equation of A, and is a polynomial equation of degree
n in λ , denoted byρ(λ ) = (λ −λ (1))(λ −λ (2)) · · ·(λ −λ (n)) = 0. The eigenvalues ofA are readily
obtained by solving the characteristic equation. Once we find the eigenvalues ofA, we can use
Gaussian elimination to find the corresponding eigenvectors. It is possible that some of theλ (i) are
the same. The number of times a particular eigenvalue is repeated is referred to as itsalgebraic
multiplicity.

EXAMPLE 5.1. Find the eigenvalues and corresponding eigenvectors of the matrix

A=

[
2 −12
1 −5

]

.

Solution:
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The characteristic equation ofA is

|λ I −A| =

∣
∣
∣
∣

λ −2 12
−1 λ +5

∣
∣
∣
∣

= (λ −2)(λ +5)+12

= λ 2+3λ +2

= (λ +1)(λ +2) = 0 (set to zero),

which givesλ1 = −1 andλ2 = −2 as the two eigenvalues ofA. To obtain the corresponding eigen-
vectors, we use Gaussian elimination to solve the homogeneous linear system ((λ I −A)x = O):
For λ1 =−1:

(−1)I −A=

[
−1−2 12
−1 −1+5

]

=

[
−3 12
−1 4

]

,

which row reduced to [
1 −4
0 0

]

.

This gives
[
1 −4
0 0

][
x1
x2

]

=

[
0
0

]

⇒ x1−4x2 = 0.

Lettingx2 = t, we conclude that every eigenvector ofλ1 is of the form

x =

[
x1
x2

]

=

[
4t
t

]

= t

[
4
1

]

, t 6= 0.

For λ2 =−2:

(−2)I −A=

[
−2−2 12
−1 −2+5

]

=

[
−4 12
−1 3

]

,

which row reduced to [
1 −3
0 0

]

.

This gives
[
1 −3
0 0

][
x1
x2

]

=

[
0
0

]

⇒ x1−3x2 = 0.

Lettingx2 = t, we conclude that every eigenvector ofλ2 is of the form

x =

[
x1
x2

]

=

[
3t
t

]

= t

[
3
1

]

, t 6= 0.

If we think of a vector as adirection, then the term “eigen” is commonly used as a prefix to directions
that are unchanged under the influence of a linear transformation.

EXAMPLE 5.2. The matrix

A=





1 −6 1
0 −3 −15
0 0 −3





has the characteristic polynomial

ρ(λ ) = (λ −1)(λ +3)2,

from which we conclude thatλ = 1 is an eigenvalue with (algebraic) multiplicity 1 andλ = 3 is an
eigenvalue with multiplicity 2.

PROPOSITION5.1. Every eigenvalue has associated with it at least one eigenvector



5. EIGENVALUES AND EIGENVECTORS 31

PROOF. Given det(A−λ I) = 0,
rank(A−λ I)< n,

from which it follows, using the factr +dimN (A) = n, that

dimN (A−λ I)≥ 1.

The elements of this nontrivial space are eigenvectors. �

PROPOSITION5.2. The eigenvectors associated with the eigenvalueλ , and the zero vector, from an
invariant subspace, referred to as the eigenspace Eλ .

EXAMPLE 5.3. If u,v ∈ Eλ , thenAu = λu andAv = λv. Let w = αu+βv. We have

A(αu+βv) = αAu+βAv

= λ (αu+βv)

from which we may conclude thatw ∈ Eλ . Recall that every subspace must contain the zero vector,
yet zero is not an eigenvector. The eigenspaceEλ is an invariant subspace, i.e.,u ∈ Eλ implies
Au ∈ Eλ .

DEFINITION 5.1. The dimension of the eigenspace, i.e., dimEλ , is the number of independent eigen-
vectors associated withλ . This number is also referred to as thegeometric multiplicityof λ .

PROPOSITION5.3. The algebraic multiplicity ofλ is greater or equal to the geometric multiplicity.

An eigenvalue whose geometric multiplicity is less than itsalgebraic multiplicity is said to bedefec-
tive. An n×n matrix that has no defective eigenvalues must haven independent eigenvectors.

THEOREM 5.1. Let A be an n×n matrix with n independent eigenvectors
{

v(1),v(2), · · · ,v(n)
}

. Define

the matrix V= [v(1)| · · · |v(n)]. Then
V−1AV = Λ,

whereΛ = diag(λ (1), . . . ,λ (n)),

PROOF. We will show thatAV =VΛ:

AV = A[v(1),v(2), · · · ,v(n)]
= [Av(1),Av(2), · · · ,Av(n)]

= [λ (1)v(1),λ (2)v(2), · · · ,λ (n)v(n)]

= VΛ
Note that the independence of the vectors ofV is required so thatV−1 exists. �

As a consequence of this theorem, a matrix that hasn independent eigenvectors is said to bediago-
nalizable.

PROPOSITION5.4. Eigenvectors associated with distinct eigenvalues are linearly independent.

A set ofn independent eigenvectors forms a basis forRn referred to as aneigenbasis.

COROLLARY 5.2. An n×n matrix with n distinct eigenvalues

λ (1) > λ (2) > · · ·> λ (n)

is diagonalizable.

This follows directly from the fact that the eigenvectors must be independent.
In elementary linear algebra courses it is shown that symmetric matrices have very important proper-
ties. We bundle a few of them into a single proposition.
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PROPOSITION5.5. Let A be an n×n symmetric matrix.

(1) The eigenvalues of A are real.
(2) If λ (i) 6= λ ( j), then the eigenvectorsv(i) andv( j) are orthogonal.
(3) A is not defective, i.e., it has n independent eigenvectors.

Thus, given ann×n symmetric matrixA, an orthonormal basis forRn may be constructed from its
eigenvectors. Eigenvalues of algebraic multiplicity one has orthogonal eigenvectors; eigenvectors that
correspond to an eigenvalue with multiplicity greater thanone may be orthogonalized by applying the
Gram-Schmidt procedure.

DEFINITION 5.2. We refer toA as beingorthogonally diagonalizableif

VTAV = Λ.

THEOREM 5.3. Spectral Theorem. The matrix A is symmetric if and only if there is a real orthogonal
matrix V such that

VTAV = Λ.

The equationVTAV = Λ may be rewritten as

A=VΛVT = ∑
i

λ (i)v(i)v(i)T .

This representation expresses a square matrix in terms of a sum of rank one matrices.

Application: Eigenfaces

Eigenfaces, as the name suggests, are a set of eigenvectors used in the computer vision problem
of human face recognition. A digital image of a face can be seen as a vector whose components
are the brightness of each pixel. The dimension of this vector space is the number of pixels in the
image. Since human faces look relatively similar, it is reasonable to assume that there is a small set
of “eigenfaces” that represent the features of the faces. The eigenfaces that are created will appear
as light and dark areas that are arranged in a specific pattern. This pattern is how different features
of a face are singled out to be evaluated and scored. There will be a pattern to evaluate symmetry, if
there is any style of facial hair, where the hairline is, or evaluate the size of the nose or mouth. Other
eigenfaces have patterns that are less simple to identify, and the image of the eigenface may look
very little like a face. What this means is, given any face image, we can use this set of eigenfaces to
represent it. Looking at it from a different perspective, the set of eigenfaces are “basis” vectors in the
space of all faces.
These eigenfaces have provided great use in classification problems based onPrincipal Component
Analysis (PCA), which was first discovered by Karl Pearson in 1901. It is now mostly used as
a tool in exploratory data analysis and for making predictive models. The main step of PCA is the
extraction of eigenvalues and eigenvectors of a covariancematrix to achieve dimensionality reduction.
And yes, this is why you learn eigenvalues and eigenvectors!For example, we are given a set of face
images in Figure 7. Using PCA, we obtain a set of (more than 10)eigenfaces that are sorted by
the magnitude of their corresponding eigenvalues. The firstten (ten largest eigenvalues) of those are
shown in Figure 8. We can see that the first eigenface picks outthe lighting condition of the set
while the other ones pick out different features of the overall face images. The technique of using
eigenvectors to perform recognition is used for handwritten digital recognition, lip reading, voice
recognition, sign language/hand gestures, etc.

Application: Google Eigenvectors

The following presentation will closely follow the discussions in [19] and [17]. For a relatively more
detailed mathematical discussion of the method, please see[17].
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FIGURE 7. Sample face images that are used to create eigenfaces in Figure 8.

eigenface #1 eigenface #2 eigenface #3 eigenface #4 eigenface #5

eigenface #6 eigenface #7 eigenface #8 eigenface #9 eigenface #10

FIGURE 8. Ten eigenfaces obtained from face images in Figure 7.

Many web search engine techniques we see today follow the basic idea of web pagerankings. The
concept was first introduced by Larry Page and later developed by Sergey Brin [44]. The project
started in 1995 and led to a functional prototype, named Google, in 1998. Shortly after, Page and
Brin founded Google Inc., the company behind the Google search engine. While just one of the many
factors which determine the ranking of Google search results, PageRank continues to provide the
basis for all of Google’s web search tools. Google uses an algorithm for ranking all the Web pages
that agrees well with a common-sense quality measure.
The web (at some frozen point in time) consists ofN web pages, most of them pointing to (having
links to) other web pages. The importance of a page depends onthe number of links to and from a
page. In other words, a page which is pointed to very often would be considered important, while a
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page with none or only very few other pages pointing to would be considered not important. How
can we rank all web pages according to how important they are?Let’s assume that all web pages are
ordered in some fashion (such as lexicographic) so we can assign a number, such asi to any page. Let
Oi denote the set of pages thati is linked to, theoutlinks. The number of outlinks is denotedNi = |Oi|.
Theinlinks, denotedIi , are the pages that have an outlink toi. Note that a page is not supposed to link
to itself.
In general, a pagei can be considered as more important the more inlinks it has. However, a ranking
system based only on the number of inlinks is easy to manipulate: when you design a Web pagei
that (e.g., for commercial reasons) you would like to be seenby as many users as possible, you could
simply create a large number of (information-less and unimportant) pages that have outlines toi. To
discourage this, one defines the rank ofi so that if a highly ranked pagej has an outlink toi, this adds
to the importance ofi. The ranking of a pagei, r i , should obey the following rules:

(1) The rankingr i should grow with the number of pagei’s inlinks. (A page which is pointed to
very often should deserve high ranking.)

(2) The rankingr i should be weighted by the ranking of each of pagei’s inlinks, i.e., if all
of those inlinks prove to be low-ranked, then their sheer number is mitigated by their low
rankings. Conversely, if they are mostly high-ranked, thenthey should boost pagei’s ranking.

(3) Let pagei have an inlink from pagej. Then the more outlinks pagej has, the less it should
contribute tor i . Namely, if pagej has only one outlink, and it points to pagei, then page
i should be “honored” for such trust from pagej. Conversely, if pagej points to a large
number of pages, pagei among them, this does not give pagei much pedigree.

Translating these into mathematics, we get

r i = ∑
j∈Ii

r j

Nj
.(10)

This preliminary definition is recursive, so page ranks cannot be computed directly. Instead, a fixed-
point iteration might be used. Guess an initial ranking vector r(0). Then iterate

r(k+1)
i = ∑

j∈Ii

r(k)j

Nj
, k= 0,1, . . .(11)

There are a few problems with such an iteration: if a page has no outlinks, then in the iteration process
it accumulates rank only via its inlink, but this rank is never distributed further. Therefore it is not
clear if the iteration converges. We will come back to this problem later.
More insight can be gained if we represent the connectivity structure of the web by ann×n matrix
Q. Define

Qi j =

{
1

Nj
if there is a link from j toi,

0 otherwise.

This means that rowi has nonzero elements in the positions that correspond to inlinks of i. Similarly,
column j has nonzero elements equal toNj in the positions that correspond to the outlinks ofj, and,
provided that the page has outlinks, the sum of all the elements in columnj is equal to one.

EXAMPLE 5.4. The following link graph illustrates a set of Web pages with outlinks and inlinks:
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1 2 3 

4 5 6 

The corresponding matrix becomes

Q=











0 1
3 0 0 0 0

1
3 0 0 0 0 0
0 1

3 0 0 1
3

1
2

1
3 0 0 0 1

3 0
1
3

1
3 0 0 0 1

2
0 0 1 0 1

3 0











.

Since page 4 has no outlinks, the corresponding column is equal to zero.

Obviously, the definition (10) is equivalent to the scalar product of rowi and the vectorr, which holds
the rank of all pages. We can write the equation in matrix form,

λ r = Qr, λ = 1,(12)

i.e., r is aneigenvectorof Q with eigenvalueλ = 1. It is now easily seen that the iteration (11) is
equivalent to

r(k+1) = Qr(k), k= 0,1, . . . .

At this point it is not clear that pagerank is well defined, as we do not know if there exists an eigenvalue
equal to 1. It turns out that all stochastic matrices have that property and thus no trouble arises.
Interested readers are referred to [17] for further details. Here, we employ thepower methodto find
the eigenvector,r. This method needs an initial guess forr = [r1, · · · , rn]

T , and setting allr i = 1 is not
too bad for that. As the iterations converge, the solution isfound. The entries ofr are real, since they
correspond to a real eigenvalue.
The vectorr now contains the ranking — called page rank by Google — is verypage. If Google
retrieves a set of pages all containing a link to a term you aresearching for, it presents them to you in
decreasing order of the pages’ ranking.

EXAMPLE 5.5. LetQ be given by

Q=











0 0 0 1
2 0 1

3
1
3 0 1

2
1
2 0 1

3
0 0 0 0 1

3
1
3

1
3 0 0 0 1

3 0
0 0 1

2 0 0 0
1
3 1 0 0 1

3 0











.

The eigenvector corresponding to the eigenvalue 1 is given by

rT = [0.306,0.548,0.278,0.148,0.139,0.697].

Thus page 6 has the highest ranking and page 5 has the lowest ranking.
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Some final remarks: Google (the company) solves Equation (12) about once a month1. Roughly
speaking, they do not user i = 1 as the initial guess, but instead use last month’s solution. In the
real world,n ≈ 1010, meaning thatQ has 1020 elements. This is world’s largest matrix to be used
ever. Luckily, it contains mostly zeros and thus is extremely sparse. Without taking advantage of that,
Google (and other search engines) could not function.

6. The Singular Value Decomposition

The singular value decomposition (SVD) extends the spectral theorem for rectangular matrices. We
shall see in Chapter 2 that it also provides the necessary mathematics for understanding an important
class of optimal dimensionality-reducing mappings. We shall begin with a statement of the decom-
position theorem, and it the course of proving it we will establish several important facts concerning
the SVD.

Construction of the Decomposition

We begin with a statement of the decomposition theorem followed by a constructive proof.

THEOREM 6.1. Singular Value Decomposition (SVD). Let A be a real m×n matrix and d=min{m,n}.
There exist orthogonal matrices U and V such that

A=UΣVT ,(13)

where U∈ Rm×m, V ∈ Rn×n, andΣ = diag(σ (1), . . . ,σ (d)) ∈ Rm×n.

If m> n, then the diagonal matrixΣ has the form

Σ =












σ (1) 0
...

0 σ (n)

0 · · · 0
...

...
0 · · · 0












,

while if m< n, then

Σ =






σ (1) 0 0 · · · 0
...

...
...

0 σ (m) 0 0




 .

Furthermore, the entries ofΣ are ordered according to

σ (1) ≥ σ (2) ≥ ·· · ≥ σ (1) ≥ 0.

The case forA being a complex matrix is analogous and is treated in most linear algebra texts. For
simplicity, we now assume thatm≥ n and thatA has full rank, i.e., rankn. The rank-deficient case
follows immediately from these deliberations. To establish the decomposition given by Equation (13),
we first rewrite it as

AV =UΣ.
The ith column of this relationship is

Av(i) = σ (i)u(i),(14)

wherei = 1, . . . ,n. Alternatively,
ATU =VΣT .

1the actual equation is a bit trickier, and is omitted here
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The ith column of this relationship is

ATu(i) = σ (i)u(i),(15)

where againi = 1, . . . ,n. For our constructive proof we must establish that, for any given matrixA,
solutions to equations (14) and (15) exist. In fact, as the following propositions demonstrate, the

solutions to these equations occur in triples
{

σ (i),u(i),v(i)
}

, the components of which we refer to as

thesingular valuesσ (i), theleft-singularvectorsu(i) and theright-singularvectorsv(i).

PROPOSITION6.1. The n left-singular vectors of A exist and are given by the n eigenvectors of AAT

corresponding to nonzero eigenvalues. These eigenvalues correspond to the singular values squared.

We have

ATu = σv

AATu = σAv

AATu = σ2u

and hence
√

λ = σ . Existence of the eigenvectors follows sinceAAT is a symmetric matrix. Note that
the size of this eigenvector problem ism×m. An analogous proposition is true for the right-singular
vectors.

PROPOSITION6.2. The n right-singular vectors of A exist and are given by the n eigenvectors of ATA,
and the associated eigenvalues correspond to the singular values squared.

We have

Av = σu

ATAv = σATu

ATAv = σ2v.

Again, existence of the eigenvectors follows, sinceATA is a symmetric matrix. Note that this is an
n×n eigenvector problem. However, since we are assumingn ≤ m, all of the eigenvectors in this
instance are also singular vectors.
We are now in a position to provide a constructive proof of theSVD based on the existence of the
left- and right-singular vectors. Again, we assumem ≥ n, so there aren singular-vector triplets
{

σ (i),u(i),v(i)
}

. First we will show that

A
︸︷︷︸

m×n

V
︸︷︷︸

n×n

= Û
︸︷︷︸

m×n

Σ̂
︸︷︷︸

n×n

.

Thus,

AV = A[v(1)| · · · |v(n)]
= [Av(1)| · · · |Av(n)]

= [σ (1)u(1)| · · · |σ (n)u(n)]

= Û Σ̂.

It follows that

A= Û Σ̂VT ,(16)

whereÛ ∈ Rm×n (i.e., it isU with the lastm−n columns deleted), and̂Σ ∈ Rn×n. This version of
the SVD is referred to as thethin SVD, or thereducedSVD. The full SVD follows by including the
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eigenvectors
{

u(n+1), . . . ,u(m)
}

. In this case we write

AV = [u(1)| · · · |u(n)|u(n+1)| · · · |u(m)]












σ (1) 0
...

0 σ (n)

0 · · · 0
...

...
0 · · · 0












.(17)

This concludes our constructive proof of the SVD.

Corollaries of the Decomposition

The SVD can be used to establish properties of matrices as well as representations for them.

PROPOSITION6.3. If rankA= r, then there are r nonzero singular values, i.e.,

σ (1) > · · ·σ (r) > σ (r+1) = 0.

PROOF. This follows directly from the rewriting of Equation (13) as

A=
r

∑
j=1

σ ( j)u( j)v( j)T .(18)

To derive this expression define the matricesΣ1 = diag(σ (1),0, . . . ,0), Σ2 = diag(0,σ (2),0, . . . ,0),
and so on. If follows that

A = UΣVT

= U(Σ1+Σ2+Σr)V
T

= UΣ1V
T +UΣ2V

T +UΣrV
T

= σ (1)u(1)v(1)T +σ (2)u(2)v(2)T + · · ·+σ (r)u(r)v(r)T .

�

Note that SVD decomposes, or reduces, the matrix into a sum ofr rank-one matrices. Later we shall
see that it does this optimally well. Proposition 6.3 may be established in another way as well. For
example, the rank of a diagonal matrix is the number of nonzero diagonal elements. Furthermore,
orthogonal transformations do not change the number of vectors that make up a basis. In view of
A=UΣVT , it follows that if rankΣ = r, then rankA= r.
It is also true that the column covariance matrixAAT and the row covariance matrixATA have the
same rank. IfA is a data matrix, this suggests that the arrangement of the data as column or row vector
does not affect the number of relevant terms in the SVD.

PROPOSITION6.4. Let A be an m×n matrix of rank r. Then

r = rank(AAT) = rank(ATA).

This follows directly from the correspondence of the nonzero singular values with the nonzero eigen-
values: they are exactly the same in number.
The SVD provides bases for the fundamental subspaces. Here we allow the matrixA to be rank-
deficient, i.e., of rankk≤ d = min{m,n}.

PROPOSITION6.5. Let A be an m×n matrix of rank r. Then:

(1) The r left-singular vectors associated with the r nonzero singular values of A,

i.e.,
{

u(1), . . . ,u(r)
}

, form a basis forR(A).
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(2) The r right-singular vectors associated with the r nonzero singular values of A,

i.e.,
{

v(1), . . . ,v(r)
}

, form a basis forR(AT).

(3) The m− r eigenvectors of AAT associated with the m− r zero eigenvalues,

i.e.,
{

u(r+1), . . . ,u(m)
}

, form a basis forN (AT).

(4) The n− r eigenvectors of ATA associated with the n− r zero eigenvalues,

i.e.,
{

v(r+1), . . . ,u(n)
}

, form a basis forN (A).

PROOF. Item 1 follows from Equation (18). Item 3 follows from the fact that the vectorsu(i) sit
in Rm and the full set forms a basis for this space (AAT is a symmetric matrix). Thus, them− r must
form a basis forN (AT), sinceRm = N (AT)⊕̇R(A). Items 2 and 4 are true for similar reasons.�

EXAMPLE 6.1. Compute the SVD of the data matrix

A=





1 1
0 1
1 0



 .

First, we compute the right-singular vectors and singular values ofA. These are exactly the eigenvec-
tors and the square root of the eigenvalues of

ATA=

(
2 1
1 2

)

,

which has the characteristic equationρ(λ ) = (λ −1)(λ −3) = 0. Henceσ (1) =
√

λ (1) =
√

3 has the
right-singular vector

v(1) =
1√
2
(1,1)T,

andσ (2) =
√

λ (2) = 1 has the right-singular vector

v(2) =
1√
2
(−1,1)T .

So, the matrix of right-singular vectors is

V =

(
1√
2

− 1√
2

1√
2

1√
2

)

.

The two left-singular vectors are given by the eigenvectorsof

AAT =





2 1 1
1 1 0
1 0 1





corresponding to the two largest eigenvalues. The characteristic equation forAAT is given byρ(λ ) =
λ (λ − 1)(λ − 3) = 0. Now σ (1) (seen to be the same as above, as expected) has the left-singular
vector

u(1) =
1√
6
(2,1,1)T,

andσ (2) = 1 has the left-singular vector

u(2) =
1√
2
(0,1,−1)T .
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Lastly, we have the eigenvalueλ (3) = 0 which corresponds to the eigenvector

u(3) =
1√
3
(1,−1,−1)T .

This last vector completes the basis forR3:

U =






2√
6

0 1√
3

1√
6

1√
2

− 1√
3

1√
6

− 1√
2

− 1√
3




 .

So thefull SVD is given by




1 1
0 1
1 0



=






2√
6

0 1√
3

1√
6

1√
2

− 1√
3

1√
6

− 1√
2

− 1√
3










√
3 0

0 1
0 0





(
1√
2

− 1√
2

1√
2

1√
2

)

,

and thereducedSVD is given by




1 1
0 1
1 0



=






2√
6

0
1√
6

1√
2

1√
6

− 1√
2






(√
3 0

0 1

)( 1√
2

− 1√
2

1√
2

1√
2

)

.

Reduction and Compression of Matrices

The SVD not only provides an efficient means to represent a matrix without loss, it also provides an
optimal method for approximating a matrix by another matrixof reduced rank. Define a rank-k < r
approximation to the matrixA as

Ak =
k

∑
i=1

σ (i)u(i)v(i)T .(19)

PROPOSITION6.6. The error of a rank-k approximation provided by Ak is given byσ (k+1), i.e.,

||A−Ak||2 = σ (k+1).

PROOF.

A−Ak =
r

∑
i=1

σ (i)u(i)v(i)T −
k

∑
i=1

σ (i)u(i)v(i)T

=
r

∑
i=k+1

σ (i)u(i)v(i)T

= UΣ′VT ,

where

Σ′ =

















0
...

σ (k+1)

. . .
σ (r)

0
...

0

















.
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It follows that

||A−Ak||2 = ||UΣ′VT ||2
= ||Σ′||2
= σ (k+1),

since 2-norms are invariant under multiplication by orthogonal matrices. �

If we know the correct rank ofA, e.g., by inspecting the singular values, then we canremove the noise
andcompress the databy approximatingA with a matrix of the correct rank. One way to do this is to
truncate the singular value expansion:

THEOREM 6.2. The SVD provides the best reduced-rank approximation to a given matrix A, i.e., any
matrix, say B, that is not the rank-k SVD approximation has greater error. Namely, if

Ak =
k

∑
i=1

σ (i)u(i)v(i)T (1≤ k≤ r)

then
Ak = argmin

rank(B)=k

||A−B||2 and Ak = argmin
rank(B)=k

||A−B||F .

PROOF. See [22]. �

EXAMPLE 6.2. A rank-one approximation to the matrix

A=





1 1
0 1
1 0





is given by

A≈





1 1
1
2

1
2

1
2

1
2



 .

This approximation is calculated by

A≈ A1 = σ (1)u(1)v(1)T .

EXAMPLE 6.3. In Figure 9 we see a raw digital gray-level image of size 480×500. Treating it as a
matrix, we may apply the SVD directly to the image. The effectof retaining 10, 50, and 170 terms
in the expansion is shown in the subimages. The imagesA10, A50, andA170 filter out the smallest
eigenvalues. The missing, or discarded part of the image (orthogonal complement) is shown for 10
and 170 terms in Figure 10. The imagesA−A10 andA−A170 filter out the largest eigenvalues.
Consider the compression achieved for ak-term expansion. The original image has sizem× n =
240000 bytes. The reconstructions require that we storek vectors of the formσ (k)u(k) as well ask
vectors of the formv(k). After rounding, the compressed images required(m+n)k= 980k bytes. For
k= 10 approximately 3% of the size of the original raw data is retained while fork= 50 andk= 170,
approximately 15% and 51% are retained, respectively.

Geometric and Numerical Properties of SVD

Numerical properties of the SVD provide ways to detect the numerical dimensionality as well as the
geometry of data sets. For example, for a data setX whose column vectors represent distinct data
points, the singular values represent the distribution of the source data’s energy among each of the
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(a) Original image (b) Rank 10 approximation

(c) Rank 50 approximation (d) Rank 170 approximation

FIGURE 9. The SVD of a matrix with entries of a digital image. The other images are
rank-10,-50 and -170 approximations to the original image,i.e., A10, A50, andA170.
The relative errors are 0, 0.0305, 0.0551, and 0.0126 forA, A10, A50, andA170, respec-
tively.

(a) (b)

FIGURE 10. The SVD of a matrix with entries of a digital image. Top: The truncated
imageA−A10. Bottom: The truncated imageA−A170.

singular vectors, where the singular vectors form a basis for the data.Cumulative energyof the firstt
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(a) (b)

> 95% energy is captured by 

the first 50 modes of 

singular vectors

FIGURE 11. Singular value distribution for the image in Figure 9 (a).

(1≤ t ≤ r) singular values is given by
∑t

i=1σ2
i

∑r
i=1σ2

i

.

For a low rank matrix, thenumber of large singular valuesis often referred to as thenumerical rank
of that matrix.
ConsiderA ∈ Rm×n as a map fromRn to Rm. Let Sn−1 be the unit sphere inRn. If the axes ofRn

are given by then orthogonal singular vectorsv1,v2, . . . ,vn, thenA mapsSn−1 into an ellipsoid inRm

with r = rank(A) axes. The length of the axes areσi , 1≤ i ≤ r and the direction of the axes are given
by ui (or Avi). Because this geometric property and the matrix property mentioned above, SVD is
used a lot to reduce the dimensionality and detect the geometry of large data sets.

EXAMPLE 6.4. Treating the digital image in Figure 9 (a) as a matrix andapplying the SVD directly
to the image, we get the singular value distribution in Figure 11 (a). Using the following MATLAB
code, we find that the first 50 modes of the singular vectors capture over 95% of the energy (Figure 11
(b)).

load mandrill.mat
[U,S,V] = svd(X,0); % X is the image matrix
D = diag(S).ˆ2;
cum_energy = 100. * cumsum(D)./sum(D);
I = find(cum_energy > 95);

This suggests that the approximationA50 gives an error rate less than 5%.

EXAMPLE 6.5. Let

X =









15 113 · · · 219
9 12 · · · 52
34 129 · · · 30
...

...
...

...
76 78 · · · 198









be a sizem-by-n matrix with singular value decompositionX = USVT . ThenU(:,1 : 2)TX = S(1 :
2,1 : 2)V(:,1 : 2)T = ŜV̂T is a matrix of size 2-by-n. ŜV̂T is the original data projected onto the first
two dimensions. Now, imagine each column vector inX represent a data point inRm and belongs
to one of the three distinct classes (black, green, red). By projecting these column vectors onto
the first two dimensions, we can visualize the neighborhood relationships among the three classes
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FIGURE 12. A data matrix projected onto the first 2 dimensions.

(see Figure 12). Notice that this method works relatively well for data sets that are intrinsically low
dimensional, in particular, 2-dimensional.

Computation of the SVD

We have shown that the singular values may be computed by forming the covariance matricesAAT

or ATA and computing their eigenvalues. While this approach is suitable for many applications, it is
numerically unstable. An alternative to forming the covariance matrices is to calculate the left- and
right-singular vectors directly from the system

(
0 A

AT 0

)(
u(i)

v(i)

)

= σ (i)
(

u(i)

v(i)

)

.(20)

If the matrixA is perturbed by a small amount then it can be shown that the perturbed singular values
σ̃ i satisfy

|σ̃ (i)−σ (i)|= O(ε||A||)
when computed using Equation (20);ε is the machine precision. On the other hand, if the singular
values are obtained by first computing the eigenvalues of thesmaller of the two matricesAAT or ATA,
then

|σ̃ (i)−σ (i)|= O(ε||A||2/σ (i)).

This squaring of the norm followed by the division by the singular value becomes significant espe-
cially for the smaller singular values.

EXAMPLE 6.6. To demonstrate the mechanics of the system calculationwe revisit Example 6.1. Now
we have to compute the eigenvectors and eigenvalues of

(
0 A

AT 0

)

=









0 0 0 1 1
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
1 1 0 0 0









.
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The eigenvectors are









1√
3

1√
3

0 0 1√
3

1
2
√

3
1

2
√

3
−1

2 −1
2 − 1√

3
1

2
√

3
1

2
√

3
1
2

1
2 − 1√

3
−1

2
1
2 −1

2
1
2 0

−1
2

1
2

1
2 −1

2 0










,

where columns are ordered from left to right via the singularvaluesσ = −
√

3,
√

3, −1, 1,0. The
eigenvectors now contain the right- and left-singular vectors as components, i.e., each column is of
the form(u(i),v(i)). If is interesting to note that all the singular values±σ (i) are present and that the
associated eigenvectors(u(i),±v(i)).

Application: Principal Component Analysis

[17] The approximation properties of the SVD can be used to elucidate the equivalence between the
SVD andPrincipal Component Analysis(PCA). Assume thatX ∈ Rm×n is a data matrix, where each
column is an observation of a real-valued random vector withmean zero. The matrix is assumed to
be centered, i.e., the mean of each column in equal to zero. Let the SVD ofX beX = UΣVT . The
right-singular vectorsv(i) are calledprincipal components directionsof X. The vector

z(1) = Xv(1) = σ (1)u(1)

has the largest sample variance among all normalized linearcombinations of the columns ofX:

Var(z(1)) =
(σ (1))2

m
.

Find the vector of maximal variance is equivalent, using linear algebra terminology, to maximizing
the Rayleih quotient:

v(1) = max
v6=0

vTXTXv
vTv

.

The normalized variableu(1) = 1
σ (1)Xv(1) is called thenormalized first principal componentof X.

Having determined the vector of largest sample variance, weusually want to go on and find the
vector of second largest sample variance that isorthogonalto the first. The is done by computing the
vector of largest sample variance of thedeflated data matrix X−σ (1)u(1)v(1). Continuing this process
we can determine all the principal components in order, i.e., we compute the singular vectors. In the
general step of the procedure, the subsequent principal component is defined as the vector of maximal
variance subject to the constraint that it is orthogonal to the previous ones.

EXAMPLE 6.7. The concept of PCA is illustrated in Figure 13. 35 data points were generated and col-
lected in a data matrixX ∈ R3×35. The data points and the three principal components are illustrated
in the middle plot of Figure 13. From this, we can see that the data set is approximately 2-dimensional,
since the third dimension has relatively smaller variance.Having this realization gives us a way to
represent data points using two singular modes only, as shown in the right plot of Figure 13.
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FIGURE 13. The three principal components of a data set.



CHAPTER 2

Optimal Orthogonal Pattern Representations

1. Introduction

In this chapter, we develop the idea of an optimal dimensionality-reducing mapping. Specially, we
consider the optimization problem over the class of orthogonal transformations. As orthogonal trans-
formations are linear, the optimization problem amounts tofinding a best orthonormal basis, which
we write as the columns of the matrixΦ, for the change of coordinates. Thus, given a data pointx,
we seek the orthogonal matrixΦ (i.e.,ΦTΦ = I ) such that the transformation

a= ΦTx

is optimal in a sense to be made precise. Geometrically, the goal of the optimization is to rotate the
ambient coordinates of the data to reveal the subspace in which the data resides.
The main result is the well-known Karhunen-Loéve (KL) expansion. Its importance in pattern analy-
sis is substantiated by the number of aliases under which thetechnique is known, which include the
principal component analysis (PCA) [28, 29], empirical orthogonal functions (EOFs) [38]. It is also
closely related to the well-known singular value decomposition (SVD) [27].
We will start this chapter by defining by definingoptimal basesin Section 2 followed by the con-
struction of optimal bases with KL in Section 3. The resulting approach will be referred to as the
direct method. Section 4 presents the most important and widely used properties of KL expansion.
The direct method for implementing the KL transformation cannot be applied to elements of high-
dimensional vector spaces — say, dimensions above 1000. In this case, an alternative approach is
used, referred to as thesnapshot methodin view of its natural application to digital images. In Sec-
tion 5, we present this technique and apply it to a real problem. Section 6 reexamines the KL transfor-
mation from the perspective of the SVD described earlier. The SVD permits a deeper understanding
of the relationship between the direct and snapshot methodsfor computing the eigenvectors.

2. What is an Optimal Basis?

The purpose of this section is to mathematically characterize the notion of anoptimal basis. In
practice, an optimal basis forV will extract, or package, the salient features and information in the
data. Ideally, this setting will enhance our ability to study the data in terms of a significantly reduced
number of expansion coefficients; only a small number of the entries ofa= ΦTx will be of interest.
Consider anN-dimensional inner product spaceV equipped with an ordered orthonormal basisB =
{

φ (1), . . . ,φ (N)
}

. Every point inV may be expressed without error in terms of the basis vector as

x(µ) = a(µ)1 φ (1)+ · · ·+a(µ)N φ (N),(21)

wherea(µ)i = (x(µ),φ (i)). This inner product will generally be the usual Euclidean inner, or dot,
product.
Given a data set, how should a basisB be constructed such that the truncation of the fullN-term
expansion in Equation 21 to aD-term expansion

x(µ)D = a(µ)1 φ (1)+ · · ·+a(µ)D φ (D)(22)

47
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will produce a minimum error? Sincex(µ)D is an approximation tox(µ), we write

x(µ) ≈ x(µ)D ,

and the accuracy of this expression will be at the center of our discussion.

Typically we are interested in approximating a collection,or ensemble, ofP patterns
{

x(µ)
}

rather

than a single pattern. The error vector for each pattern,ε(µ)D , is the difference between the exact point

x(µ) and the truncated expansionx(µ)D , i.e.,

ε(µ)D = x(µ)−x(µ)D .

A scalar measure of the error is then simplyε = ||ε(µ)D ||, where the norm is induced by the (usually
Euclidean) inner product. As shown below, a closed-form formula for the best basis may be obtained
for the squared error

εse= ||ε(µ)D ||2.
Thus, our criterion for an optimal basis is that it shall minimize the mean squared error over the set
of all orthonormal bases. The mean, or ensemble average, of aset of vectorsx(1), x(2), · · · , x(P) is
defined as

〈x〉= 1
P

P

∑
µ=1

x(µ).(23)

It should be noted that the above addition is applied componentwise; it is standard practice to omit
the pattern indexµ for terms within the angled brackets when writing an ensemble average. It is
customary to mean-subtract each pattern in the ensemble. This is geometrically equivalent to moving
the center of the coordinate system of the patterns to the ensemble average (or centroid) of all the data
set. Thus we define a new ensemble

x̃(µ) = x(µ)−〈x〉 .
DEFINITION 2.1. The quantitỹx(µ) is called thefluctuating field, or caricature, of the patternx(µ).

In what follows we will assume, unless otherwise stated, that all the pattern vectors have been mean-
subtracted, and we drop the tild’e for convenience.

DEFINITION 2.2. The mean squared truncation errorεmseof aD-term approximation to an ensemble
of vectors is defined as

εmse=
〈
||x−xD||2

〉
=
〈
||εµ

D ||2
〉
.

The Subspace ApproachLet’s reexamine our previous remarks in terms of subspaces.We may de-
composex(µ) in two pieces as

x(µ) =
D

∑
i=1

a(µ)i φ (i)+
N

∑
i=D+1

a(µ)i φ (i)(24)

= x(µ)D + ε(µ)D .(25)

The basis for this vector expansion may be used to define the subspacesWD = span
{

φ (1), . . . ,φ (D)
}

andW⊥
D = span

{

φ (D+1), . . . ,φ (N)
}

. These subspaces splitV into two pieces as a direct sum

V =WD ⊕W⊥
D ,

where the truncated representationsx(µ)D lie in the orthogonal subspaceWD and the error vectorsε(µ)D
lie in W⊥

D .



3. CONSTRUCTION OF THE OPTIMAL BASIS 49

While the orthogonal projection theorem states that the orthogonal expansion provides a “best approx-
imation”, it says nothing about how to findWD such that we obtain the best possible approximation.
Thus our task is to determine a single basis that provides theoptimal subspace WD for any level of
truncation 1≤ D < N. Again, optimal here means that a well-defined error should be minimized over
all possibleD-dimensional subspaces.

3. Construction of the Optimal Basis

We have characterized an optimal orthogonal basis as one that minimizes the mean squared truncation
error of the expansion. Equivalently, one may seek an orthonormal basis that maximizes the mean
squared projection of the data. Before considering the equivalence of these optimality criteria further,
we proceed with the sequential construction of a basis that maximizes the mean squared projection of
the data. The basic algorithm for constructing such as basisis as follows:

• Find the best one-dimensional subspaceW1.
• Find the best one-dimensional subspaceW2 with the restriction that it must be orthogonal to

W1.
• Find the best one-dimensional subspaceWi with the restriction thatWi ⊥Wj for all j < i.

Now we define the best first eigenvectorφ (1) to be the one that maximizes the mean squared projection
of all patterns in the ensemble onto itself. Namely, find

max
φ (1)

〈

(φ (1),x)2
〉

subject to
(

φ (1),φ (1)
)

= 1.

The normalization ofφ (1) to be of unit length is required as otherwise simply multiplying this vector
by a constant would increase the projection.
This constrained optimization problem may be solved via thetechnique of Lagrange multipliers. To
apply this method we define theLagrangian g1 to be

g1(λ1,φ (1)) =
〈

(φ (1),x)2
〉

−λ1[(φ (1),φ (1))−1].

The necessary condition for a maximum (or a minimum) are thengiven by

∂g1

∂φ (1)
= 0

∂g1

∂λ1
= 0

where the last equation is exactly the constraint.1 Noting that

(x,φ)2 = (φ ,x)(x,φ)
= (φTx)(xTφ) = φT(xxTφ)
= (φ ,xxTφ)

1In what follows we employ the notation

∂F(φ)
∂φ

=

(
∂F
∂φ1

, · · · , ∂F
∂φN

)T

.

If it left as an exercise for the reader to show that∂ (φ ,φ) = 2φ and that, ifC is a symmetric matrix,∂ (φ ,Cφ) = 2Cφ .
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and defining the symmetric matrixC =
〈
xxT
〉
, the Lagrangian may be rewritten in the more useful

form
g1(λ1,φ (1)) = (φ (1),Cφ (1))−λ1[(φ (1),φ (1))−1].

Differentiating with respect toφ (1), we obtain

∂g1

∂φ (1)
= 2Cφ (1)−2λ1φ (1) = 0,

or
Cφ (1) = λ1φ (1).

The resulting eigenvector problem is a necessary condition. It is associated with an extremum of the
Lagrangian. Hence, it is necessary forboththe best and worst directions to satisfy this equation.
Assumingφ (1) corresponds to the best eigenvector, i.e., the one with a maximum projection, the next
best basis direction should satisfy the above requirementsof maximum projection, but with the added
restriction that it must be orthogonal to the best directionφ (1). Thus, the second eigenvectorφ (2) is
found by requiring

max
φ (2)

〈

(φ (1),x)2
〉

subject to
(

φ (2),φ (2)
)

= 1 and
(

φ (1),φ (2)
)

= 0,

where nowφ (1) is assumed to be the (now fixed) orthonormal vector found above. The associated
Lagrangian is now

g2(φ (2)) = (φ (2),Cφ (2))−λ2[(φ (2),φ (2))−1]−µ(φ (1),φ (2)),

and the necessary conditions for an extremum have become

∂g2

∂φ (2)
=

∂g2

∂λ2
=

∂g2

∂ µ
= 0.

we will simplify our problem by ignoring the termµ(φ (1),φ (2)), which can be shown to be zero given
thatC is symmetric and such matrices always have orthogonal eigenvectors. Now, differentiating with
respect toφ (2), we obtain

∂g2

∂φ (2)
= 2Cφ (2)−2λ2φ (2) = 0,

or
Cφ (2) = λ2φ (2).

The process of determining theith best eigenvector given the firsti−1 eigenvectors is analogous. The
result is that the optimal basis vectors must come from solutions of the eigenvector problem

Cφ (i) = λiφ (i).

Computing the KL eigenvectors via the above equation is referred to as thedirect method.

Special CasesIn the above derivation it is possible that the best one-dimensional subspace is not
unique. Geometrically this corresponds to having an eigenspace with a geometric multiplicity greater
than one. The algebraic multiplicity of the eigenvalue mustbe equal to the geometric multiplicity
sinceC is symmetric and thus has a set ofN linearly independent eigenvectors.
In practice two-dimensional eigenspaces, indicated by eigenvalues of multiplicity two, arise with
translational invariant data where the KL eigenvectors areFourier modes. This special case may be
viewed as data traveling periodically on the unit circle; every orthonormal basis consists of vectors
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that capture exactly the same projection of the data. Of course, if the data consists of an ellipse with
unequal semiaxes, then the eigenvalues will be distinct.
If the matrixC has one or more zero eigenvalues, then the data has zero projection onto this basis
vector. We may conclude that no information is present and this coordinate may be safely removed.

Ordering of the Optimal BasisA natural ordering for the optimal basisφ ( j) is provided by thespec-
trum, or KL spectrum(i.e., the discrete set of eigenvalues) ofC. Recall that the first eigenvector was
found by requiring that

〈(

φ (1),x
)2
〉

= maximum

or, equivalently, that
〈
a2

1

〉
= λ1 = maximum. Proceeding in this fashion, the second eigenvalueis

defined so thatλ2 = maximum, subject to the constraint that the associated coordinate directionφ (2)

must be orthogonal toφ (1). Hence

λ1 ≥ λ2.

The remaining eigenvalues are defined iteratively so that eachλi is a maximum subject to the require-

ment that the associated coordinate directionφ (i) be orthogonal to
{

φ (1), . . . ,φ (i−1)
}

. Hence at each

stepλi ≥ λi+1, so we conclude

λ1 ≥ λ2 ≥ ·· · ≥ λN ≥ 0.

Therefore the eigenvectors can be ordered naturally according to the amount of variance contained in
their respective directions. The patternx(µ) is then approximated by the basis vectorsφ correspond-
ing to the largest eigenvalues ofC.

Maximum Squared Projection vs Minimum Squared Error

Now we show the connection of the minimum-mean-squared error criterion and the maximum-

squared-projection criterion. Given an ensemble of vectors
{

x(µ)
}P

µ=1
with eachx(µ) ∈ V and

dimV = N, we seek a set of basis vectors
{

φ (µ)
}N

µ=1
such that the error of the truncated expansion is

minimized in the mean-square sense. Recall that any patternvectorx(µ) may be written without error
as

x(µ) =
N

∑
j=1

a(µ)j φ ( j).

The expansion error vector may be expressed in terms of the basis, since

ε(µ)D = x(µ)−x(µ)D

=
N

∑
j=D+1

a(µ)j φ ( j).
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On average we have

εmse =
〈

||ε(µ)D ||2
〉

=
〈(

ε(µ)D ,ε(µ)D

)〉

=

〈(
N

∑
j=D+1

a jφ ( j),
N

∑
k=D+1

akφ (k)

)〉

=

〈
N

∑
j ,k=D+1

a jak

(

φ ( j),φ (k)
)
〉

,

which upon invoking the orthonormality relation gives

εmse=

〈
N

∑
j=D+1

a2
j

〉

and hence

εmse=

〈
N

∑
j=D+1

(

x,φ ( j)
)2
〉

.

Minimizing the mean squared error can now be seen as equivalent to maximizing the sum of the first
D squared projections, i.e.,

g1+ · · ·+gD =

〈
D

∑
j=1

(

x,φ ( j)
)2
〉

.

4. General Properties of the KL Expansion

In this section, we outline the useful properties of the KL decomposition. It will be seen that the
optimal orthogonal transformation has remarkable structure in that it may be derived from several
optimality criteria.

PROPERTY 4.1. TheN×N matrix C is referred as theensemble-averaged covariancematrix. It is
symmetric and determines an ordered set ofN orthogonal eigenvectors with associated real eigenval-
ues.

The following property is actually true for any data set thathas zero mean.

PROPERTY 4.2. For an ensemble of mean-subtracted vectors, i.e.,〈x〉 = 0, the coordinate valuesa j
also have mean zero. To see this, write

〈
a j
〉

=
〈(

x,φ ( j)
)〉

=
(

〈x〉 ,φ ( j)
)

=
(

0,φ ( j)
)

= 0.

PROPERTY4.3. The KL expansion coefficients are uncorrelated on average, i.e.,
〈
a jak

〉
= 0
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when j 6= k. Indeed, we have
〈
a jak

〉
=

〈(

x,φ ( j)
)(

x,φ (k)
)〉

=
〈(

φ ( j),xxTφ (k)
)〉

=
(

φ ( j),
〈
xxT〉φ (k)

)

=
(

φ ( j),Cφ (k)
)

=
(

φ ( j),λkφ (k)
)

= λkδ jk.

In particular,
〈
a jak

〉
= 0 when j 6= k.

Although the data is uncorrelatedon averagein the KL coordinate system, it is possible that the data
is correlated on subsets of the total ensemble. For example,in a time-series setting it is possible for
the data to have short-time correlations in the KL basis coordinates. If we consider a subset of the
total data, i.e.,̃X ⊂ X, then we may write

〈
a jak

〉

X̃ 6= 0.
The above property is also equivalent to the fact that in the KL basis, the covariance matrix is diagonal.

PROPERTY4.4. The eigenvalues ofC are nonnegative:

λ j =
〈
a2

j

〉
≥ 0

for j = 1, . . . ,N.

This follows directly from the previous property for the case j = k. Note that the number of nonzero
eigenvalues is equal to the rank of the matrixC, which in turn equals the dimension of the space
spanned by the data set.
We see from the next property that it is also possible to view the KL basis as the one that maximizes
the variance along each coordinate direction, subject to orthogonality constraints.

PROPERTY 4.5. For mean-subtracted data, the statistical variance ofthe jth coordinate direction is
proportional to thejth eigenvalue ofC.

We write the statistical variance of thejth direction over the ensemble of patterns as

var(a j) =
1

P−1

P

∑
µ=1

(

a(µ)j −
〈
a j
〉)2

=
P

P−1
1
P

P

∑
µ=1

(

a(µ)j

)2

=
P

P−1

〈
a2

j

〉
=

P
P−1

λ j .

That is,
var(a j) ∝ λ j ,

where we have used the fact
〈
a j
〉
= 0 and the Property 4.3.

PROPERTY4.6. The eigenvalues ofC give a measure of the truncation error:

εmse=
N

∑
j=D+1

λ j
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Substituting the eigenvector equationCφ ( j) = λ jφ ( j) into

εmse=
N

∑
j=D+1

(

φ (i),Cφ (i)
)

,

we have

εmse=
N

∑
j=D+1

(

φ (i),λ jφ (i)
)

=
N

∑
j=D+1

λ j .

PROPERTY4.7. The KL basis captures more statistical variance than any other basis. Let
{

ψ(i)
}N

i=1
be any other basis for the inner product spaceV, and write theD-term expansion of an element ofV
as

x(µ)D =
D

∑
j=1

b(µ)j ψ( j).

Define a measure of the variance (for mean-subtracted data) with respect to the basis
{

ψ(i)
}

as

ρ j =
〈
b2

j

〉
.

Then
D

∑
j=1

ρ j ≤
D

∑
j=1

λ j

with equality when
{

ψ(i)
}

is the KL basis.

DEFINITION 4.1. A data set is said to betranslationally invariantis x ∈ X implies that any cyclic
permutation ofx is also inX.

PROPERTY 4.8. If X is a translationally invariant data set, then the optimal eigenvectors are the
Fourier vectors, i.e., sinusoids.

Thus, for translationally invariant data, the discrete Fourier transform provides an analytical form for
the best bases.

Shannon’s EntropyA standard measure of information is provided by Shannon’s entropy which is
defined as

H =−
N

∑
i=1

Pi lnPi,

where∑N
i=1Pi = 1. If we interpret the normalized eigenvalues of the covariance matrix

λ̃i =
λi

∑N
j=1 λ j

as the possibilitiesPi, then it is possible to show that the KL eigenvectors are optimal in an information-
theoretic sense, i.e., they minimizeH [46].
The significance of Shannon’s entropyH in this context is that it provides a measure of the distribution
of the magnitude of the eigenvalues, or energy, across the coordinates of the basis. In particular, if the
probabilities are all constant with

Pi =
1
N

for all i = 1, . . . ,N, then
H = lnN.
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Also, if

Pi =

{

1 if i = 1,

0 if1 < i ≤ N,

thenH = 0.
In these two extreme cases we see that if all the eigenvalues are equal then there is no compression of
information, i.e., there is no preferred coordinate direction andH is a maximum. On the other hand,
if there is only one nonzero eigenvalue, then all the information is contained along one coordinate and
H is a minimum.

PROPERTY4.9. The Karhunen-Loéve basis minimizes Shannon’s entropy.

For a proof of this property, see [13] or [30].

Truncation CriteriaSeveralad hoccriteria have been proposed for determining the number of terms
D to retain in the expansion

x =
D

∑
j=1

a jφ ( j).

A simple but widely used variance-based criterion is to retain the number of terms necessary to capture
a specified fraction of the total variance [21].
From Equation (24) and the Pythagorean theorem, it follows that

||x(µ)||2 = ||x(µ)D ||2+ ||ε(µ)D ||2.
Taking ensemble averages,

〈

||x(µ)||2
〉

=
〈

||x(µ)D ||2
〉

+
〈

||ε(µ)D ||2
〉

.

In the KL basis, these terms area measured by the eigenvalues:

〈

||x(µ)||2
〉

=
D

∑
i=1

λi +
N

∑
i=D+1

λi .

Since the statistical variance is a measure of the amplitudes squared, it is often referred to asenergy.
Using this terminology, the total energy in the data is denoted

EN =
〈

||x(µ)||2
〉

=
N

∑
i=1

λi .

The energy captured by aD-term expansion is given by

ED =
D

∑
i=1

λi .

Typically, for purposes of comparison, we shall be interested in the normalized energy

ẼD =
ED

EN
.

Now one can also interpret the quantity

λ̃i =
λi

EN
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as the probability that a pattern is contained in the subspace spanned by the eigenvectorφ (i). Note
that the normalized mean squared error is readily availableas

εnmse=
N

∑
i=D+1

λi

EN
= 1− ẼD.

This error is actually the relative error squared of the reconstruction of the data matrix in the Frobenius
norm.
We will refer to a plot of the eigenvalues versus the eigenvalue index as a KL-spectrum plot. Often
we will plot logλi vs i to enhance visualization of sharp decreases in the eigenvalues. Also, it is often
useful to plotẼD as a function of the numberD of terms in the expansion. These plots are used to
estimate the so-called KL dimension of the data. This dimension is generally taken as the number of
terms required to ensure that some minimum quantity of energy is captured by the data.
Now, we have the normalized energy criterion

ẼD > γ,(26)

or equivalently, that the normalized mean squared error

εnmse< 1− γ(27)

should be less than some constantγ, typically taken to beγ ∈ [0.90,0.99]. In addition, it is often
useful to add the restriction that

λD+1

λ1
< δ ,(28)

whereδ = 0.01, for example. This is a restriction on the 2-norm of the data matrix. We summarize
these remarks with the following definitions:

DEFINITION 4.2. The KLenergy dimension, written dim(KLEγ ), is defined to be the minimum num-
ber of termsDγ required in the orthogonal expansion to ensure thatẼDγ > γ.

DEFINITION 4.3. The KLstretching dimension, written dim(KLMδ ), is defined to be the minimum
numberDδ required to ensure thatλDδ+1/λ1 < δ .

In addition, it is useful to combine these definitions into a total KL dimension, written dim(KLDγ ,δ ),
which may be defined as the maximum of KLEγ and KLMδ , i.e.,

DT = max
{

Dδ ,Dγ
}
.

Note that the utility of these global definitions of dimension is limited by the requirement of making
ad hocchoices forγ andδ .
A number of other criteria have been proposed for determining the number of terms to retain in a best
basis expansion. For example, it has been observed that the KL spectrum often can be viewed as two
lines. The point these lines intersect determines the valueof D. Often there is a gap in the eigenvalues,
which indicates a value ofD for truncation. A more rigorous approach is to apply a cross-validation
scheme as outlined in [15], but even such methods do not always give consistent results. They do,
however, have the advantage over the ad hoc energy criterionin that they actually take noise in the
data into account when estimating dimension.
Finally, it should be emphasized that the utility of these measures is greatly enhanced if they can be
implemented in a problem-dependent fashion. It is clear that one may require far fewer terms for
a classification problem than for a reconstruction problem where more details in the pattern are re-
quired. Additionally, some problems have critical information in the lowest-energy modes, clearly
indicating that the KL eigenvector selection does not have aunique solution.
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Matrix Notation

In this section we would like to reinterpret the expansions as linear transformations and emphasize
the dimensionality reducing properties of these transformations. We begin by constructing a matrix
Φ made up of the eigenvectors ofC, i.e.,

Φ =
[

φ (1)|φ (2)| · · · |φ (N)
]

.

Thus the coefficients of the pattern vector with respect to the KL basis are now

a(µ) = ΦTx(µ),

wherea(µ) = (a(µ)1 , . . . ,a(µ)N )T . These relations may be combined to give

A= ΦTX.(29)

If we have determined a numberD of terms to retain in our expansion, clearly it is not required
to compute all the terms in the expansion. Hence, it is usefulto define a dimensionality-reducing
transformation based on

ΦD =
[

φ (1)|φ (2)| · · · |φ (D)
]

,

a matrix withD columns, namely the firstD eigenvectors. Now, theD coefficients are given by

â(µ) = ΦT
Dx(µ),

whereâ(µ) = (a(µ)1 , . . . ,a(µ)D )T . Or, in matrix notation,

Â= ΦT
DX,

whereÂ is aD×P matrix. It is identical to the firstD rows ofA in Equation (29).

PROPERTY4.10. The KL basis diagonalizes the ensemble average covariance matrixC:
〈
aaT〉 =

〈
(ΦTx)(xTΦ)

〉

= ΦTCΦ
= Λ,

whereΛii = λi and all the off-diagonal elements are zero.

PROPERTY 4.11. We now have the spectral decomposition of the covariance matrix asC = ΦΛΦT ,
i.e.,

C= λ1φ (1)φ (1)T +λ2φ (2)φ (2)T + · · ·+λ1φ (N)φ (N)T .

This allows us to decompose the covariance matrix in an optimal way. Note that ifP< N, then we do
not expect more than a basis ofP vectors. The remainingN−P vectors belong to the null space ofC.

Geometrical Interpretation of KL Eigenvectors

PROPOSITION 4.1. Let C be a nonsingular ensemble-averaged covariance matrixgenerated by the
N×P data matrix X, i.e., C= XXT. Consider the ellipsoid defined by

xTC−1x = 1.(30)

The eigenvectors of C are the directions of the principal axes of the ellipse, and the associated square
roots of the eigenvalues are the lengths of the semi-axes.
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PROOF. It suffices to transform the equation for the ellipse into the KL basis. LetU consist of the
eigenvectors ofC. Then

z=UTx

is the appropriate change of basis. SinceU is an orthogonal matrix,x =Uz. Substituting this relation
into Equation (30) gives

zTUTC−1Uz= 1.(31)

Given thatU diagonalizesC, we have

C=UΛUT .

AssumingC is nonsingular,

C−1 =UΛ−1UT .

Substituting this equation into Equation (31) gives

zTUTUΛ−1UTUz= 1.

Again, using the orthogonality ofU , we havezTΛ−1z= 1, or

N

∑
i=1

z2
i

λi
= 1.

Note that the expressionxTC−1x = c represents a family of concentric ellipses. �

As an example consider Gaussian random data(x1,x2) where the first variable has mean zero and
standard deviation 2.5 while the second variable has mean zero and standard deviation 1.0. This data
is then rotated in the plane and the KL procedure applied. Calculation showsλ (1) = 6.3373 and
λ (2) = 1.0543, soσ (1) =

√
λ (1) = 2.5174 andσ (2) =

√
λ (2) = 1.0268.2

The ellipsoidal neighborhoods determined in the first stageof the algorithm may be used to order the
data in theε-neighborhood matrix via the introduction of theA-norm written||x||2A = xTAx, where
the matrixA is taken to beC−1 andC= BεBT

ε :

||x||2C−1 = xTC−1x

= xTUΛ−1UTx

= (xTUΛ−1/2)(Λ−1/2)UTx

= yTy = ||y||2,

wherey = Λ−1/2UTx. Hence the ellipsoidal norm may be interpreted as the standard Euclidean norm
after the change of coordinates

Y = Λ−1/2UTBε .

This transformation is referred to as awhiteningtransformation. The covariance matrix is the identity
in the new coordinate system, i.e.,

YYT = I .

See Figure 1 for an example of applying the whitening transformation to Gaussian data.

2Note that in our deviation of KL, no assumptions were made concerning the statistical distribution of the data.
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(a) Gaussian noise (b) Data on the left after whitening

FIGURE 1. (Images are taken directly from [31]) Random data before and after
whitening. The contours correspond to the locixC−1x = ci , wherec1 = 1, c2 = 4,
andc3 = 9.

5. The Snapshot Method

The construction of adata-dependentbasis as outlined above requires solving the eigenvector problem

Cφ ( j) = λ jφ ( j),

whereC is anN×N matrix formed by averagingP rank one covariance matrices. WhenN becomes
large, e.g., 1000 to 10000, it is generally not possible to solve this problem directly. There are a
variety of techniques for computing the largest eigenvalues and eigenvectors, but ifC is a nonsingular
matrix, then the problem may be reduced without approximation to an eigenvector problem of size
P×P. The technique is referred to as thesnapshot methodbecause of its applicability to data sets
consisting of high-resolution digital snapshots [32, 45]. This result is very useful if the number of
patterns,P, is manageable, typicallyP< 1000. The dimensionN now enters in only in storage space
and add/multiplies.

Reduction of Lip Motion

In this application, introduced in [33, 34], we are interested in characterizing the motion of lips during
speech, i.e., machine lip reading. The data sets come in the form of sequences of digital images which
are recorded by focusing a camera on the speaker’s lips. In this setting, a wordω is viewed as a short
sequence (P= 16) of high-dimensional (120×100) images

ω =
{

x(1),x(2), . . . ,x(P−1),x(P)
}

.

In the coordinate system of the ambient space, a word is represented byN = 12,000 spatially and
temporally correlated time series. To reduce the dimensionality of this representation we digitally
record a set of words, to be used for training, that characterizes the lip motion, i.e., we assume the
data set is large enough to span the space of all relevant lip motions. From this training set we compute
the eigenpictures, oreigenlips, displayed in Figure 2, using the snapshot method. A sample word (not
from the training set) is represented by the sequence of 16 images shown on the left of Figure 3. These
images were projected onto the first 20 eigenpictures. The result of the reconstruction is excellent;
see the right of Figure 3. We note that plotting the relationship between two coefficients in the plane
gives a characteristic curve for particular words; see [34] for details.



60 2. OPTIMAL ORTHOGONAL PATTERN REPRESENTATIONS

FIGURE 2. (Images are taken directly from [31]) The first 16 eigenlips ordered from
left to right and top to bottom.

FIGURE 3. (Images are taken directly from [31]) Left: A sequence of snapshots of lip
motion. Right: The reconstruction of lip images after projection onto a 20-dimensional
optimal subspace.

6. The SVD and The KL Expansion

In this section we reexamine, via the SVD, the direct and snapshot methods for implementing the KL
expansion. The SVD, as described in Section 6 is a classical and powerful tool in numerical linear
algebra. Here our purpose is to demonstrate that the eigenvector problems associated with the direct
and the snapshot method fit neatly into the mathematical framework of the SVD. In particular, we
shall see that theleft-singular vectors are the eigenvectors computed in thedirect method, while the
right-singular vectors are the eigenvectors computed in the snapshot method.

We begin by constructing anN×P data matrixX out of our ensemble
{

x(µ)
}P

µ=1
of pattern vectors

in RN, where the columns ofX are the pattern vectors:X = [x(1)| · · · |x(P)].
To assist in the interpretation of our results, we will assume that the ensemble consists of time-
dependent vectors. For simplicity we assume that the spatial variable is one-dimensional. It should be
emphasized that these assumptions are for convenience and are not a requirement of the theory. For

these time-dependent observations,(X)i j = x( j)
i , the column index is the time indexj = 1, . . . ,P, and
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the row index,i = 1, . . . ,N is the spatial index. Thus ourspatiotemporaldata matrix

X =









x(1)1 x(2)1 · · · x(P)1

x(1)2 x(2)2 · · · x(P)2
...

...
. . .

...

x(1)N x(2)N · · · x(P)N









is indexed from left to right by time and from top to bottom by space. Note that the size of this matrix
may be enormous in practice and its actual formation may not be possible due to computer memory
limitations. However, this does not prevent us from applying the mathematics of the SVD.
The transpose ofX is given by

XT =









x(1)1 x(1)2 · · · x(1)N

x(2)1 x(2)2 · · · x(2)N
...

...
. . .

...

x(P)1 x(P)2 · · · x(P)N









.

In what follows, it will be useful to write the matrixXT in terms of its column vectors. Therefore, we
introduce the notation

XT = [y(1)| · · · |y(N)],

wherey(i)j = x( j)
i . One might viewXT as a new data matrix where the roles of time and space have

been interchanged.
The motivation for collecting the data in matrix form comes from the observation that we may rewrite
the ensemble-average covariance matrix in terms ofXXT . To see this, write out thejkth element of
this matrix,

(XXT) jk =
P

∑
µ=1

x(µ)j x(µ)k = P
〈
x jxk

〉
,(32)

where j,k= 1, . . . ,N. In other words,

1
P

XXT =
〈
xxT〉 .

From the above expression, we see that that patterns are being correlated over the spatial variable
and average over time. Thus, we define the ensemble-averagespatial covariance matrix3 Cx of the
observations as

Cx =
1
P

XXT.(33)

In an analogous manner we may form the ensemble-averagedtemporal covariancematrix

Ct =
1
N

XTX.(34)

As before, let’s write out thejkth element of this matrix:

(XTX) jk =
N

∑
l=1

x( j)
l x(k)l = N

〈
y jyk

〉
,(35)

3Strictly speaking, this matrix is not necessarily a covariance matrix, as it is not essential to apply a mean subtraction.
We retain the term in analogy with the previous sections.
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where j,k= 1, . . . ,P. In other words,

1
N

XTX =
〈
yyT〉 ,

so we see thatCt is in fact a temporal covariance matrix. Note that the definition of the ensemble, and
hence ensemble average, has changed from that given above. In determiningCx the spatial covari-
ances are averaged over time, while in determiningCt the temporal covariances are averaged over the
spatial domain. Hence we will refer to the eigenvectors ofCx as thespatial eigenvectorsand to the
eigenvectors ofCt as thetemporal eigenvectors.
We note thatCx is anN×N matrix and the spatial eigenvectors are solutions of

XXTU =UΛx,(36)

where the columns ofU correspond to the eigenvectors ofCx, i.e.,U = [u(1)| · · · |u(N)]. Also,Λx is an
N×N matrix

Λx =








λ (1)

λ (2)

. . .
λ (N)







.

Similarly,Ct is aP×P matrix and the temporal eigenvectors are the solutions of

XTXV =VΛt ,(37)

where the columnsV correspond to the eigenvectors ofCt , i.e.,V = [v(1)| · · · |v(P)]. Also, Λt is an
P×P matrix

Λt =








λ (1)

λ (2)

. . .
λ (P)







.

We have used the same notation for the eigenvalues ofXXT andXTX in view of the following propo-
sition, which is a consequence of the fact det(XXT) = det(XTX):

PROPOSITION6.1. The nonzero entries ofΛx andΛt are equal.

Hence, the KL spectrum can be determined from computing the eigenvalues of eitherCx or Ct . Note
that the eigenvalues ofCx are actually given by the matrix(1/P)Λx and the eigenvalues ofCt are given
by the matrix(1/N)Λt .
Now we recast these results in terms of the SVD. We recognize that the spatial eigenvectorsU of the
spatial covariance matrixXXT are exactly the left-singular vectors of the data matrixX. Also, the
temporal eigenvectorsV of the temporal covariance matrixXTX are exactly the right-singular vectors
of the data matrixX. Thus, by the SVD we may decompose the data matrix

X =UΣVT ,

whereΣ is theN×P diagonal matrix given by

Σ = diag(σ (1), . . . ,σ (r)),

whereσ (i) =
√

λ (i), i.e., the singular values are the square roots of the eigenvalues ofXXT . Again,r
is the rank of the matrixX, or, equivalently, the number of nonzero singular values.
Given the columns ofU for a basis for the data, we have theorthogonal expansion

x(µ) =
r

∑
j=1

a(µ)j u( j).
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Recall that this may be rewritten in terms of matrices as

X =UA,

whereA is anN×P matrix of expansion coefficientsA = [a(1)| · · · |a(P)]. Furthermore, sinceUT =
U−1, the expansion coefficients are given by

A=UTX.(38)

The following propositions provide very useful relationships between the expansion coefficients and
the eigenvectors.

PROPOSITION6.2. If Σ is the matrix of singular values of X, and V the matrix of associated temporal
eigenvectors (right-singular vectors), then the matrix ofexpansion coefficients A, i.e., the projections
of the data onto the optimal spatial eigenvectors, is given by

A= ΣVT .(39)

PROOF. By the SVD
X =UΣVT .

Multiplying both sides of the relationship byUT and using the fact thatUTU = I gives

UTX = ΣVT .

RecognizingA=UTX completes the result, which has an extremely useful interpretation: the expan-
sion coefficientsA are contained in the temporal eigenvectors, i.e., the right-singular vectors. �

Thus, the time-dependent coefficients given by the matrixA may be computed using two different
methods. First, given theN-dimensional spatial eigenvectors, the projections may befound directly
using Equation (38). Alternatively, given theP-dimensional temporal eigenvectors, the projection
coefficients may be found indirectly by using Equation (39).Note that eitherP-dimensional orN-
dimensional eigenvectors are required, but not both. Usually one approach is significantly more
efficient than the other.
The next proposition states that the spatial eigenvectors may be written as the superposition of data
where the appropriate expansion coefficients are provided by temporal eigenvectors, i.e., the right-
singular vectors.

PROPOSITION6.3.

u( j) =
1
σ j

P

∑
k=1

v( j)
k x(k),

where j= 1, . . . , rankX.

PROOF. The result follows directly from the SVD

X = UΣVT

XV = UΣ,

where the fact thatV is an orthogonal matrix has been used. DefiningΣ+, a P×N matrix, as the
pseudoinverse ofΣ, we have

U = XVΣ+,

from which the proposition follows. �

The next proposition presents a relation that is in a sense symmetrical to the previous one. It states that
the temporal eigenvectors may be written as the superposition of data where the appropriate expansion
coefficients are provided by spatial eigenvectors.
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PROPOSITION6.4.

v( j) =
1
σ j

N

∑
k=1

u( j)
k y(k),

where j= 1, . . . , rankX and y(k)i = x(i)k as defined above.

PROOF. Again, this result follows directly from the SVD

X = UΣVT

UTX = ΣVT

VT = Σ+UTX,

where the fact thatU is an orthogonal matrix has been used. Hence,

V = XTUΣ+,

from which the proposition follows. �

EXAMPLE 6.1. Recall Example 6.1, where the left- and right-singularvectors were computed for the
data matrix

X =





1 1
0 1
1 0



 , XT =

(
1 0 1
1 1 0

)

.

The columns ofXT arey(1) = (11)T , y(2) = (01)T , andy(3) = (10)T . We now confirm Proposi-
tion 6.3. To this end, we compute

u( j) =
1
σ j

P

∑
k=1

v( j)
k x(k)

for u(1). Evaluating this formula gives

u(1) =
1√
3

(

v(1)1 x(1)+v(1)2 x(2)
)

.

Recallingv(1) =
1√
2
(1 1)T , we obtain

u(1) =
1√
3




1√
2





1
0
1



+
1√
2





1
1
0







 .

Therefore,

u(1) =
1√
6
(211)T ,

which checks.
We now confirm Proposition 6.4 by computing

v( j) =
1
σ j

N

∑
k=1

u( j)
k y(k),

for v(1). Employing the value foru(1) found above, we obtain

v(1) =
1√
3

[
2√
6

(
1
1

)

+
1√
6

(
0
1

)

+
1√
6

(
1
0

)]

=
1√
2

(
1
1

)

,
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which checks. It is also reassuring to confirm the formulaA= ΣVT which provides the spatial expan-
sion coefficients in terms of the temporal eigenvectors. By direct computation,

A = UTX

=






2√
6

1√
6

1√
6

0 1√
2

− 1√
2

1√
3

− 1√
3

− 1√
3










1 1
0 1
1 0





=






3√
6

3√
6

− 1√
2

1√
2

0 0




 .

According to the proposition, theN×P matrixA= ΣVT is also found as

1√
2





√
3 0

0 1
0 0





(
1 1
−1 1

)

=







√
3
2

√
3
2

−
√

1
2

√
1
2

0 0






,

which agrees with the previous result.

Translationally Invariant Data

We consider a data set consisting of therow vectors
{

x(µ)
}

to be translationally invariant if the

spatial domain is periodic and a cyclic permutation of the components of a given data point generates
another element of the data set. For example, ifx(1) = (123), then the translationally invariant data
set generated by this point is

X =





1 2 3
3 1 2
2 3 1



 .

The columns of them×n matrixX may be cyclically permuted by then×n circulant matrixC, where
(C)i j = ci− j andci = ci+ln. SinceC is also a permutation matrix, its rows must be circular shifts of
the first row of the identity matrix.
In this example, the 3×3 circulant permutation matrix is

C=





0 1 0
0 0 1
1 0 0



 .

The action of right-multiplying byC is to cyclically permute the columns, i.e.,

XC=





3 1 2
2 3 1
1 2 3



 .

Associated with the circulant matrixC is a permutation matrixP, obtained by interchanging rows or
columns of the identity matrix, which rearranges the rows ofX into their original order

PXC= X.

In our example it may be verified that

P=





0 0 1
1 0 0
0 1 0



 .
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Note that ifP is a permutation , thenP−1 = PT . The right singular vectors ofX may be determined
by formingXTX, i.e.,

XTX =CTXTPTPXC=CTXTXC;
hence

CXTX = XTXC.

So the circulant matrixC commutes withXTX. It can be shown that bothC andXTX are similar to
diagonal matrices, i.e., they aresimple. It follows that they share the same eigenvectors [37]. As it
will be shown in Chapter 6, the eigenvectors of the circulantmatrices are Fourier modes, so we may
conclude that the right-singular vectors are also sinusoids. The given 3×3 circulant matrixC has the
eigenvectors





1
1
1



 ,





1
e2π i/3

e4π i/3



 ,





1
e4π i/3

e2π i/3



 .

The fact that the optimal basis for translationally invariant data consists of Fourier vectors is well
known. The argument presented here follows [8].



CHAPTER 3

Additional Theory, Algorithms and Applications

In this chapter we continue our study of the KL procedure and apply it to a variety of problems. We
begin with an extension of the KL procedure forgappydata in Section 1. This is followed by the
application of the KL procedure in the presence of noise in Section 2.

1. Application with Missing Data

Now we turn to the problem of using the KL procedure on data sets that havegaps, or missing
components. The algorithm presented here is due to Everson and Sirovich [18]. Our development
follows [18], although here we simplify the setting of the presentationby using discrete vector spaces,
rather than function spaces. We distinguish this extensionof the KL procedure forgappy data, using
the terminology of [18], from the case ofnoisy data, which is developed in the next section.

1.1. Estimating Missing Data. Suppose we can learn a set of best basis
{

φ (1),φ (2), . . . ,φ (P)
}

from a training set. Letx ∈ RN be a vector that possesses a reduced expansion in terms of theKL
basis as

x ≈ xD =
D

∑
n=1

anφ (n).

It follows that onlyD points of information are required to reproduce the original vector. Consider
now an incomplete, or gappy, copyx̃ of the original vectorx. This may be expressed as

x̃i =

{

xi , mi = 1,

0, mi = 0,

where the vectorm ∈ RN is an indicator vector, ormask, which identifies the indices of the missing
data. We will also write this incomplete vector as

x̃ = m.x,

where the product notation presents the point-wise multiplication: theith component of the product
is (m.x)i = mixi .
Given a vectorx that is an element of an ensemble of intrinsically low dimension, it may be possible to
replace, or at least estimate, the missing entries. If the ambient dimension in which the vector resides
is large, specifically ifD ≪ N, it is plausible that this repair may by possible even if a significant
number of the entries ofx are missing. The missing entries of the gappy vectorx̃ may be approximated
by the corresponding elements ofx̃D, yielding aD-term approximation tõx as

x̃ ≈ x̃D =
D

∑
n=1

ãnφ (n),(40)

where the{ãn} are to be found by requiring that

E = ||x̃− x̃D||2m(41)

be a minimum. The notation
||x||2m = (x,x)m = (m.x,m.x)

67
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indicates that the norm is defined only on the data that is not missing. With this norm it follows that
the coefficients{ãn} are estimated based on the available data only.

A few observations are in order. First, note that, by virtue of the eigenvectors
{

φ (n)
}

being fully

intact, the reconstructioñxD has no missing entries. In addition, sincex̃D approximates̃x on the mask
m, it also approximatesx given

||x̃− x̃D||m = ||x− x̃D||m.
Now, using this definition of the (gappy) inner product, the error may be expanded as

E =

(

x̃−
D

∑
n=1

ãnφ (n), x̃−
D

∑
k=1

ãkφ (k)

)

m

= (x̃, x̃)m −2

(

x̃,
D

∑
n=1

ãnφ (n)

)

m

+

(
D

∑
n=1

ãnφ (n),
D

∑
k=1

ãkφ (k)

)

m

= ||x̃||2m−2
D

∑
n=1

ãn(x̃,φ (n))m +
D

∑
k,n=1

ãkãn(φ (k),φ (n))m.

Note that the eigenvectors
{

φ (k)
}

are no longer orthogonal on the gappy inner product.

Differentiating the error termE with respect to thekth coefficient gives

∂E
∂ ãk

= 0−2(x̃,φ (k))m +2
D

∑
i=1

ãi(φ (i),φ (k))m = 0,

from which it follows that
D

∑
i=1

ãi(φ (i),φ (k))m = (x̃,φ (k))m.

This may be rewritten in the form of a linear system

Mã= f,

where
Mi j = (φ (i),φ ( j))m

and
fi = (x̃,φ (i))m.

The original vectorx is then approximated by the repair ofx̃, which we denote byr , i.e.,

(rD)i =

{

xi , mi = 1,

(x̃D)i , mi = 0.

1.2. Estimating a KL Basis with Missing Data. In the previous subsection we examined the
question of estimating data missing from an observation.The procedure required a KL basis de-
rived from a training set with no gaps. These ideas may now be applied to constructing a KL basis
where only incomplete data sets are available. The procedure presented here was proposed in [18]. It
is based on an iterative process that successivelyrepairsthe gappy data and improves the estimate for
the associated KL basis.
A summary of the iterative procedure for repairing the gappydata set and computing the KL basis
vectors is provided in the following box.
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KL Procedure for Gappy Data
1. Initialize the missing data with the ensemble average.
2. Compute the first estimate of the KL basis.
3. Re-estimate the ensemble using the gappy approximation and the KL basis.
4. Re-compute the KL basis.
5. Repeat Steps 3–4 until stopping criterion is satisfied.

We now describe the steps in detail. The data set may be modeled by associating with each pattern
a maskm(µ) of indices indicating which data is available and which components are missing. Each
pattern with incomplete data may now be written

x̃(µ) = m(µ).x(µ).

The ensemble average of the incomplete patterns is now

(〈x̃〉)i =
1
Pi

P

∑
µ=1

x̃µ
i ,

where

Pi =
P

∑
µ=1

mµ
i .

Once this ensemble average has been determined from the gappy data, the first stage of the ensemble
repair procedure may be executed.This repair is done by replacing the missing data with the
point-wise mean of the existing data.Specifically, the first stage of the repair process is then

(r (µ)(0))i =

{

x(µ)i , m(µ)
i = 1,

(〈x̃〉)i, m(µ)
i = 0.

(42)

The improved ensemble
{

x(µ)(0)
}

may be used to construct the first estimate, or initialize, the KL

basis, which we denote
{

φ ( j)(0)
}P

j=1
.

Now, given an initial estimate for the KL basis vectors, an improved approximation may be obtained
using the procedure of the previous section.
Specifically, given the gappy pattern vector ˜x(µ) = mµ .xµ , we may improve our estimate ofx given
by Equation 42 by using the first estimate of the KL basis. The improved estimate may be written

x̃(µ)D (1) =
D

∑
k=1

ã(µ)k (1)φ (k)(0),

where the
{

ã(µ)k (1)
}

are the solutions to

Mµ(0)ã(µ)(1) = fµ(0),

where

Mµ
i j (0) = (φ (i)(0),φ ( j)(0))m(µ)

and

f (µ)k (0) = (x̃µ ,φ (k)(0))m(µ).
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The second iteration of the repair procedure uses the improved estimate

(r (µ)(1))i =







x(µ)i , m(µ)
i = 1,

(〈

x̃(µ)D (1)
〉)

i
, m(µ)

i = 0,
(43)

for the gappy data ensemble.
The last two steps of this process are repeated until the KL basis is deemed to have converged in a
satisfactory manner. In particular, we expect the sequenceof repairs to approach the actual data

r (µ)(n)→ x(µ),

and consequently, the sequence of estimated eigenvectors to approach and actual eigenvectors:

φ (i)(n)→ φ (i).

It is natural to end the iteration when the updates provide little change and it is concluded that no
further progress is being made.

EXAMPLE 1.1. This example concerns the application of the KL procedure for incomplete data dis-
cussed above. Let the complete data set be translationally invariant:

f (xm, tµ) =
1
N

N

∑
k=1

1
k

sin[k(xm− tµ)],

wherem= 1, . . . ,M, with M dimension of the ambient space (size of the spatial grid), and µ =

1, . . . ,P, with P the number of points in the ensemble, as shown in Figure 1(a).Let xm =
(m−1)2π

M

andtµ =
(µ −1)2π

P
. We select an ensemble of masks

{

m(µ)
}

, µ = 1, . . . ,P, where 10% of the indices

are selected to be zero for each mask. Each pattern in the incomplete ensemble may be written as

x̃(µ) = m(µ).f(µ),

where
(

f(µ)
)

m
=

1
N

N

∑
k=1

1
k

sin[k(xm− tµ)]. LetP= M = 64 andN = 3. See Figure 1(b) for the resulted

f (x, t) with 10% mask. With the gappy algorithm [18] and the equation

x̃ ≈ x̃D =
D

∑
n=1

ãnφ (n),

we obtain the repaired data after a single pass of repair as shown in Figure 1(c) and the final repaired
data after 3 iterations in Figure 1(d).

2. Application to Noisy Data

Now we turn to the case where the patterns have added noise, i.e.,

x(µ) = s(µ)+n(µ),

or, in terms of data matrices,
X = S+N,

whereX is assumed to be tall, i.e., if it isn×P thenn> P. In addition, the columns are assumed to
have zero mean.
In the general situation, neither the denoised signals(µ) nor the noise componentn(µ) is observable;
only the noisy signalx(µ) is available. An optimal representation of the noisy data interms of the
eigenvectors of the ensemble-averaged covariance matrixCx =

〈
xxT
〉

does not, in general, provide a
good separation of the signal and the noise.
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FIGURE 1. An illustration of the gappy algorithm [18] on a translationally invariant
data. (a) The original data. (b) The gappy data. (c) Result after a single repair. (d)
Final result after 3 iterations of repair.

The simple case is that ofwhitenoise, which is assumed to have zero mean, be uncorrelated with the
signal and have a covariance matrix of the formαI whereα is the variance of the noise andI is the
identity matrix. In this instance, the covariance matrix ofthe signal may be decomposed as

Cx =
〈
(s+n)(s+n)T〉

=
〈
ssT
〉〈

nnT〉

= Cs+αI ,

whereCs =
〈
ssT
〉
. The eigenvector ofCx are the same as those ofCs, and the eigenvalues are all

shifted upwards by the variance of the noiseα, leaving the differences of the eigenvalues preserved.
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The general situation is more complicated and the noise doesindeed change the eigenvectors. Now
the signal and noise may be separated in an optimal way by defining an appropriate variational prin-
ciple. One approach for characterizing a basis in the presence of noise is to choose the direction with
maximum noise fraction[24].
The optimal first basis vector,φ , is again taken as a superposition of the data, i.e.,

φ = ψ1x(1)+ · · ·+ψPx(P) = Xψ .

It follows then that we may decomposeφ into signal and noise components

φ = φn+φs,

whereφs = Sψ andφn = Nψ.
The basis vectorφ is said to have maximum noise fraction if the ratio

D(φ) =
φT

n φn

φTφ
is a maximum. This may now be rewritten as

D(φ(ψ)) =
ψTNTNψ
ψTXTXψ

.

Differentiating this with respect toψ and setting the result to zero leads to thesymmetric definite
generalized eigenproblem

NTNψ = µ2XTXψ.(44)

This problem may be solved without actually forming the product matricesNTN andXTX, using the
generalized SVD, see [22].
The remaining maximum-nose-fraction basis vectors may be found using a similar approach. In fact,
they are generated by the set ofgeneralized singular vectors{ψ} that come from solving Equation 44.

These generalized singular vectors
{

φ (i)
}

are ordered according to the generalized singular values

{µ} with the largestµ corresponding to the basis vector with themost noise. Alternatively, the
order of the generalized singular vectors may be reversed. This is convenient for data reconstruction
purposes where the signal, not the noise, is the item of interest.
Notice that the signal matrix and the matrix of maximum noisefraction vectors are the same, i.e.,

S= Φ.

The generalized singular vectors are normalized so that

ψ( j)XTXψ(i)δi j .

Notice that they are not orthogonal with respect to the usualEuclidean inner product – the inner
product is now weighted. The basis{φ} is, however, orthonormal.

EXAMPLE 2.1. Noisy Time Series from a Physical Process. As an example of the application of these
ideas we consider the problem of filtering a set ofP= 7 noisy time series shown in Figure 2(a), each
of lengthn = 250. In this problem we take the data matrixX to be 250× 7, where each column
has had the mean removed. If we treat each of these time seriesas a point inR250, then the KL
eigenvectors for the noisy data are shown in Figure 2(b). Note that these basis vectors are equivalent
to the left-singular vectors of the data matrixX. The significant level of noise spread across all of
these basis vectors is evident.
To apply the maximum-noise-fraction method for filtering the set of noisy time series we must esti-
mate the covariance matrix of the noise,NTN. Assuming the noise is uncorrelated, the noise may
be estimated simply by differencing signals shifted by one increment. After computingN in this
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way the generalized singular vectors{ψ} were found and used to construct the orthonormal basis
{φ} shown in Figure 2(c).
The result of projecting the first of the original seven time series onto the maximum-noise-fraction
basis is shown in Figure 2(d) for one to seven modes. Observe how the noise-free portion of the signal
is reconstructed last. For a closer look at the effect of truncating the noisy basis vectors, a full-mode
reconstruction of the first time series is shown in Figure 3. Notice that significant detail of the signal
is retained while a large amount of noise is removed.
Finally, we remark that although the method was introduced in the context of eliminating noise, it is
potentially useful for separating signals in general when the covariance matrices for each component
are available. Also, a striking feature of this approach is that non-differentiable functions with added
noise may be recovered without smoothing, i.e., the filteredfunction may also be non-differentiable.



74 3. ADDITIONAL THEORY, ALGORITHMS AND APPLICATIONS

0 50 100 150 200 250
−50

0

50

0 50 100 150 200 250
−50

0

50

0 50 100 150 200 250
−20

0

20

0 50 100 150 200 250
−20

0

20

0 50 100 150 200 250
−50

0

50

0 50 100 150 200 250
−50

0

50

0 50 100 150 200 250
−50

0

50

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.5

0

0.5

0 50 100 150 200 250
−0.5

0

0.5

0 50 100 150 200 250
−0.5

0

0.5

(a) (b)

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.5

0

0.5

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−0.2

0

0.2

0 50 100 150 200 250
−1

0

1

0 50 100 150 200 250
−5

0

5

0 50 100 150 200 250
−5

0

5

0 50 100 150 200 250
−10

0

10

0 50 100 150 200 250
−2

0

2

0 50 100 150 200 250
−10

0

10

0 50 100 150 200 250
−20

0

20

(c) (d)

FIGURE 2. (a) A collection of seven noisy time series. (b) The orthonormal basis
resulting from the noisy time series in (a). (c) The orthonormal basis resulting from
implementing the maximum-noise-fraction method on seven noisy time series in (a).
The basis vector with the most signal is at the top, and the onewith the maximum-
noise-fraction is at the bottom. (d) The result of projecting the first of the original
seven time series onto the maximum-noise-fraction basis.
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FIGURE 3. Full-mode reconstruction of the first noisy time series inFigure 2(a).





CHAPTER 4

Fisher’s Linear Discriminant Analysis

Linear discriminant analysis (LDA) and the related Fisher’s linear discriminant analysis (FDA) are
methods used in statistics and machine learning to find a linear combination of features which char-
acterize or separate two or more classes of objects or events. The resulting combination may be used
as a linear classifier, or, more commonly, for dimensionality reduction before later classification.
The terms Fisher’s linear discriminant and LDA are often used interchangeably, although Fisher’s
original article [20] actually describes a slightly different discriminant, which does not make some
of the assumptions of LDA such as normally distributed classes or equal class covariances. In the
following discussions, we will use FDA and LDA interchangeably without worries. We will motivate
the method with a simple two-class classification problem first and generalize it to the multiclass case.
The discussions here follow [42].

1. FDA for Two Classes

We will develop the idea of FDA in the context of a simple two-class problem. Namely, we will
consider two classes,D1 andD2, of data points inR2. Applying FDA to this data in the plane will
generate a line and a scalar which can then be used to classifynovel points. The classification accuracy
using Fisher’s Discriminant Analysis depends on the linearseparability of the classes of data. Two
classes of points inR2 are linearly separable if it is possible to draw a line splitting the plane into
two half-planes, with one class of points lying entirely on one side of the line and the other class of
points lying on the opposite side of the line. Figure 1(a) illustrates two linearly separable classes of
data with a separating line, and Figure 1(b) shows two non-linearly separable classes.
Of course, if data fails to be linearly separable it can be strongly or weakly non-linearly separable
depending on how much the classes of data are mixed. The less the classes are mixed, the more likely
that FDA will still perform fairly well. In the case where there is a severe non-linearity, it is difficult
to directly compute the discriminating features between the two classes of patterns in the original
input space. By defining a non-linear mapping from the input space to a high-dimensional feature

(a) (b)

FIGURE 1. (a) A linearly separable data cloud. (b) A non-linearly separable data cloud.
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FIGURE 2. Kernel LDA. A non-linear map (i.e., kernel) can be found toseparable two
non-linearly separable classes.

(a) (b)

FIGURE 3. (a) A bad projection. (b) A good projection in the Linear Discriminant Analysis.

space, one can possibly obtain a linearly separable distribution in the feature space. Then LDA, the
linear technique, can be performed in the feature space to extract the most significant discriminating
features. This technique is generally called the Kernel LDA(KDA) [ 3, 43]. A graphical illustration
is given in Figure 2.
Given a novel pointx∈ R2, the idea behind FDA is to

(1) Projectx onto the line spanned by a certain unit vectorw, thereby reducing the dimension of
x from two to one, from a point inR2 to a scalar value inR.

(2) Select the class ofx based on whetherwTx is above or below a certain scalar critical value
αc.

The question then becomes how to optimally select the direction of projection,w. Figure 3 compares
the situations when a good and bad projection are used. When agood projection is found, two distinct
classes can be separated without error; on the other hand, ifa bad projection is chosen, it is impossible
to find a real scalarαc that separates the two classes perfectly. With that, optimally selectingw and
αc will be the focus of the following discussions.

1.1. Finding the Good Projection. First we discuss selecting the optimal projection,w. There
are two aspects that effect the optimization ofw. The goals are to separate data in distinct classes as
far as possible while pull the data within the same class as close as possible.



1. FDA FOR TWO CLASSES 79

FIGURE 4. An illustration of a good LDA projection that maximizes the between-
class scatter and minimizes the within-class scatter.

1.1.1. Between-Class Separation and Within-Class Condensation.Let n1 andn2 be the number
of data points inD1 andD2, respectively. Define the class-wise means:

m1 =
1
n1

∑
x∈D1

x and m2 =
1
n2

∑
y∈D2

y.

We then define the means of the projected data accordingly as

m̃1 =
1
n1

∑
x∈D1

wTx and m̃2 =
1
n2

∑
y∈D2

wTy.

We desire that the projected means be far apart, in the effortto produce class-clusters that are far apart
in the one-dimensional projected space. In other words, to achieve the between-class objective we
find w such that

w= argmax
w∗

(m̃2− m̃1)
2 .(45)

Moreover, we want to minimize the scatter (variance) in eachof the projected class clusters. Define
the projected class-cluster scatter forD1 andD2, respectively, as

S̃2
1 = ∑

x∈D1

(wTx− m̃1)
2 and S̃2

2 = ∑
y∈D2

(wTy− m̃2)
2.

These two goals are summarized graphically in Figure 4.
Now the total within-class scatter, across all classes, is given by S̃2

1 + S̃2
2. The w that achieves the

within-class objective is given by

argmin
w

(
S̃2

1+ S̃2
2

)
.(46)

In order to achieve Equations (45) and (46) at once, we seek tomaximize the function

J(w) =
(m̃2− m̃1)

2

S̃2
1+ S̃2

2

(47)

over all choices ofw with ‖w‖2 = 1, where unit length prevents the between-class scatter from being
unbounded. Equation (47) is called the Fisher Criterion [5].
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1.1.2. Rewrite J(w) and Maximize.We can maximizeJ using expansions and matrix differentia-
tion. First, we notice that we can write the projected mean interms of the original mean

m̃1 =
1
n1

∑
x∈D1

wTx

=
1
n1

(

wTx(i1)+wTx(i2)+ · · ·
)

= wT

(

1
n1

∑
x∈D1

x

)

= wTm1

Similarly, m̃2 = wTm2. Thus, the numeratorN(w) of J(w) can be expanded as follows.

N(w) = (m̃2− m̃1)
2 = (wTm2−wTm1)

2 =
(
wT(m2−m1)

)2

= wT (m2−m1)wT (m2−m1) = wT (m2−m1)(m2−m1)
T w= wTSBw,

where

SB = (m2−m1)(m2−m1)
T(48)

is the between-class scatter matrix.
For the denominatorD(w) of J(w), we can write

D(w) = S̃2
1+ S̃2

2 = ∑
x∈D1

(
wTx− m̃1

)2
+ ∑

y∈D2

(
wTy− m̃2

)2

= ∑
x∈D1

(
wTx−wTm1

)2
+ ∑

y∈D2

(
wTy−wTm2

)2

= ∑
x∈D1

(
wT(x−m1)(x−m1)

Tw
)
+ ∑

y∈D2

(
wT(y−m2)(y−m2)

Tw
)

= wT ∑
i=1,2

∑
x∈Di

(x−mi)(x−mi)
Tw= wTSWw

where

SW = ∑
i=1,2

∑
x∈Di

(x−mi)(x−mi)
T(49)

is the within-class scatter matrix.
We can finally write the Fisher Criterion as

J(w) =
N(w)
D(w)

=
wTSBw
wTSWw

,

which is commonly known as the generalized Rayleigh quotient [14].
Setting∇J(w) = 0, a necessary condition for a global maximum, gives the generalized eigenvalue
problem (see Appendix 5)

SBw= λSWw.(50)

But which of the generalized eigenvectors that satisfy Equation (50) is the optimalw? We notice that

λ =
N(w)
D(w)

= J(w)

is precisely the Fisher Criterion. Since we want to maximizeJ(w) = λ we will find w as the general-
ized eigenvector corresponding to the largest generalizedeigenvalue solving Equation (50).
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1.2. Optimal αc. Finally, the task of selecting an optimalαc can be approached in a variety of
ways. Several methods are available for heuristically selecting the threshold value,αc. One method
is to letαc be the average of the projected means

αc =
m̃1+ m̃2

2
.

. In another method, one can assume, without loss of generality, that the projected class-cluster ofD1
lies above the projected class-cluster ofD2. Then it is reasonable to setαc to be the average of the
minimum projected element ofD1, call it x̂, and the maximum projected element ofD2, call it ŷ, i.e.,

αc =
x̂+ ŷ

2
.

Or, one can selectαc by cross-validation. Namely,αc is chosen empirically to maximize classification
rates for validation data.

2. Multiclass FDA

In the case where there are more than two classes, the analysis used in the previous section can be
extended to find a subspace which appears to contain all of theclass variability.
We begin by supposing there areM > 2 classes,D1,D2, ...,DM, partitioningn pointsxi ∈ RN, i =
1, ...,n, where there areni points in eachDi . LetX = {xi ∈RN}n

i=1. We takel < N copies of the linear
projection formula from the two class, two-dimensional case,

yk = wT
k x, k= 1, ..., l ,

where each numberyk is the result of projection ofx onto the line spanned by vectorwk. Combining
these into a matrix equation yields

y =WTx

whereW = [w1w2 · · · wl ] is N× l andy = [y1y2 · · · yl ]
T is l ×1. Thus, the projection of eachxi byW

is an associatedyi . This generates the setY of n projected points,Y = {yi ∈ Rl}n
i=1. Each of theyi

maintains the same class label as its counterpartxi . We want to find the best projectionW, where the
definition of quality has been extended from the two class problem in a natural way.
We are now ready to generalize the definitions ofSW andSB for the multiclass, high-dimensional
case, as shown in [14]. For the original dataX, the within-class scatter is the sum of individual class
variances

SW =
M

∑
i=1

∑
x∈Di

(x−mi)(x−mi)
T .

The definition of the within-class scatter matrix is somewhat intuitive, and matches exactly the form
in Equation (49). Each outer product used to createSW communicates a measure of the variance of a
data point from the mean, consisting of every pairwise comparison of entries. On the other hand, the
definition of the between-class scatter matrix is not as intuitive. It arises from considering the total
scatter

ST =
n

∑
i=1

(xi − m̂)(xi − m̂)T ,

wherem̂ is the mean across all data points inX. If we let the total scatter be the sum of the within-class
and between-class scatter matrices,

ST = SW +SB,
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then we solve for the between-class scatter matrix by

SB = ST −SW =
M

∑
i=1

ni(mi − m̂)(mi − m̂)T .

Now we consider the projected dataY. If we let m̃ be the mean ofY and m̃i be the mean of the
projected data in classDi , we have the natural extension to the projected within-class scatter matrix

S̃W =
M

∑
i=1

∑
y∈Di

(y− m̃i)(y− m̃i)
T .

and the projected between-class scatter matrix

S̃B =
M

∑
i=1

ni(m̃i − m̃)(m̃i − m̃)T .

After simplification, we arrive at̃SW =WTSWW andS̃B =WTSBW. We can produce a scalar measur-
ing scatter using the determinant of the products, since thedeterminant is the product of the eigenval-
ues, and the magnitude of the product of eigenvalues corresponds to variance. In this light, the Fisher
Criterion becomes

J(W) =
|WTSBW|
|WTSWW| ,

a ratio of determinants. The columns ofW are found as thel eigenvectors corresponding to thel
largest eigenvalues, in descending order, of the generalized eigenvalue problem

SBw= λSWw.

Higher-dimensional ambient spaces lead to new notions ofαc. The purpose ofαc is to separate
projected data into distinct classes. This allows for numerous ways to defineαc, as with the two-class
problem inR2, but what is important about the general FDA is that it gives us a transformation matrix
W with the aforementioned favorable properties.



CHAPTER 5

Convolution in Digital Images

In this chapter we define the convolution operator⋆ and become familiar with it. We then develop
some basic properties of convolution and next, study the interplay between the convolution with filter
and the Fourier series of the filter.

1. Convolution and Correlation

Convolution on two functionssand f can be viewed as a way to producing a modified version ofsor
f , whichever is appropriate. The formal definition is stated in the continuous form:

( f ⋆s)(t) =
∫ ∞

−∞
f (τ) ·s(t− τ)dτ =

∫ ∞

−∞
s(τ) · f (t− τ)dτ.

In the discrete case,

DEFINITION 1.1. Letsand f be two bi-infinite sequences, wheres= (. . . ,s−2,s−1, s0,s1,s2, . . .) and
f = (. . . , f−2, f−1, f0, f1, f2, . . .). Then theconvolutionproducty of s and f , denoted byf ⋆ s is the
bi-infinite sequence whosenth component is given by

yn =
∞

∑
k=−∞

sk fn−k.(51)

In general, Equation 51 will diverge unless appropriate conditions are placed ons and f . In our
applications, eithers will be non-zero on a set of measure zero or terms ins and f will decay rapidly
to ensure convergence.
A seemingly familiar concept that resembles a lot of the characteristics of convolution will be dis-
cussed next. Statistically speaking, the (Pearson)correlationρX,Y between two random variablesX
andY is defined as

ρX,Y =
Cov(X,Y)

σXσY
=

E[(X−µX)(Y−µY)]

σXσY
,

whereE(X) andE(Y) refer to the expected value ofX andY, respectively. SinceµX =E(X), the mean
of X, andσ2

X = E[(X−E(X))2] = E(X2)−E2(X), the variance ofX, the equation above becomes

ρX,Y =
E(XY)−E(X)E(Y)

√

E(X2)−E2(X)
√

E(Y2)−E2(Y)
.

In terms of finite signals, we have an expression that is similar to Equation 51

rs f =
1

n−1
· 1

σsσ f

n

∑
i=1

(si −µs)( fi −µ f ).

Notice that the signal has one fewer degree of freedom when the mean is taken out, explaining the
division byn−1 instead ofn.
These two concepts inspire the use ofcorrelationandconvolutionin image processing applications.
Intuitively, correlation is like the process of moving a filter mask (f over a signal (s) or image and
computing the sum of products at each location while convolution works similarly except that the
filter f is first rotated 180◦. A simple 1D example is given in Figure 1 to illustrate the similarity and
difference of these two concepts.
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Correlation

s f s rotated f

a. 0 0 0 1 0 0 0 0 1 2 3 2 8 i. 0 0 0 1 0 0 0 0 8 2 3 2 1

b. 0 0 0 1 0 0 0 0 j. 0 0 0 1 0 0 0 0

1 2 3 2 8 8 2 3 2 1

c. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 k. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 2 3 2 8 8 2 3 2 1

d. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 l. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 2 3 2 8 8 2 3 2 1

e. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 m. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 2 3 2 8 1 2 3 2 1

f. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 n. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 2 3 2 8 8 2 3 2 1

g. 0 0 0 8 2 3 2 1 0 0 0 0 o. 0 0 0 1 2 3 2 8 0 0 0 0

h. 0 8 2 3 2 1 0 0 p. 0 1 2 3 2 8 0 0

Convolution

FIGURE 1. s is a discrete unit pulse of length 8 andf is a filter of length 5. The
processes of correlation and convolution are illustrated on the left and right panels,
respectively. In steps b. and j., the align the signal and filter. In steps c. and k.,
appropriate number of zeros are added to pad the empty cells in order to perform
multiplications in the next step. In general, if the filter ofof sizem, then we needm−1
zeros on either side ofs. Plots d. (resp. l.) and e. (resp. m.) show the positions of the
filter after one and four shifts, respectively. For example,the result of convolution at
four shifts is calculated from 0·8+0·2+0·3+1·2+0·1= 2, which corresponds to
the first 2 from the left in the full convolution result shown in o. Finally, the full-length
correlation and convolution are cropped to match the lengthof the original signal,s.
Notice that the only major difference between the two methods is the action of rotating
the filter mask in convolution before performing the productand sum.

We proceed with a similar fashion in the case of 2-dimensional signals, such as the case of images. In
general, if the filter is of sizem×n, we first pad the imageswith a minimum ofm−1 rows of zero’s
on the top and bottom andn−1 columns of zero’s on the left and right. The rest of the correlation
and convolution process is similar to the 1D case and is illustrated in Figure 2.
Mathematically, we compute discrete 2D correlation with

f (x,y)∗s(x,y) =
a

∑
u=−a

b

∑
v=−b

f (u,v)s(x+u,y+v) =
a

∑
u=−a

b

∑
v=−b

s(u,v) f (x+u,y+v)

and discrete 2D convolution with

f (x,y)⋆s(x,y) =
a

∑
u=−a

b

∑
v=−b

f (u,v)s(x−u,y−v) =
a

∑
u=−a

b

∑
v=−b

s(u,v) f (x+u,y+v).

There are a few things to pay attention to here. First, both correlation and convolution are commuta-
tive, which means that it is irrelevant what we consider as a signal and what we consider as a filter.
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s f

0 0 0 0 0 1 2 3

0 0 0 0 0 4 5 6

0 0 1 0 0 7 8 9

0 0 0 0 0

0 0 0 0 0

f

0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 4 5 6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 7 8 9 0 0 9 8 7 0 0

0 0 0 0 0 0 0 0 0 0 0 6 5 4 0 0

Correlation 0 0 0 0 1 0 0 0 0 0 0 3 2 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 9 8 7 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6 5 4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3 2 1 0 0 1 2 3 0 0

0 0 0 0 0 0 0 0 0 0 0 4 5 6 0 0

Convolution 0 0 0 0 1 0 0 0 0 0 0 7 8 9 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

zero-padded s

zero-padded s

rotated f

cropped result

cropped result

FIGURE 2. In this figure,s is the image that we are interested in studying whilef
is a filter window of size 3×3. The processes of 2D correlation and convolution are
illustrated on the top and bottom panels, respectively. In both incidences,s is first
padded with two rows of zeros on the top and bottom and two columns of zero on the
left and right. The first non-zero result of correlation and convolution is highlighted
as one slidesf through the zero-paddeds from the upper left corner to the lower-right
corner. At the end of a series of matrix multiplications, we retain the boxed region as
the final result of correlation and convolution.

Although in practice, filters are often smaller in size. Another important detail to notice is the sub-
traction in f in the second equation captures exactly the 180◦rotation mentioned earlier. Now that
we have acquainted ourselves with the notation and definitions of convolution, we will next briefly
discuss how convolution is used in a lot of image processing applications.
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2. Convolution as Filters

Convolution is considered as a form ofspatial filteringin manipulating images. Common synonyms
include convolution mask, convolution kernel, convolvinga mask with an image, etc. The name filter
is borrowed from frequency domain processing. Filtering refers to accepting/passing or rejecting
certain frequency components. For example, alow-passfilter passes low-frequency information. In
images, such filters correspond to the action of smoothing orblurring. On the other hand, ahigh-pass
filter damps low frequency information while maintains high-frequency content. In images, such
filters correspond to the action of sharpening. The theory onhow to construct appropriate filters for
various tasks has grown tremendously over the past few decades, for detailed information, please refer
to [23]. We will only introduce a few simple yet fundamental filtersfrom the literature here.

2.1. Smoothing Spatial Filters.
• Linear filters. The linearity in this context refers to the ability to represent the filter in a

matrix form. A typical technique in constructing such filters is through the use of integration.
Namely, summing and averaging. An averaging filter results in an image with reduced sharp
transitions in intensities. Because random noise typically consists of sharp transitions in
intensity levels, the most obvious application of smoothing is noise reduction. However,
smoothing also has the undesirable side effect of edge blurring. A typical 3×3 averaging
filter looks like

1
9





1 1 1
1 1 1
1 1 1



 .

The appropriate size of the filter depends on the application. Figure 3 depicts the various
effects created by using filters of various sizes. In general, averaging filters of larger size
have a more significant effect of blurring.

Another type of averaging filter is a weighted average filter where neighbor pixels are
inversely weighted as a function of distance from the center. In particular, the diagonal
neighbors are considered as further away from the orthogonal neighbors of the center. A
typical 3×3 weighted average filter looks like the following.

1
16





1 2 1
2 4 2
1 2 1



 .

The result of applying this filter to an image is shown in Figure 4 for convenience.
An important application of spatial averaging is to blur an image for the purpose of

getting a gross representation of objects of interest, suchthat the intensity of smaller objects
blends with the background and larger objects become “bloblike” and easy to detect. The
size of the filter/mask establishes the relative size of the objects that will be blended with
the background. As an illustration, consider Figure 5(a), which is an image from the Hubble
telescope. Figure 5(b) shows the result of applying a 15×15 averaging mask to this image
We see that a number of objects have either blended with the background or their intensity
has diminished considerably. It is typical to follow an operation like this with thresholding
to eliminate objects based on their intensity. The result ofusing the thresholding function
with a threshold value equal to 25% of the highest intensity in the blurred image is shown
in Figure 5(c). Comparing this result with the original image, we see that is is a reasonable
representation of what we would consider to be the largest, brightest objects in that image.

• Nonlinear filters. Filters of this sort can not be expressed nicely in a closed matrix form. This
sort of filter is based on ordering (ranking) the pixels contained in the image area encom-
passed by the filter, and then replacing the value of the center pixel with the value determined
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(a) Original image (b) size 3×3 filter (c) size 5×5 filter

(d) size 9×9 filter (e) size 15×15 filter (f) size 35×35 filter

FIGURE 3. (a) Original image, of size 906×712 pixels. (b)-(f) Results of smoothing
with square averaging filter of sizesm= 3,5,9,15, and 35, respectively.

(a) (b) (c)

FIGURE 4. (a) Original image, of size 906×712 pixels. (b) Result of applying the

filter
1
10





1 1 1
1 2 1
1 1 1



. (c) Result of applying the filter
1
16





1 2 1
2 4 2
1 2 1



.

by the ranking result. The best-known filter in this categoryis themedianfilter (among oth-
ers such as max and min filters), which replaces the value of a pixel by the median of the
intensity values in the neighborhood of that pixel. Median filters are quite popular because,
for certain types of random noise, they provide excellent noise-reduction capabilities, with
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(a) (b) (c)

FIGURE 5. (a) Image of size 399×395 pixels from the Hubble Space Telescope. (b)
Image Filtered with a 15×15 averaging filter. (c) Result of thresholding (b) with 25%
of highest intensity.

considerably less blurring than linear smoothing filters ofsimilar size. They are particularly
useful in the presence of impulse noise (a.k.a. salt-and-pepper noise), intensity spikes caused
by error in data transmission.

For example, suppose that a 3×3 neighborhood has values(10,20,20,20,15,20,20,25,
100). These values are sorted as(10,15,20,20,20,20,20,25,100), which results in a median
of 20. Thus, the principal function of median filters is to force points with distinct intensity
levels to be more like their neighbors. In fact, isolated clusters of pixels that are light or
dark with respect to their neighbors and whose area is less thanm2/2 (one-half of the filter
area), are eliminated by anm×m median filter. In this case, “eliminated” means forced to
the median intensity of the neighbors. Larger clusters are affected considerably less.

Figure 6(a) shows an X-ray image of a circuit board heavily corrupted by salt-and-pepper
noise. To illustrate the point about the superiority of median filtering over average filtering
in situations such as this, we show in Figure 6(b) the result of processing the noisy image
with a 3×3 neighborhood averaging mask, and in Figure 6(c) the resultof using a 3× 3
median filter. The averaging filter blurred the image and its noise reduction performance
was poor. The superiority in all respects of median over average filtering in this case is quite
evident. In general, median filtering is much better suited than averaging for the removal of
salt-and-pepper noise.

2.2. Sharpening Spatial Filters.The principal objective of sharpening is to highlight transitions
in intensity. Uses of image sharpening vary and include applications ranging from electronic printing
and medical imaging to industrial inspection and autonomous guidance in military systems. Contrary
to averaging, sharpening can be accomplished by spatial differentiation. This boils down to numeri-
cally taking derivatives of sequence of numbers. The derivatives of a digital function are defined in
terms of differences. There are various ways to define these differences. However, we require that
any definition we use for a first derivative (1) must be zero in areas of constant intensity; (2) must be
nonzero at the onset of an intensity step or ramp; and (3) mustbe nonzero along ramps. Similarly, any
definition of a second derivative (1) must be zero in constantareas; (2) must be nonzero at the onset
and end of an intensity step or ramp; and (3) must be zero alongramps of constant slope. Because
we are dealing with digital quantities whose values are finite, the maximum possible intensity change
also is finite, and the shortest distance over which that change can occur is between adjacent pixels.
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FIGURE 6. (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b)
Noise reduction with a 3×3 averaging filter. (c) Noise reduction a 3×3 median filter.

A basic definition of the first-order derivative of a one-dimensional functionf (x) is the difference

∂ f
∂x

= f (x+1)− f (x).

We used a partial derivative here in order to keep the notation the same as when we consider an image
function of two variables,f (x,y), at which time we will be dealing with partial derivatives along the
two spatial axes. We define the second-derivative off (x) as the difference

∂ 2 f
∂x2 = f (x+1)+ f (x−1)−2 f (x).

It is easy to verify that these two definitions satisfy the conditions stated above. To illustrate this, and
to examine the similarities and differences between first- and second-derivatives of a digital function,
consider the example in Figure 7. Center of the Figure 7 showsa section of a scan line (intensity
profile). The values inside the small squares are the intensity values in the scan line, which are plotted
as black dots above it. As the figure shows, the scan line contains an intensity ramp, three sections of
constant intensity, and an intensity step. The circles indicate the onset or end of intensity transitions.
The first- and second-order derivatives computed using the two preceding definitions are included
below the scan line and plotted on the bottom of the figure.
Let us consider the properties of the first and second derivatives as we traverse the profile from left
to right. First, we encounter an area of constant intensity,where both derivatives are zero there so
condition (1) is satisfied for both. Next, we encounter an intensity ramp followed by a step, and
we note that the first-order derivative is nonzero at the onset of the ramp and the step; similarly, the
second derivative is nonzero at the onset and end of both the ramp and the step; therefore, property (2)
is satisfied for both derivatives. Finally, we see that property (3) is satisfied also for both derivatives
because the first derivative is nonzero and the second is zeroalong the ramp. Note that the sign of the
second derivative changes at the onset and the end of a step orramp. In fact, we see in the bottom of
Figure 7 that in a step transition a line joining these two values crosses the horizontal axis midway
between the two extremes. Thiszero crossingproperty is quite useful for locating edges.
Edges in digital images often are ramp-like transitions in intensity, in which case the first derivative
of the image would result in thick edges because the derivative is nonzero along a ramp. On the other
hand, the second derivative would produce a double edge one pixel thick, separated by zeros. From
this, we conclude that the second derivative enhances fine detail much better than the first derivative,
a property that is ideally suited for sharpening images. Also, second derivatives are much easier to
implement than first derivatives, so we focus our attention initially on second derivatives.
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FIGURE 7. Illustration of the first and second derivatives of a 1-D digital function
representing a section of a horizontal intensity profile from an image.

Here, we consider the implementation of 2-D, second-order derivatives and their use for image sharp-
ening. We are interested inisotropic filters, whose response is independent of the direction of the
discontinuities in the image to which the filter is applied. In other words, isotropic filters arerotation
invariant, in the sense that rotating the image and then applying the filter gives the same result as
applying the filter to the image first and then rotating the result.
It can be shown that the simplest isotropic derivative operator is the Laplacian, which, for a function
(image) f (x,y) of two variables, is defined as

∇2 f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 .

Because derivatives of any order are linear operations, theLaplacian is a linear operator. To express
this equation in discrete form, we use the definition introduced previously, keeping in mind that we
have to carry a second variable. In thex-direction, we have

∂ 2 f
∂x2 = f (x+1,y)+ f (x−1,y)−2 f (x,y)(52)

and, similarly, in they-direction we have

∂ 2 f
∂y2 = f (x,y+1)+ f (x,y−1)−2 f (x,y)(53)
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Therefore, it follows that the discrete Laplacian of two variables is

∇2 f (x,y) = f (x+1,y)+ f (x−1,y)+ f (x,y+1)+ f (x,y−1)−4 f (x,y).(54)

This equation can be implemented using the filter mask




(x,y−1)
(x−1,y) (x,y) (x+1,y)

(x,y+1)



−→





0 1 0
1 −4 1
0 1 0



(55)

which gives an isotropic result for rotations in incrementsof 90◦.
The diagonal directions can be incorporated in the definition of the digital Laplacian by adding two
more terms to Equation (54), one for each of the two diagonal directions. The form of each new
term is the same as either Equation (52) or (53), but the coordinates are along the diagonals. Because
each diagonal term also contains a−2 f (x,y) term, the total subtracted from the difference terms now
would be−8 f (x,y). This new definition can be implemented with the mask





1 1 1
1 −8 1
1 1 1



 .(56)

This mask yields isotropic results in increments of 45◦. You are likely to see in practice the Laplacian
masks 



0 −1 0
−1 4 −1
0 −1 0



 and





−1 −1 −1
−1 8 −1
−1 −1 −1



 .

They are obtained from definitions of the second derivativesthat are the negatives of the ones we used
in Equations (52) and (53). As such, they yield equivalent results, but the difference in sign must be
kept in mind when combining (by addition or subtraction) a Laplacian-filtered image with another
image.
Because the Laplacian is a derivative operator, its use highlights intensity discontinuities in an image
and deemphasizes regions with slowly varying intensity levels. This will tend to produce images that
have grayish edge lines and other discontinuities, all superimposed on a dark, featureless background.
Background features can be “recovered” while still preserving the sharpening effect of the Laplacian
simply by adding the Laplacian image to the original. As noted earlier, it is important to keep in mind
which definition of the Laplacian is used. If the definition used has a negative center coefficient, then
wesubtract, rather than add, the Laplacian image to obtain a sharpened result. Thus, the basic way in
which we use the Laplacian for image sharpening is

g(x,y) = f (x,y)+c[∇2 f (x,y)],

where f (x,y) andg(x,y) are the input and sharpened images, respectively. The constant isc=−1 if
the Laplacian filters in Equation (55) or (56) are used, andc= 1 if either of the other two is used.
Figure 8(a) shows a slightly blurred image of a CT scan. Figure 8(b) shows the result of filtering
this image with the Laplacian mask in Equation (55). Finally, Figure 8(c) shows the result of adding
the original image to the Laplacian. By doing this, it restored the overall intensity variations in the
image, with the Laplacian increasing the contrast at the locations of intensity discontinuities. The net
result is an image in which small details were enhanced and the background tonality was reasonably
preserved.
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(a) (b) (c)

FIGURE 8. (a) Blurred image of a CT scan. (b) Laplacian mask in Equation (55). (c)
Image sharpened using the mask in (b).



CHAPTER 6

Fourier Analysis

This chapter is concerned primarily with establishing a foundation for the Fourier transform and how
it is used in basic image filtering. Most of the materials in this chapter follows [23].
The most significant contribution of the French mathematician Jean Baptiste Joseph Fourier in the
field of image processing is perhaps the fact that any periodic function can be expressed as the sum
of sines and/or cosines of different frequencies, each multiplied by a different coefficient (we now
call this sum aFourier series). It does not matter how complicated the function is; if it isperiodic
and satisfies some mild mathematical conditions, it can be represented by such a sum. This is now
taken for granted but, at the time it first appeared, the concept that complicated functions could be
represented as a sum of simple sines and cosines was not at allintuitive, see e.g., Figure 1, so it is not
surprising that Fourier’s ideas were met initially with skepticism.
Even functions that are not periodic (but whose area under the curve is finite) can be expressed as
the integral of sines and/or cosines multiplied by a weighing function. The formulation in this case
is theFourier transform, and its utility is even greater than the Fourier series in many theoretical and

FIGURE 1. The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.

93
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applied disciplines. Both representations share the important characteristic that a function, expressed
in either a Fourier series or transform, can be reconstructed (recovered) completely via an inverse
process, with no loss of information. This is one of the most important characteristics of these repre-
sentations because it allows us to work in the “Fourier domain” and then return to the original domain
of the function without losing any information. Ultimately, it was the utility of the Fourier series and
transform in solving practical problems that made them widely studied and used as fundamental tools.
We will be dealing primarily with functions (images) of finite duration, so the Fourier transform is
the tool in which we are interested. The material in the following sections introduces the Fourier
transform and the frequency domain. It is shown that Fouriertechniques provide a meaningful and
practical way to study and implement a host of image processing approaches.

1. Review of Complex Exponential Functions

One of the most famous functions in all of mathematics isEuler’s formula. The result expresses a
complex exponential function int terms of cosine and sine. The result has numerous applications and
we will see that the formula is important we we design tools toprocess digital signals and images.
Recall Taylor’s series foret = 1+ t + t2

2! +
t3

3! + · · · . Thus,

eiθ = 1+(iθ)+
(iθ)2

2!
+

(iθ)3

3!
+ · · ·

= 1+ iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ · · ·

=

(

1− θ2

2!
+

θ4

4!
−+ · · ·

)

+ i

(

θ − θ3

3!
+

θ5

5!
−+ · · ·

)

= cosθ + i sinθ .

Thus we have Euler’s formula
eiθ = cosθ + i sinθ .

Soeiθ gives a graph of a circle on the complex plane. We can easily compute the conjugate as follows:

eiθ = cosθ + i sinθ = cosθ − i sinθ = e−iθ .

We will also be needing the notion ofNth roots of unity later in the discussion of Fourier transform.
In particular, theNth roots of unity are given by{ei2πk/N}N−1

k=0 . For example, the 4th roots of unity
are

e0 = 1, eiπ/2 = i, eiπ =−1, ei3π/2 =−i.

Now, we define a family of complex exponential functions

Ek(x) = eikx,(57)

wherek∈ Z andx∈C. These functions are2π
k -period. They givek copies of Sine and Cosine in each

interval of length 2π .

THEOREM 1.1. {Ek(x)}k∈Z forms a basis for the space of all2π-periodic square-integrable functions
f (x), i.e., f(x) is such that

∫ ∞
−∞ | f (x)|2dx< ∞.

PROOF. We will show that{Ek(x)} forms an orthogonal set. It will then follow that{Ek(x)} is a
basis since it is easy to see that it spans the space of all 2π-periodic functions. Recall the definition of
complex inner product:

〈 f (x),g(x)〉=
∫ π

−π
f (x) ·g(x)dx
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over any interval of 2π . (Alternatively, one can define〈 f (x),g(x)〉= 1
2π

∫ π

−π
f (x) ·g(x)dxso that the

set forms an orthonormal basis.)
For j,k∈ Z,

∫ π

−π
Ek(w)E j(w)dw=

∫ π

−π
eikwe−i jw dw=

∫ π

−π
ei(k− j)wdw.(58)

If j = k, Equation (58) gives 2π . If j 6= k, let u = (k− j)w, thendw= 1
k− j du. And Equation (58)

becomes

1
k− j

∫ (k− j)π

−(k− j)π
cosu+ i sinudu

=
1

k− j

∫ (k− j)π

−(k− j)π
cosudu+

i
k− j

∫ (k− j)π

−(k− j)π
sinudu

=
2

k− j

∫ (k− j)π

0
cosu],du=

2
k− j

sinu

∣
∣
∣
∣

(k− j)π

0
= 0

Thus,

〈
Ek,E j

〉
=

{

2π if k= j

0 if k 6= j,

which establishes the claim. �

2. Fourier Series

As we saw at the end of Section 1, iff is a 2π-periodic function and well-behaved (f is piecewise
continuous and has a finite number of jump discontinuities),then we can represent it as a linear
combination of the family of complex exponentials{Ek(x)}k∈Z. Such a linear combination is called
aFourier series.

DEFINITION 2.1. Suppose thatf is a 2π-periodic, absolutely integrable function, then the Fourier
series off is given by

f (x) =
∞

∑
k=−∞

cke
ikx.(59)

As long as f (x) is a continuous function and the derivative exists atx, then the right hand side of
Equation (59) converges tof (x). If f is piecewise continuous andx is a jump discontinuity, then the
series converges to one-half the sum of the left and right limits of f at x. Notice that this value may
or may not be the value off (x).
Now, a natural question to ask is how to find theck’s in the Fourier series. It turns out that the
procedure we follow to obtain theck’s is a natural consequence of theEk’s being orthogonal, i.e.,
ck = 〈 f ,Ek〉. In particular, consider the following
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f (x) =
∞

∑
k=−∞

cke
ikx

f (x)Ek(x) = ∑
k∈Z

Ek(x)Ek(x)

∫ π

−π
f (x)Ek(x)dx =

∫ π

−π
∑
k∈Z

Ek(x)Ek(x)dx

= ∑
k∈Z

∫ π

−π
Ek(x)Ek(x)dx

︸ ︷︷ ︸

2π
= 2πck

Thus, we obtain the Fourier coefficients

ck =
1

2π

∫ π

−π
f (x)Ek(x)dx=

1
2π

∫ π

−π
f (x)e−ikxdx.(60)

EXAMPLE 2.1. In this example, we find the Fourier series for the sawtooth function f (x) = x when
−π < x< π and f (x) = f (x+2π), given in Figure 2.

−15 −10 −5 0 5 10 15

−4

−3

−2

−1

0

1

2

3

4

FIGURE 2. The sawtooth function.

We first compute the Fourier coefficients,ck’s:

ck =

∫ π

−π

1
2π

xeikxdx

=
1

2π

(∫ π

−π
xcoskxdx− i

∫ π

−π
xsinkxdx

)

= 0− i
2π

·2
∫ π

0
xsinkxdx

= − i
π

∫ π

0
xsinkxdx.
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We now integrate this by parts. Letu= x, du= dx, dv= sinkxdx, andv=−1/kcoskx:

− i
π

∫ π

0
xsinkxdx = − i

π

[−1
k

xcoskx

∣
∣
∣
∣

π

0
+

∫ π

0

1
k

coskxdx

]

, k 6= 0

= − i
π

[−1
k

xcoskx

∣
∣
∣
∣

π

0
+

1
k2 sinkx

∣
∣
∣
∣

π

0

]

, k 6= 0

=

(−i
π

)(−π
k

)

(−1)k =
(−1)ki

k
, k 6= 0.

Hence,

ck =

{
(−1)ki

k if k 6= 0

0 if k= 0,

which results the following Fourier series forf :

f (x) = ∑
k6=0

(−1)ki
k

eikx.(61)

It is not hard to see that if a function is odd (even), then its Fourier coefficients are imaginary (real)
and the series can be reduced to one of sines (cosines). This should make sense to you —f is an odd
function, so we should need sine functions to represent it. Indeed, one can show that Equation (61)
can be reduced to

f (x) =−2
∞

∑
k=1

(−1)k

k
sin(kx)

by grouping±1,±2, · · · terms and using the facts cosx=
eix +e−ix

2
and sinx=

eix −e−ix

2i
.

Let’s get an idea of what this series looks like. We define the sequence of partial sums by

fn(x) =−2
n

∑
k=1

(−1)k

k
sin(kx)

and plot fn for various values ofn in Figure (3). Asn gets larger, sin(nx) becomes more and more
oscillatory. You will see a little undershoot and overshootat the points of discontinuity off . This is
the famous Gibbs phenomenon.

As you can see, the computation of Fourier coefficients can besomewhat tedious. Fortunately, there
exists an entire calculus for computing Fourier coefficients. The idea is to build Fourier series from
a “library” of known Fourier series. In general, we can always build the Fourier series of a function
that is expressed as a translation of another function.

PROPOSITION2.1. (Translation Rule). Suppose that f(x) has the Fourier series representation

f (x) = ∑
k∈Z

cke
ikx

and suppose that g(x) = f (x−a). If the Fourier series representation for g(x) is

g(x) = ∑
k∈Z

dke
ikx

then dk = eikack.
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FIGURE 3. (a) The sawtooth function on(−π ,π). (b) 1-term Fourier partial sum. (c)
5-term Fourier partial sum. (d) 20-term Fourier partial sum. (e) 50-term Fourier partial
sum. (f) 100-term Fourier partial sum.

PROOF.

dk =
1

2π

∫ π

−π
g(x)e−ikxdx=

1
2π

∫ π

−π
f (x−a)e−ikx dx.

Now we do au-substitution. Letu= x−a. Thedu= dxandx= u+a. Changing endpoints gives the
formula

dk =
1

2π

∫ π−a

−π−a
f (u)e−ik(u+a)du

=
1

2π
e−ika

∫ π−a

−π−a
f (u)e−ikudu

=
1

2π
e−ika

∫ π

−π
f (u)e−ikudu

= e−ikack

�

Although there are several such rules for obtaining Fourierseries coefficients, we only state one more.

PROPOSITION2.2. (Modulation Rule). Suppose that f(x) has the Fourier series representation

f (x) = ∑
k∈Z

cke
ikx

and suppose that g(x) = eimx f (x) for some m∈ Z. If the Fourier series representation for g(x) is

g(x) = ∑
k∈Z

dke
ikx

then dk = ck−m.

Finite-Length Fourier Series
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You might have decided that it is a little unnatural to construct a series for a function that is already
known. In many applications we typically do not know the function that generates a Fourier series
— indeed, we usually have only the coefficientsck or samples of some function such as an image. In
those cases, what do we expect the Fourier coefficients to tell us?

EXAMPLE 2.2. Suppose we have a finite-length Fourier series

H(x) =
L

∑
k=0

hke
ikx.

Let h0 = h2 =
1
4 and f1 =

1
2. All other values forhk are zero. Let us construct the Fourier series for

thesehk, and plot of graph of|H(x)|, for −π ≤ x≤ π .

H(x) =
2

∑
k=0

hke
ikx

=
1
4
+

1
2

eix +
1
4

ei2x

= eix
(

1
4

e−ix +
1
2
+

1
4

eix
)

= eix
(

1
2
+

1
2
· eix +e−ix

2

)

= eix
(

1
2
+

1
2

cosx

)

=
1
2

eix (1+cosx) .

And the Fourier spectrum|H(x)|=
∣
∣
∣
∣

1
2

∣
∣
∣
∣

∣
∣eix
∣
∣ |1+cosx|= 1

2
(1+cosx), since we know thateix describes

a circle of radius 1 centered at the origin, so its modulus is 1. Also, −1 ≤ cosx ≤ 1 so that 0≤
1+ cosx ≤ 2. We can then drop the absolute value signs from this factor.The graph of|H(x)| for
−π ≤ x≤ x is shown in Figure 4.
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FIGURE 4. A graph of
1
2
(1+cosx).

Many scientists and engineers use the plot of spectrum to design the process they apply to signals and
images. In this setting,x representsfrequency, with x = 0 being the lowest frequency. We will see
that functions|H(x)| with large values at or near 0 will mean that the process constructed from the
hk’s will leave data that are homogeneous (non-oscillatory orsimilar values) largely unchanged. If
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values ofH(x) are near zero for values ofx nearπ , then we will see that the process constructed from
thehk’s will take oscillatory data ad replace them with very smallvalues.
Conversely, when values of|H(x)| are large at or nearπ , the process constructed from thehk’s will
leave highly oscillatory data unchanged. If values of|H(x)| area near 0 forx near zero, then the
process constructed from thehk’s will take homogeneous data and replace them with very small
values.
This important example describes in a nutshell exactly how we use Fourier series throughout the dis-
cussions. The numbersh0,h1, · · · ,hL are values that we use to process data that comprise signals and
images. We have seen that the Fourier series can tell us how these processes will act on homogeneous
or highly oscillatory data.

3. The Fourier Transform of Functions of One Variable

3.1. The Continuous Case.TheFourier Transformof a continuous functionf (t) of a continuous
variable,t, denotedF{ f (t)}, is defined by the equation

F{ f (t)}=
∫ ∞

−∞
f (t)e−i2πµt dt(62)

whereµ is also a continuous variable. Becauset is integrated out,F{ f (t)} is a function of only
µ . We denote this fact explicitly by writing the Fourier transform asF{ f (t)}= F(µ); that is, the
Fourier transform off (t) may be written for convenience as

F(µ) =
∫ ∞

−∞
f (t)e−i2πµt dt.(63)

Conversely, givenF(µ), we can obtainf (t) back using theinverse Fourier transform, f (t)=F−1{F(µ)},
written as

f (t) =
∫ ∞

−∞
F(µ)ei2πµt dµ(64)

where we made use of the fact that variableµ is integrated out in the inverse transform and wrote
simply f (t) instead of the more cumbersome notationf (t) = F−1{F(µ)}. Equations (63) and (64)
comprise the so-calledFourier transform pair.
We need one more building block before proceeding. We introduced the idea of convolution in Sec-
tion 5 . You learned in that section that convolution of two functions involves flipping (rotating by
180◦) one function about its origin and sliding it past the other.At each displacement in the sliding
process, we perform a computation, which in the case of Section 5, was a sum of products. In the
present discussion, we are interested in the convolution oftwo continuous functions,f (t) andh(t), of
one continuous variable,t, so we have to use integration instead of a summation. The convolution of
these two functions, denoted as before by the operator⋆, is defined as

f (t)⋆h(t) =
∫ ∞

−∞
f (τ)h(t− τ)dτ(65)

where the minus sign accounts for the flipping just mentioned, t is the displacement needed to slide
one function past the other, andτ is a dummy variable that is integrated out. We assume for now that
the functions extend from−∞ to ∞. At the moment, we are interested in finding the Fourier transform
of Equation (65). We start with Equation (62):

F{ f (t)⋆h(t)} =

∫ ∞

−∞

[∫ ∞

−∞
f (τ)h(t− τ)dτ

]

e−i2πµt dt

=
∫ ∞

−∞
f (τ)

[∫ ∞

−∞
h(t − τ)e−i2πµt dt

]

dτ.
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The term inside the brackets is the Fourier transform ofh(t − τ). By thecircularity property, which
will be shown later in this Chapter, we haveF{h(t−τ)}= e−i2πµτH(µ), whereH(µ) is the Fourier
transform ofh(t). Using this fact in the preceding equation gives us

F{ f (t)⋆h(t)} =

∫ ∞

−∞
f (τ)

[
H(µ)e−i2πµτ] dτ

= H(µ)
∫ ∞

−∞
f (τ)e−2iπµτ dτ

= H(µ)F(µ).
If we refer to the domain oft as thespatialdomain, then the domain ofµ is realized as thefrequency
domain. The preceding equation tells us that the Fourier transform of the convolution of two functions
in the spatial domain is equal to the product in the frequencydomain of the Fourier transforms of the
two functions. Conversely, if we have the product of the two transforms, we can obtain the convolution
in the spatial domain by computing the inverse Fourier transform. In other words,f (t) ⋆ h(t) and
H(µ)F(µ) are a Fourier transform pair. The result is one-half of theconvolution theoremand is
written as

f (t)⋆h(t)⇔ H(µ)F(µ).(66)

The double arrow is used to indicate that the expression on the right is obtained by taking the Fourier
transform of the expression on the left, while the expression on the left is obtained by taking the
inverseFourier transform of the expression on the right. Followinga similar development would
result in the other half of the convolution theorem:

f (t)h(t)⇔ H(µ)⋆F(µ),(67)

which states that convolution in the frequency domain is analogous to multiplication in the spatial
domain, the two being related by the forward and inverse transforms, respectively. As you will see
later in this chapter, the convolution theorem is the foundation for filtering in the frequency domain.

4. The Discrete Case

In practice, continuous functions have to be converted intoa sequence of discrete values before they
can be processed in a computer. This is accomplished by sampling and quantization. In the following
discussion, we examine sampling in more details.
With reference to Figure 5, consider a continuous function,f (t), that we wish to sample at uniform
intervals∆T of the independent variablet. One way to model sampling is to multiplyf (t) by a
sampling function equal to a train of impulses∆T units apart. Then the value,fk, of an arbitrary
sample in the sequence is given byf (k∆T), shown in Figure 5(d). A natural question to consider is
whether or not we canuniquelyrecoverf from fk and if so, when?
Figure 6(a) is a sketch of the Fourier transform,F(µ), of a function f (t), and Figure 6(b) shows the
transform,F̃(µ), of the sampled function. The quantity 1/∆T is the sampling rate used to generate the
sampled function. So, in Figure 6(b) the sampling rate was high enough to provide sufficient separa-
tion between the periods and thus preserve the integrity ofF(µ). In Figure 6(c), the sampling rate was
just enough to preserveF(µ), but in Figure 6(d), the sampling rate was below the minimum required
to maintain distinct copies ofF(µ) and thus failed to preserve the original transform. Figure 6(b) is
the result of anover-sampledsignal, while Figure 6(c) and (d) are the results ofcritically-sampling
andunder-samplingthe signal, respectively.
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4. THE DISCRETE CASE 103

)( F

0

 

max ! max 

)(
~

 F

0

 

max ! max 

T 2

1

T 

!

2

1

T 

1

  

(a) (b)

FIGURE 7. (a) Transform of a band-limited function. (b) Transform resulting from
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The Sampling Theorem

A function f (t) whose Fourier transform is zero for values of frequencies outside a finite interval
(band)[−µmax,µmax] about the origin is called aband-limitedfunction. Figure 7(a), which is a
magnified section of Figure 6(a), is such a function. Similarly, Figure 7(b) is a more detailed view of
the transform of a critically sampled function shown in Figure 6(c). A lower value of 1/∆T would
cause the periods iñF(µ) to merge; a higher value would provide a clean separation between the
periods.
We can recoverf (t) from its sampled version if we can isolate a copy ofF(µ) from the periodic
sequence of copies of this function contained inF̃(µ), the transform of the sampled functioñf (t).
Since F̃(µ) is a continuous, periodic function with period 1/∆T. Therefore, all we need is one
complete period to characterize the entire transform. Thisimplies that we can recoverf (t) from that
single period by using the inverse Fourier transform.
Extracting fromF̃(µ) a single period that is equal toF(µ) is possible if the separation between copies
is sufficient, see Figure 6. In terms of Figure 7(b), sufficient separation is guaranteed if 1/2∆T >
µmaxor

1
∆T

> 2µmax.(68)

This equation indicates that a continuous, band-limited function can be recovered completely from a
set of its samples if the samples are acquired at a rate exceeding twice the highest frequency content
of the function. This result is known as thesampling theorem. We can say based on this result that
no information is lost if a continuous, band-limited function is represented by samples acquired at
a rate greater than twice the highest frequency content of the function. Conversely, we can say that
the maximumfrequency that can be captured by sampling a signal at a rate 1/∆T is µmax= 1

2∆T .
Sampling at the Nyquist rate1 sometimes is sufficient for perfect function recovery, but there are cases
in which this leads to difficulties. Thus, the sampling theorem specifies that sampling must exceed
the Nyquist rate.
To see how the recovery ofF(µ) from F̃(µ) is possible in principle, consider Figure 8, which shows
the Fourier transform of a function sampled at a rate slightly higher than the Nyquist rate. The function

1A sampling rate equal to exactly twice the highest frequency.
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FIGURE 8. Extracting one period of the transform of a band-limited function using an
ideal lowpass filter.

in the middle of Figure 8 is defined by the equation

H(µ) =

{

∆T −µmax≤ µ ≤ µmax
0 otherwise

When multiplied by the periodic sequence in the top of Figure8, this function isolates the period
centered on the origin. Then, as the bottom of Figure 8 shows,we obtainF(µ) by multiplying F̃(µ)
by H(µ):

F(µ) = H(µ)F̃(µ).
Once we haveF(µ) we can recoverf (t) by using the inverse Fourier transform:

f (t) =
∫ ∞

−∞
F(µ)ei2πµt dµ.

The last three equations prove that, theoretically, it is possible to recover a band-limited function
from samples of the function obtained at a rate exceeding twice the highest frequency content of the
function. As we discuss in the following section, the requirement thatf (t) must be band-limited
implies in general thatf (t) must extend from−∞ to ∞, a condition that cannot be met in practice.
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As you will see shortly, having to limit the duration of a function prevents perfect recovery of the
function, except in some special cases.
FunctionH(µ) is called alowpassfilter because it passes frequencies at the low end of the frequency
range but it eliminates (filters out) all higher frequencies. It is called anideal lowpass filter because
of its infinitely rapid transitions in amplitude (between 0 and ∆T at location−µmax and the reverse
at µmax), a characteristic that cannot be achieved with physical electronic components.

Aliasing

A logical question at this point is: what happens if a band-limited function is sampled at a rate that
is less than twice its highest frequency? This corresponds to the under-sampled case discussed in the
previous discussion. Top of Figure 9 is the same as Figure 6(d), which illustrates this condition. The
net effect of lowering the sampling rate below the Nyquist rate is that the periods now overlap, and
it becomes impossible to isolate a single period of the transform, regardless of the filter used. For
instance, using the ideal lowpass filter in the middle of Figure 9 would result in a transform that is
corrupted by frequencies from adjacent periods, as the bottom of Figure 9 shows. The inverse trans-
form would then yield a corrupted function oft. This effect, caused by under-sampling a function,
is known asfrequency aliasingor simply aliasing. In words, aliasing is a process in which high
frequency components of a continuous function “masquerade” as lower frequencies in the sampled
function. This is consistent with the common use of the termalias, which means “a false identity”.
Unfortunately, except for some special cases, aliasing is always present in sampled signals because,
even if the original sampled function is band-limited, infinite frequency components are introduced
the moment we limit the duration of the function, which we always have to do in practice. In practice,
the effects of aliasing can be reduced by smoothing the inputfunction to attenuate its higher frequen-
cies (e.g., by defocusing in the case of an image). This process, calledanti-aliasing, has to be done
beforethe function is sampled because aliasing is a sampling issuethat cannot be “undone after the
fact” using computational techniques.

The Discrete Fourier Transform (DFT) of One Variable

The material up to this point may be viewed as the foundation of those basic principles, so now we are
ready to derive the DFT. The Fourier transform of a sampled, band-limited function extending from
−∞ to ∞ is a continuous, periodicfunction that also extends from−∞ to ∞. In practice, we work
with a finite number of samples, and the objective of this section is to derive the DFT corresponding
to such sample sets.
From the definition of the Fourier transform in Equation (63), one can obtain thediscrete Fourier
transform pair

F(u) =
M−1

∑
x=0

f (x)e−i2πux/M u= 0,1,2, . . . ,M−1(69)

and

f (x) =
1
M

M−1

∑
n=0

F(u)ei2πux/M x= 0,1,2, . . . ,M−1(70)

where we used the functional notation instead of subscriptsfor simplicity andM is the total number
of samples taken over one complete period. Clearly,F(u) = Fu and f (x) = fx. It can be shown that
both the forward and inverse discrete transforms are infinitely periodic, with periodM. That is,

F(u) = F(u+kM)
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FIGURE 9. Top: Fourier transform of an under-sampled, band-limited function. Mid-
dle: The same ideal lowpass filter used in Figure 8. Bottom: The product of top and
middle. The interference from adjacent periods results in aliasing that prevents perfect
recovery ofF(µ) and, therefore, of the original, band-limited continuous function.

and

f (x) = f (x+kM)

wherek is an integer. This is called theperiodicity. The discrete equivalent of the convolution is

f (x)⋆h(x) =
M−1

∑
m=0

f (m)h(x−m)(71)

for x = 0,1,2, . . . ,M − 1. Because in the preceding formulations the functions are periodic, their
convolution also is periodic. Equation (71) gives one period of the periodic convolution. For this
reason, the process inherent in this equation often is referred to ascircular convolution, and is a
direct result of the periodicity of the DFT and its inverse. This is in contrast with the convolution
you studied earlier, in which values of the displacement,x, were determined by the requirement of
sliding one function completely past the other, and were notfixed to the range[0,M−1] as in circular
convolution.
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5. The Fourier Transform of Functions of Two Variables

The 2-D Continuous Fourier Transform Pair

Let f (t,z) be a continuous function of two continuous variables,t and z. The two-dimensional,
continuous Fourier transform pair is given by the expressions

F(µ,ν) =
∫ ∞

−∞

∫ ∞

−∞
f (t,z)e−i2π(µt+νz)dt dz(72)

and

f (t,z) =
∫ ∞

−∞

∫ ∞

−∞
F(µ,ν)ei2π(µt+νz)dµ dν(73)

wheremuandν are the frequency variables. When referring to images,t andz are interpreted to be
continuousspatial variables. As in the 1-D case, the domain of the variablesµ andν defines the
continuous frequency domain.

The 2-D Discrete Fourier Transform and its Inverse

The 2-Ddiscrete Fourier transform (DFT)is given by

F(u,v) =
M−1

∑
x=0

N−1

∑
y=0

f (x,y)e−i2π( ux
M + vy

N )(74)

where f (x,y) is a digital image of sizeM×N. This is computed through repeated applications of 1-D
version of the transform, i.e.,M 1-D DFT of lengthN andN 1-D DFT of lengthM.
Given the transformF(u,v), we can obtainf (x,y) by using theinverse discrete Fourier transform
(IDFT)

f (x,y) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

F(u,v)ei2π( ux
M + vy

N )(75)

for x= 0,1,2, . . . ,M−1 andy= 0,1,2, . . . ,N−1. The rest of this section is based on properties of
the 2-D discrete Fourier transform pair and their use for image filtering in the frequency domain.

Properties

1. Relationships Between Spatial and Frequency Intervals

Suppose that a continuous functionf (t,z) is sampled to form a digital image,f (x,y), consisting of
M×N samples taken in thet- andz-directions, respectively. Let∆T and∆Z denote the separation be-
tween samples. Then the separations between the corresponding discrete, frequency domain variables
are given by

∆u=
1

M∆T
and

∆v=
1

N∆Z
respectively. Note that the separations between samples inthe frequency domain are inversely pro-
portional both the spacing between spatial samples and the number of samples.

2. Translation and Rotation
It can be shown by direct substitution into Equations (74) and (75) that the Fourier transform pair
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satisfies the following translation properties

f (x,y)ei2π(u0x/M+v0y/N) ⇔ F(u−u0,v−v0)(76)

and

f (x−x0,y−y0)⇔ F(u,v)e−i2π(x0u/M+y0v/N).(77)

That is, multiplyingf (x,y) by the exponential shown shifts the origin of the DFT to(u0,v0) and, con-
versely, multiplyingF(u,v) by the negative of that exponential shifts the origin off (x,y) to (x0,y0).
Notice that translation has no effect on the magnitude (spectrum) ofF(u,v).
Using the polar coordinates

x= cosθ y= r sinθ u= ω cosφ v= ω sinφ

results in the following transform pair:

f (r,θ +θ0)⇔ F(ω,φ +θ0)(78)

which indicates that rotatingf (x,y) by an angleθ0 rotatesF(u,v) by the same angle. Conversely,
rotatingF(u,v) rotatesf (x,y) by the same angle.

3. Periodicity

As in the 1-D case, the 2-D Fourier transform and its inverse are infinitely periodic in theu andv
directions; that is

F(u,v) = F(u+k1M,v) = F(u,v+k2N) = F(u+k1M,v+k2N)

and
f (x,y) = F(x+k1M,y) = F(x,y+k2N) = F(x+k1M,y+k2N)

wherek1 andk2 are integers.
The periodicities of the transform and its inverse are important issues in the implementation of DFT-
based algorithms. Consider the 1-D spectrum in Figure 10(a), the transform data in the interval from
0 to M−1 consists of two back-to-back half periods meeting at pointM/2. For display and filtering
purposes, it is more convenient to have in this interval a complete period of the transform in which
the data are contiguous, as in Figure 10(b). It follows from Equation (76) that

f (x)ei2π(u0x/M) ⇔ F(u−u0).

In other words, multiplyingf (x) by the exponential term shown shifts the data so that the origin,
F(0), is located atu0. If we let u0 = M/2, the exponential term becomeseiπx which is equal to(−1)x

becausex is an integer. In this case,

f (x)(−1)x ⇔ F(u−M/2).

That is, multiplyingf (x) by (−1)x shifts the data so thatF(0) is at thecenterof the interval[0,M−1],
which corresponds to Figure 10(b), as desired.
In 2-D the situation is more difficult to graph, but the principle is the same, as Figure 10(c) shows.
Instead of two half periods, there are now four quarter periods meeting at the point(M/2,N/2). The
dashed rectangles correspond to the infinite number of periods of the 2-D DFT. As in the 1-D case,
visualization is simplified if we shit the data so thatF(0,0) is at (M/2,N/2). Letting (u0,v0) =
(M/2,N/2) in Equation (76) results in the expression

f (x,y)(−1)x+y ⇔ F(u−M/2,v−N/2).

Using this equation shifts the data so thatF(0,0) is at the center of thefrequency rectangledefined
by the intervals[0,M−1] and[0,N−1], as desired. Figure 10(d) shows the result.
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FIGURE 10. Centering the Fourier transform. (a) A 1-D DFT showing aninfinite
number of periods. (b) Shifted DFT obtained by multiplyingf (x) by (−1)x before
computingF(u). (c) A 2-D DFT showing an infinite number of periods. The solid
area is theM×N data array,F(u,v), obtained with Equation (74). This array consists
of four quarter periods. (d) A shifted DFT obtained by multiplying f (x,y) by (−1)x+y

before computingF(u,v). The data now contains one complete, centered period, as in
(b).
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4. Fourier Spectrum and Phase Angle

Because the 2-D DFT is complex in general, it can be expressedin polar form:

F(u,v) = |F(u,v)|eiφ(u,v)(79)

where the magnitude
|F(u,v)|= [R2(u,v)+ I2(u,v)]1/2

is called theFourier (or frequency) spectrum, and

φ(u,v) = arctan

[
I(u,v)
R(u,v)

]

is thephase angle. Finally, thepower spectrumis defined as

P(u,v) = |F(u,v)|2 = R2(u,v)+ I2(u,v).

RandI are the real and imaginary parts ofF(u,v) and all computations are carried out for the discrete
variablesu= 0,1,2, . . . ,M−1 andv= 0,1,2, . . . ,N−1. Therefore,|F(u,v)|,φ(u,v), andP(u,v) are
arrays of sizeM×N.
The Fourier transform of a real function is conjugate symmetric which implies that the spectrum has
evensymmetry about the origin:

|F(u,v)|= |F(−u,−v)|.
The phase angle exhibits the followingoddsymmetry about the origin:

φ(u,v) =−phi(−u,−v).

It follows from Equation (74) that

F(0,0) =
M−1

∑
x=0

N−1

∑
y=0

f (x,y)

which indicates that the zero-frequency term is proportional to the average value off (x,y). That is,

F(0,0) = MN
1

MN

M−1

∑
x=0

N−1

∑
y=0

f (x,y)

= MN f̄ (x,y)

where f̄ denotes the average value off . Then,

|F(0,0)|= MN| f̄ (x,y)|.
Because the proportionality constantMN usually is large,|F(0,0)| typically is the largest component
of the spectrum by a factor that can be several orders of magnitude larger than other terms. Because
frequency componentsu andv are zero at the origin,F(0,0) sometimes is called thedc component
of the transform. This terminology is from electrical engineering, where “dc” signifies direct current
(i.e., current of zero frequency).

EXAMPLE 5.1. Figure 11(a) shows a simple image of 30×30 and Figure 11(b) shows its spectrum
and displays it in image form. The origins of both the spatialand frequency domains are at the top left.
As expected, the area around the origin of the transform contains the highest values (thus appears red
in the image). However, the four corners of the spectrum contain similarly high values. The reason
is the periodicity property. The reason is the periodicity property discussed in the previous section.
To center the spectrum, we simply multiply the image in (a) by(−1)x+y before computing the DFT.
Figure 11(c) shows the result, which clearly is much easier to visualize (note the symmetry about the
center point).
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Because the dc term dominates the values of the spectrum, thedynamic range of other intensities in
the displayed image are compressed. To bring out those details, we perform a log transformation,
1+ log|F(u,v)|2. Figure 11(d) shows the display of that. The increased rendition of detail is evident.
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FIGURE 11. (a) Image. (b) Spectrum showing red spots in four corners. (c) Centered
spectrum. (d) Result showing increase detail after a log transformation. The zero
crossings of the spectrum are closer in the vertical direction because the rectangle in
(a) is longer in that direction. The coordinate convention used here places the origin
of the spatial and frequency domains at the top left.

It follows from Equations (77) and (78) that the spectrum is insensitive to image translation, but it
rotates the same angle of a rotated image.

The components of the spectrum of the DFT determine the amplitudes of the sinusoids that combine to
form the resulting image. At any given frequency in the DFT ofan image, a large amplitude implies
a greater prominence of a sinusoid of that frequency in the image. Conversely, a small amplitude
implies that less of that sinusoid is present in the image. Thus, whilethe magnitude of the 2-D DFT
is an array whose components determine the intensities in the image, thecorresponding phase is an
array of angles that carry much of the information about where discernable objects are located in the
image.

2We commonly use log map to map a narrow range of low intensity values into a wider range of output levels, see,
e.g., Figure 12
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5. The 2-D Convolution Theorem
Extending Equation (71) to two variables results in the following expression for 2-Dcircular convo-
lution:

f (x,y)⋆h(x,y) =
M−1

∑
m=0

N−1

∑
n=0

f (m,n)h(x−m,y−n)(80)

for x = 0,1,2, . . . ,M − 1 andy = 0,1,2, . . . ,N− 1. The 2-D convolution theorem is given by the
expressions

f (x,y)⋆h(x,y)⇔ F(u,v)H(u,v)(81)

and, conversely,

f (x,y)h(x,y)⇔ F(u,v)⋆H(u,v).(82)

6. The Basics of Filtering in the Frequency Domain

In this section, we lay the the groundwork for all the filtering techniques discussed in the remainder
of the chapter.

6.1. Additional Characteristics of the Frequency Domain.We begin by observing in Equa-
tion (74) thateachterm ofF(u,v) containsall values off (x,y), modified by the values of the expo-
nential terms. Thus, with the exception of trivial cases, itusually is impossible to make direct associa-
tions between specific components of an image and its transform. However, some general statements
can be made about the relationship between the frequency components of the Fourier transform and
spatial features of an image. For instance, because frequency is directly related to spatial rates of
change, it is not difficult intuitively to associate frequencies in the Fourier transform with patterns of
intensity variations in an image. For example, the slowest varying frequency component (u= v= 0) is
proportional to the average intensity of an image. As we moveaway from the origin of the transform,
the low frequencies correspond to the slowly varying intensity component of an image. As we move
further away from the origin, the higher frequencies begin to correspond to faster and faster intensity
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changes in the image. These are the edges of objects and othercomponents of an image characterized
by abrupt changes in intensity.
Filtering techniques in the frequency domain are based on modifying the Fourier transform to achieve
a specific objective and then computing the inverse DFT to getus back to the image domain. It
follows from Equation (79) that the two components of the transform to which we have access are
the transform magnitude (spectrum) and the phase angle. We learned from before that visual analysis
of the phase component generally is not very useful; the spectrum, however, provides some useful
guidelines as to gross characteristics of the image from which the spectrum was generated.

6.2. Frequency Domain Filtering Fundamentals.Filtering in the frequency domain consists
of modifying the Fourier transform of an image and then computing the inverse transform to obtain
the processed result. Thus, given a digital image,f (x,y), of sizeM×N, then basic filtering equation
in which we are interested has the form

g(x,y) = F
−1[H(u,v)F(u,v)](83)

whereF−1 is the IDFT,F(u,v) is the DFT of the input image,f (x,y), H(u,v) is afilter function(also
called simply thefilter, or thefilter transfer function), andg(x,y) is the filtered (output) image. Func-
tionsF,H, andg are arrays of sizeM×N, the same as the input image. The productH(u,v)F(u,v)
is formed using array multiplication. The filter function modifies the transform of the input image to
yield a processed output,g(x,y). Specification ofH(u,v) is simplified considerably by using func-
tions that are symmetric about their center, which requiresthatF(u,v) be centered also. As explained
in Section 5, this is accomplished by multiplying the input image by(−1)x+y prior to computing its
transform.
We are now in the position to consider the filtering process insome details. One of the simplest filters
we can construct is a filterH(u,v) that is 0 at the center of the transform and 1 elsewhere. This filter
would reject the dc term and pass all other terms ofF(u,v) when we form the productH(u,v)F(u,v).
We know that the dc term is responsible for the average intensity of an image, so setting it to zero will
reduce the average intensity of the output image to zero.
As noted earlier, low frequencies in the transform are related to slowly varying intensity components
in an image, such as the walls of a room or a cloudless sky in an outdoor scene. On the other hand,
high frequencies are caused by sharp transitions in intensity, such as edges and noise. Therefore,
we would expect that a filterH(u,v) that attenuates high frequencies while passing low frequencies
(appropriately called alowpass filter) would blur an image while a filter with the opposite property
(called ahighpass filter) would enhance sharp detail, but cause a reduction in contrast in the image.

6.3. Summary of Steps for Filtering in the Frequency Domain.

(1) Given an input imagef (x,y) of sizeM×N, obtain the padding parametersP andQ. P and
Q are taken so that

P≥ M+m−1,Q≥ N+n−1,

wherem andn are sizes for the filterH. Typically, m= M andn= N. Thus, selectP= 2M
andQ= 2N. (Please refer to [23] for the discussion on wraparound error and zero padding.
Rule of thumb: zero-pad images and then create filters in the frequency domain to be of the
same size as the padded images. Images and filters must of the same size when using the
DFT.)

(2) Form a padded imagefp(x,y), of sizeP×Q by appending the necessary number of zeros to
f (x,y).

(3) Multiply fp(x,y) by (−1)x+y to center its transform.
(4) Compute the DFT,F(u,v), of the image from step (3).
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(5) Generate a real, symmetric filter function,H(u,v), of sizeP×Q with center at coordinates
(P/2,Q/2)3. Form the productG(u,v) = H(u,v)F(u,v) using array multiplication; that is,
G(i, j) = H(i, j)F(i, j).

(6) Obtain the processed image:

gp(x,y) =
{

real
[
F

−1[G(u,v)]
]}

(−1)x+y

where the real part is selected in order to ignore parasitic complex components resulting from
computational inaccuracies, and the subscriptp indicates that we are dealing with padded
arrays.

(7) Obtain the final processed result,g(x,y), by extracting theM ×N region from the top, left
quadrant ofgp(x,y).

6.4. Correspondence Between Filtering in the Spatial and Frequency Domains.The link
between filtering in the spatial and frequency domains in theconvolution theorem. In practice, we
prefer to implement convolution with small filter masks because of computational coasts and speed.
However, DFT and IDFT give us a more intuitive idea. One way totake advantage of the properties
of both domains is to specify a filter in the frequency domain,compute its IDFT, and then use the
resulting, full-sized spatial filter as aguidefor constructing smaller spatial filter masks.
In the following discussion, we use Gaussian filters to illustrate how frequency domain filters can be
used as guides for specifying the coefficients of some of the small masks. Filters based on Gauss-
ian functions are of particular interest because both the forward and inverse Fourier transforms of a
Gaussian function area real Gaussian functions.
We limit the discussion to 1-D to illustrate the underlying principles. Two-dimensional Gaussian
filters are discussed in the next section.
Let H(u) denote the 1-D frequency domain Gaussian filter:

H(u) = Ae−u2/2σ2
(84)

whereσ is the standard deviation of the Gaussian curve. The corresponding filter in the spatial domain
is obtained by taking the inverse Fourier transform ofH(u):

h(x) =
√

2πσAe−2π2σ2x2
.(85)

These equations are important for two reasons: (1) They are aFourier transform pair, both components
of which are Gaussian andreal. This facilitates analysis because we do not have to be concerned with
complex numbers. In addition, Gaussian curves are intuitive and easy to manipulate. (2) The functions
behave reciprocally. WhenH(u) has a broad profile (large value ofσ ), h(x) has a narrow profile, and
vice versa. In fact, asσ approaches infinity,H(u) tends toward a constant function andh(x) tends
toward an impulse, which implies no filtering in the frequency and spatial domains, respectively.
Figure 13(a) and (b) show plots of a Gaussian lowpass filter inthe frequency domain and the cor-
responding lowpass filter in the spatial domain. Suppose that we want to use the shape ofh(x) in
Figure 13(b) as aguidefor specifying the coefficients of a small spatial mask.The key similarity be-
tween the two filters is that all their values are positive. Thus, we conclude that we can implement
lowpass filtering in the spatial domain by using a mask with all positive coefficients. For reference,
Figure 13(b) shows two of the masks discussed in Section 5. Note the reciprocal relationship between
the width of the filters, as discussed in the previous paragraph. The narrower the frequency domain
filter, the more it will attenuate the low frequencies, resulting in increased blurring. In the spatial
domain, this means that a larger mask must be used to increaseblurring.

3If H(u,v) is to be generated from a given spatial filter,h(x,y), then we formhp(x,y) by padding the spatial filter to
sizeP×Q, multiply the expanded array by(−1)x+y, and compute the DFT of the result to obtain a centeredH(u,v).
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FIGURE 13. (a) A 1-D Gaussian lowpass filter in the frequency domain.(b) Spatial
lowpass filter corresponding to (a). (c) Gaussian highpass filter in the frequency do-
main. (d) Spatial highpass filter corresponding to (c). The small 2-D masks shown are
spatial filters discussed in Section 5.

More complex filters can be constructed using the basic Gaussian function of Equation (84). For
example, we can construct a highpass filter as thedifferenceof Gaussians:

H(u) = Ae−u2/2σ2
1 −Be−u2/2σ2

2

with A≥ B andσ1 > σ2. The corresponding filter in the spatial domain is

h(x) =
√

2πσ1Ae−2π2σ2
1x2 −

√
2πσ2Be−2π2σ2

2 x2
.

Figure 13(c) and (d) show plots of these two equations. We note again the reciprocity in width, but
the most important feature here is thath(x) has a positive center term with negative terms on either
side. The small masks shown in Figure 13(d) capture this property.

6.5. Image Smoothing Using Frequency Domain Filters.The remainder of this chapter deals
with various filtering techniques in the frequency domain. We begin with lowpass filters. Edges
and other sharp intensity transitions (such as noise) in an image contribute significantly to the high-
frequency content of its Fourier transform. Hence, smoothing (blurring) is achieved in the frequency
domain by high-frequency attenuation; that is, bylowpassfiltering. In this section, we consider three
types of lowpass filters: ideal, Butterworth, and Gaussian.These three categories cover the range
from very sharp (ideal) to very smooth (Gaussian) filtering.The Butterworth filter has a parameter
called thefilter order. For high order values, the Butterworth approaches the ideal filter. For lower
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Ideal Butterworth Gaussian

H(u,v) =

{

1 if D(u,v)≤ D0

0 if D(u,v)> D0
H(u,v) =

1
1+[D(u,v)/D0]2n H(u,v) = e−D2(u,v)/2D2

0

TABLE 1. Lowpass filters.D0 is the cutoff frequency andn is the order of the Butter-
worth filter.

order values, it behaves more like a Gaussian filter. Thus, the Butterworth filter may be viewed as
providing a transition between two “extremes”.

6.5.1. Ideal Lowpass Filters.A 2-D lowpass filter that passes without attenuation all frequencies
within a circle of radiusD0 from the origin and “cuts off” all frequencies outside this circle is called
an ideal lowpass filter(ILPF); it is specified by the function

H(u,v) =

{

1 if D(u,v)≤ D0

0 if D(u,v)> D0

whereD0 is a positive constant andD(u,v) is the distance between a point(u,v) in the frequency
domain and the center of the frequency rectangle; that is

D(u,v) =
[
(u−P/2)2+(v−Q/2)2]1/2

where, as before,P andQ are the padded sizes. The ideal lowpass filter is radially symmetric about
the origin, which means that the filter is completely defined by a radial cross section.

6.5.2. Butterworth Lowpass Filters.The transfer function of a Butterworth lowpass filter (BLPF)
of ordern, and with cutoff frequency at a distanceD0 from the origin, is defined as

H(u,v) =
1

1+[D(u,v)/D0]2n

whereD(u,v) is defined similarly as before. Unlike the ILPF, the BLPF transfer function does not
have a sharp discontinuity that gives a clear cutoff betweenpassed and filtered frequencies. For filters
with smooth transfer functions, defining a cutoff frequencylocus at points for whichH(u,v) is down
to a certain fraction of its maximum value is customary.

6.5.3. Gaussian Lowpass Filters.Gaussian lowpass filters (BLPFs) of two dimension is given by

H(u,v) = e−D2(u,v)/2σ2
.

Here we do not use a multiplying constant as in Section 5 in order to be consistent with the filters
discussed in the present section, whose highest value is 1. As before,σ is a measure of spread about
the center. By lettingσ = D0, we can express the filter using the notation of the other filters in this
section:

H(u,v) = e−D2(u,v)/2D2
0

whereD0 is the cutoff frequency. WhenD(u,v) = D0, the GLPF is down to 0.607 of its maximum
value. All three filters are summarized in Table 1.

6.6. Image Sharpening Using Frequency Domain Filters.In the previous section, we showed
that an image can be smoothed by attenuating the high-frequency components of its Fourier transform.
Because edges and other abrupt changes in intensities are associated with high-frequency components,
image sharpening can be achieved in the frequency domain by highpass filtering, which attenuates the
low-frequency components without disturbing high-frequency information in the Fourier transform.
We consider only zero-phase-shift filters that are radiallysymmetric. A highpass filter is obtained
from a given lowpass filter using the equation

HHP(u,v) = 1−HLP(u,v)(86)
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Ideal Butterworth Gaussian

H(u,v) =

{

0 ifD(u,v)≤ D0

1 ifD(u,v)> D0
H(u,v) =

1
1+[D0/D(u,v)]2n H(u,v) = 1−e−D2(u,v)/2D2

0

TABLE 2. Highpass filters.D0 is the cutoff frequency andn is the order of the Butter-
worth filter.

whereHLP is the transfer function of the lowpass filter. That is, when the lowpass filter attenuates
frequencies, the highpass filter passes them, and vice versa. Guided by this principle, we obtain three
highpass filters given in Table 2. A variety of applications using these and other filters cab be found
in [23].

7. Implementation

We have focused attention thus far on the theoretical concepts and on examples of filtering in the
frequency domain. Ont thing that should be clear by now is that computational requirements in this
area of image processing are not trivial. Thus, it is important to develop a basic understanding of
methods by which Fourier transform computations can be simplified and speeded up. This section
deals with these issues.

7.1. Separability of the 2-D DFT. The 2-D DFT is separable into 1-D transform. We can write
Equation (74) as

F(u,v) =
M−1

∑
x=0

e−i2πux/M
N−1

∑
y=0

f (x,y)e−i2πvy/N(87)

=
M−1

∑
x=0

F(x,v)e−i2πux/M(88)

where

F(x,v) =
N−1

∑
y=0

f (x,v)e−i2πvy/N.(89)

For each value ofx and forv= 0,1,2, . . . ,N−1, we see thatF(x,v) is simply the 1-D DFT of a row
of f (x,y). By varyingx from 0 toM−1 in Equation (89), we compute a set of 1-D DFTs for all rows
of f (x,y). The computations in Equation (87) similarly are 1-D transforms of the columns ofF(x,v).
Thus, we conclude that the 2-D DFT off (x,y) can be obtained by computing the 1-D transform of
each row of f (x,y) and then computing the 1-D transform along each column of theresult. This
is an important simplification because we have to deal only with one variable at a time. A similar
development applies to computing the 2-D IDFT using the 1-D IDFT. However, as we show in the
following section, we can compute the IDFT using an algorithm designed to compute the DFT.

7.2. Computing the IDFT Using a DFT Algorithm. Taking the complex conjugate of both
sizes of Equation (75) and multiplying the results byMN yields

MN f∗(x,y) =
M−1

∑
u=0

N−1

∑
v=0

F∗(u,v)e−i2π(ux/M+vy/N).(90)

But, we recognize the form of the right side of this result as the DFT ofF∗(u,v). Therefore, Equa-
tion (90) indicates that if we substituteF∗(u,v) into an algorithm designed to compute the 2-D forward
Fourier transform, the result will beMN f∗. Taking the complex conjugate and multiplying this result
by MN yields f (x,y), which is the inverse ofF(u,v).
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Computing the 2-D inverse from a 2-D forward DFT algorithm that is based on successive passes of
1-D transforms (as in the previous section) is a frequent source or confusion involving the complex
conjugates and multiplication by a constant, neither of which is done in the 1-D algorithms. The key
concept to keep in mind is that we simply inputF∗(u,v) into whatever forward algorithm we have.
The result will beMN f∗(x,y). All we have to do with this result to obtainf (x,y) is to take its complex
conjugate and multiply it by the constantMN. Of course, whenf (x,y) is real, as typically is the case,
f ∗(x,y) = f (x,y).

7.3. The Fast Fourier Transform (FFT). Work in the frequency domain would not be practical
if we had to implement Equations (74) and (75) directly. Brute-force implementation of these equa-
tions requires on the order of(MN)2 summations and additions. For images of moderate size (say,
1024×1024 pixels), this means on the order of a trillion multiplications and additions for just one
DFT, excluding the exponentials, which could be computed once and stored in a look-up table. This
would be a challenge even for super computers. Without the discovery of thefast Fourier transform
(FFT), which reduces computations to the order ofMN log2MN multiplications and additions, it is
safe to say that the material presented in this chapter wouldbe of little practical value. The compu-
tational reductions afforded by the FFT are impressive indeed. For example, computing the 2-D FFT
of a 1024×1024 image would require on the order of 20 million multiplication and additions, which
is a significant reduction from the one trillion computations mentioned above.
Although the FFT is a topic covered extensively in the literature on signal processing, this subject
matter is of such significance in our work that this chapter beincomplete if we did not provide at least
an introduction explaining why the FFT works as it does. The algorithm we selected to accomplish
this objective is the so-calledsuccessively-doublingmethod, which was the original algorithm that
led to the birth of an entire industry [7].
This algorithm assumes that the number of samples,M, is an integer power of 2, i.e.,M = 2n for some
n. But this is not a general requirement of other approaches. SupposeM = 2K, then

F(u) =
M1

∑
x=0

f (x)e−i2πux/M

=
2K−1

∑
x=0

f (x)e−i2πux/2K

=
K−1

∑
x=0

f (2x)e−i2πu(2x)/2K +
K−1

∑
x=0

f (2x+1)e−i2πu(2x+1)/2K (splitting into even and odd parts)

=
K−1

∑
x=0

f (2x)e−i2πux/K +
K−1

∑
x=0

f (2x+1)e−i2πux/K ·e−i2πu/2K

= Fe(u)+e−i2πu/2K ·Fo(u).

With simple calculations, we can obtainF(u+K) = Fe(u)−Fo(u) · e−i2πu/2K . These calculations
reveal some interesting properties of these expressions. An M-point transform can be computed by
dividing the original expression into two parts. Computingthe first half ofF(u) requires evaluation of
the two(M/2)-point transforms inFe andFo. The other half then following directly from the equation
F(u+K) = Fe(u)−Fo(u) ·e−i2πu/2K without additional transform evaluations.



CHAPTER 7

Wavelet and Multiresolution Analysis

1. Introduction

Although the Fourier Transform has been the mainstay of transform-based image processing since the
late 1950s, a more recent transformation, called thewavelet transform, is now making it even easier to
compress, transmit, and analyze many images. Unlike the Fourier transform, whose basis functions
are sinusoids, wavelet transform are based on small waves, called wavelets, of varying frequency
and limited duration. This allows them to provide the equivalent of a musical score for an image,
revealing not only what notes (or frequencies) to play but also when to play them. Fourier transforms,
on the other hand, provide only the notes or frequency information; temporal information is lost in
the transform process.
In 1987, wavelets were first shown to be the foundation of a powerful new approach to signal process-
ing and analysis calledmultiresolutiontheory [39]. Multiresolution theory incorporates and unifies
techniques from a variety of disciplines, including subband coding from signal process, quadrature
minor filtering from digital speech recognition, and pyramidal image processing. As its name im-
plies, multiresolution theory is concerned with the representation and analysis of signals (or images)
at more than one resolution. The appeal of such an approach isobvious — features that might go
undetected at one resolution may be easy to detect at another. Although the imaging community’s
interest in multiresolution analysis was limited until thelate 1980s, it is now difficult to keep up with
the number of papers, theses, and books devoted to the subject.
In this chapter, we examine wavelet-based transformationsfrom a multiresolution point of view. Al-
though such transforms can be presented in other ways, this approach simplifies both their mathemat-
ical and physical interpretations. We begin with an overview of imaging techniques that influenced
the formulation of multiresolution theory. Our objective is to introduce the theory’s fundamental con-
cepts within the context of image processing the simultaneously provide a brief historical perspective
of the method and its application. The bulk of this chapter isfocused on the development and use of
the discrete wavelet transform.
A powerful, yet conceptually simple structure for representing images at more than one resolution is
the image pyramid[9]. Originally devised for machine vision and image compression applications,
an image pyramid is a collection of decreasing resolution images arranged in the shape of a pyramid.
As can be see in Figure 1(a), the the base of the pyramid contains a high-resolution representation of
the image being processed; the apex contains a low-resolution approximation. As you move up the
pyramid, both size and resolution decrease. Base level 0 is of sizeM×N, apex level is of size 1×1.
The number of maximum levels that can be computed depends on the image resolution,M andN.
Without loss of generality, letN = min(M,N), then the maximum number of levels one can take is
J = log2N. The image resolution at a general levelj is M/2 j ×N/2 j , where 0≤ j ≤ J. Figure 1(b)
gives an idea how image size changes as we move up the image pyramid. We are now ready for the
formal discussion of the Multiresolution analysis.

119
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FIGURE 1. (a) An image pyramid. (b) An illustration of how image resolution changes
as one moves up the pyramid.

2. The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is defined by

X(b,a) =
1
√

|a|

∫ ∞

−∞
x(t)ψ

(
t −b

a

)

dt,(91)

wherea,b∈ R (typically a represents thescaleparameter andb is theshift parameter) and̄ψ is the
complex conjugate of the possibly complex functionψ. One interpretation of the transformX(b,a)
is that it provides a measure of similarity between the signal x(t) and the continuously translated and
dilatedmother waveletψ(t). The inverse wavelet transform is then provided by

x(t) =
1

√
|a|Cψ

∫ ∞

−∞

∫ ∞

−∞
X(b,a)ψ

(
t −b

a

)
dadb

a2 ,(92)

where

Cψ = 2π
∫ ∞

−∞

|ψ̃(ω)|2
|ω| dω.

HereF (ψ(t)) = ˜ψ(ω), i.e., the Fourier integral transform ofψ(t). Together, Equations (91) and (92)
form the CWT pair.

2.1. Discretization of the CWT. The number of instances for which the CWT of a signal may
be computed analytically is very small. In general, the evaluation of the CWTX(b,a) is actually done
numerically at a discrete set of points. So, consider the discretization of the(b,a)-plane. We consider
the restriction ofX(b,a) to a collection of fixed values,a j :

a j = α j where α > 1 and j ∈ Z.
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j = -2 

j = -1 

j = 0 

j = 1 

j = 2 

FIGURE 2. The dyadic sampling grid withα = 2, β = 1. The horizontal axis repre-
sents the shiftb and the vertical axis represents scalea.

Observe that the width of the functionψ((t −b)/α j) is dependent on the magnitude ofα j . In fact is
it α j times wider, in terms of its support1, than the mother wavelet, i.e.,

suppψ
(

t −b
α j

)

= α jsuppψ(t).

This fact must be taken into account when discretizing this shift variableb. The discretized shift size
should be proportional to the width of the dilated wavelet. This may be accomplished by taking

b j
k = kβα j , β > 0(typically between0.1and1.0).

Putting these all together, we write the wavelet on the discretized grid as

gab =
1√
a

ψ
(

t −b
a

)

= α−1/2 jψ
(

t −kβα j

α j

)

= α− j/2ψ(α− j t −kβ )
= ψ j

k(t)

and the discretized wavelet coefficient from Equation (91) would be

X(bk,a j) = 2− j/2
∫ ∞

−∞
x(t)ψ(2− jt −k)dt.

EXAMPLE 2.1. Letα = 2 andβ = 1. This coarse sampling of the(b,a)-plane produces adyadicgrid,
that is used a lot in practice. See Figure 2 for an illustration.
In general, calculations of these wavelet coefficients can be expensive, one needs to be smart about
choosing appropriateα andβ values.

1The support of a functionf (x), denoted suppf (x), is the closure of the subset of its domain (i.e., that subsetof f
and its boundary) for whichf (x) 6= 0. A function is said to have compact support if its support isclosed and bounded.
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3. Multiresolution Analysis (MRA)

In MRA, a scaling function(father wavelet) is used to create a series of approximations of a function
or image, each differing by a factor of 2 in resolution from its nearest neighboring approximations.
Additional functions, calledwavelets(dilated and shifted versions of mother waveletψ), are then
used to encode the difference in information between adjacent approximations.

3.1. Series Expansions.A signal or functionf (x) can often be better analyzed as a linear com-
bination of expansion functions

f (x) = ∑
k

αkφk(x),(93)

wherek is an integer index of a finite or infinite sum, theαk are real-valuedexpansion coefficients,
and theφk(x) are real-valuedexpansion functions. If the expansion is unique — that is, there is only
one set ofαk for any givenf (x) — theφk(x) are calledbasisfunctions, and the expansion set{φk(x)},
is called abasisfor the class of functions that can be so expressed. The expressible functions form a
function spacethat is referred to as theclosed spanof the expansion set, denoted

V = Spank{φk(x)}.
To say thatf (x) ∈V means thatf (x) is in the closed span of{φk(x)} and can be written in the form
of Equation (93).
For any function spaceV and corresponding expansion set{φk(x)}, there is a set ofdual functions
denoted{φ̃k(x)} that can be used to compute theαk coefficients of Equation (93) for anyf (x) ∈ V.
These coefficients are computed by taking theintegral inner products2 of the dualφ̃k(x) and function
f (x). That is

αk = 〈φ̃k(x), f (x)〉=
∫

φ̃k(x) f (x)dx.(94)

Depending on the orthogonality of the expansion set, this computation assumes one of three possible
forms.

Case 1: If the expansion functions form an orthonormal basis forV, meaning that

〈φ j(x),φk(x)〉= δ jk =

{

0 j 6= k

1 j = k

the basis and its dual are equivalent, i.e.,φk(x) = φ̃k(x). So,

αk = 〈φk(x), f (x)〉.(95)

Case 2: If the expansion functions are not orthonormal, but are an orthogonal basis forV, then

〈φ j(x),φk(x)〉= 0 j 6= k

and the basis functions and their duals are calledbiorthogonal. Theαk are computed using
Equation (94), and their biorthogonal basis and its dual aresuch that

〈φ j(x), φ̃k(x)〉= δ jk =

{

0 j 6= k

1 j = k

2The inner product of two real or complex-valued functionf (x) andg(x) is 〈 f (x),g(x)〉=
∫

f (x)g(x)dx, wheref (x)

is the complex conjugate off (x).
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Case 3: If the expansion set is not a basis forV, but supports the expansion defined in Equation (93),
it is a spanning set in which that is more than one set ofαk for any f (x) ∈V. The expansion
functions and their duals are said to beovercompleteor redundant. They form aframe in
which3

A‖ f (x)‖2 ≤ ∑
k

|〈φk(x), f (x)〉|2 ≤ B‖ f (x)‖2

for someA> 0,B<∞, and all f (x)∈V. Dividing this equation by the norm squared off (x),
we see thatA andB “frame” the normalized inner products of the expansion coefficients and
the function. Equations similar to Equation (94) and (95) can be used to find the expansion
coefficients for frames. IfA= B, the expansion set is called atight frameand it can be shown
that [12]

f (x) =
1
A∑

k

〈φk(x), f (x)〉φk(x).

3.2. Scaling Functions.Consider the set of expansion functions composed of integertranslations
and binary scalings of the real, square-integrable function φ(x); that is the set{φ j

k (x)}, where

φ j
k (x) = 2− j/2φ

(
2− jx−k

)
(96)

for all j,k ∈ Z andφ(x) ∈ L2(R). Here,k determines the position ofφ j
k (x) along thex-axis, andj

determines the width ofφ j
k (x) — that is, how broad or narrow it is along thex-axis. The term 2− j/2

controls the amplitude of the function. Because the shape ofof φ j
k (x) changes withj, φ(x) is called

a scaling function. By choosingφ(x) properly,{φ j
k (x)} can be made toL2(R), which is the set of all

measurable, square-integrable functions. Further define

Vj = spank{φ j
k(x)}

to be the subspace spanned by the set ofφ j
k (x) ranging all values ofk. As will be seen in the following

example, decreasingj decreases the size ofVj , allowing functions with smaller variations or finer
details to be included in the subspace. This is a consequenceof the fact that, asj decreases, theφ j

k (x)
that are used to represent the subspace functions become narrower and separated by smaller changes
in x.

EXAMPLE 3.1. Consider the unit-height, unit-width scaling function [26]

φ(x) =

{

1 0≤ x< 1

0 otherwise
(97)

Figure 3 show six of the many expansion functions that can be generated by substituting this pulse-
shaped scaling function into Equation (96). Notice that Figure 3(a) and (b) are members ofV0 and
do not belong toV1 since members ofV1 (e.g., Figure 3(c) and (d)) are too coarse to represent them.
On the other hand, Figure 3(e) and (f), which are elements inV−1, could be used to represent the
functions in Figure 3(a) and (b) since they are of higher resolution.

The simple scaling function in the preceding example obeys the four fundamental requirements of
multiresolution analysis [41]:

3The norm of f (x), denoted‖ f (x)‖, is defined as the square root of the absolute value of the inner product of f (x)
with itself.
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FIGURE 3. Some Haar scaling functions.

MRA Requirement 1: The scaling function is orthogonal to itsinteger translates.

This is easy to see in the case of Haar function, because whenever it has a value of 1, its
integer translates are 0, so that the product of the two is 0. The Haar scaling function is said
to havecompact support, which means that it is 0 everywhere outside a finite intervalcalled
thesupport. In fact, the width of the support is 1; it is 0 outside the halfopen interval[0,1).
It should be noted that the requirement for orthogonal integer translates becomes harder to
satisfy as the width of support of the scaling function becomes larger than 1.
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FIGURE 4. The nested function spaces spanned by a scaling function.

MRA Requirement 2: The subspaces spanned by the scaling function at low scales are nested
within those spanned at higher scales.

As can be seen in Figure 4, subspaces containing high-resolution functions must also
contain all lower resolution functions. That is

V∞ ⊂ ·· · ⊂V2 ⊂V1 ⊂V0 ⊂V−1 ⊂V−2 ⊂ ·· · ⊂V−∞

Moreover, the subspaces satisfy the intuitive condition that if f (x) ∈ Vj , then f (2x) ∈
Vj−1.
MRA Requirement 3: The only function that is common to all Vj is f(x) = 0.

If we consider the coarsest possible expansion functions (i.e., j = ∞), the only repre-
sentable function is the function of no information. That is,

V∞ = {0}.
MRA Requirement 4: Any function can be represented with arbitrary precision.

Though it may not be possible to expand a particularf (x) at an arbitrarily coarse resolu-
tion, all measurable, square-integrable functions can be represented by the scaling functions
in the limit as j →−∞. That is,

V−∞ = {L2(R)}.
Under these assumptions, the coarser scale can be represented by the finer scale as a weighted sum:

φ j+1
k = ∑

n
hnφ j

n(x).

But
φ j

n(x) = 2− j/2φ(2− jx−n),

thus
φ j+1

k (x) = ∑
n

hn ·2− j/2φ(2− jx−n).

When j +1= 0= k ( j =−1), we get the generic non-subscripted expression

φ(x) = ∑
n

hn

√
2φ(2x−n) =

√
2∑

n
hnφ(2x−n).(98)

Thehn coefficients in this recursive equation are calledscaling coefficients. This equation is funda-
mental to multiresolution analysis and is called therefinement equation, theMRA equation, or the
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FIGURE 5. The relationship between scaling and wavelet function spaces.

dilation equation. It says that the expansion functions of any subspace can be built from double-
resolution copies of themselves — that is, from expansion functions of the next higher resolution
space. Tho choice of a reference subspace is arbitrary.

EXAMPLE 3.2. The scaling coefficients for the Haar function areh0 = h1 = 1/
√

2, thus

φ(x) =
√

2

(
1√
2

φ(2x)+
1√
2

φ(2x−1)

)

= φ(2x)+φ(2x−1).

3.3. Wavelet Functions.Given a scaling function that meets the MRA requirements of the previ-
ous section, we can define awavelet functionψ(x) that, together with its integer translates and binary
scalings, spans the difference between any two adjacent scaling subspaces,Vj andVj−1. The situation
is illustrated graphically in Figure 5. We define the set{ψ j

k(x)} of wavelets and its subspace closure
as

ψ j
k(x) = 2− j/2ψ(2− jx−k)(99)

and

Wj = spank{ψ j
k(x)}.

The scaling and wavelet function subspaces in Figure 5 are related by

Vj−1 =Vj ⊕Wj(100)

where⊕ denotes the union of spaces. The orthogonal complement ofVj in Vj−1 is Wj , and all
members ofVj are orthogonal to the members ofWj . Thus,

〈φ j
k (x),ψ

j
l (x)〉= 0

for all appropriatej,k, l ∈ Z.
Since wavelet spaces reside within the spaces spanned by thenext higher resolution scaling functions,
any wavelet function — like its scaling function counterpart — can be expressed as a weighted sum
of shifted, double-resolution scaling functions. That is,we can write

ψ(x) =
√

2∑
n

gnφ(2x−n)(101)

where thegn are called thewavelet coefficients. Using the condition that wavelets span the orthogonal
complement spaces and that integer wavelet translates are orthogonal, it can be shown thatgn is
related tohn by

gn = (−1)nh1−n.
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EXAMPLE 3.3. In the previous example,h0=h1=
1
2. Usinggn=(−1)h1−n, we getg0=(−1)0h1−0=

1√
2

andg1 = (−1)1h1−1 =− 1√
2
. Substituting these values into Equation (101), we get

ψ(x) = φ(2x)−φ(2x−1),

which is plotted in Figure 6(a). Thus, the Haar wavelet function is

ψ(x) =







1 0≤ x< 1/2

−1 1/2≤ x< 1

0 otherwise

(102)

Using Equation (99), we can now generate the universe of scaled and translated Haar wavelets. Two
such wavelets,ψ0

2(x) andψ−1
0 (x) are plotted in Figure 6(b) and (c), respectively. Note that wavelet

ψ−1
0 (x) for spaceW−1 is narrower thanψ0

2(x) for W0; it can be used to represent finer detail.
Figure 6(d) shows a function of subspaceV−1 that is not in subspaceV0. Although this function
cannot be represented accurately inV0, Equation (100) indicates that it can be expanded usingV0 and
W0 expansion functions. The resulting expansion is

f (x) = fa(x)+ fd(x)

where

fa(x) =
3
√

2
4

φ0
0(x)−

√
2

8
φ0

2(x)

and

fd(x) =−
√

2
4

ψ0
0(x)−

√
2

8
ψ0

2(x).

Here, fa(x) is an approximation off (x) usingV0 scaling functions, whilefd(x) is the difference
f (x)− fa(x) as a sum ofW0 wavelets. The two expansions, which are shown in Figure 6(e)and
(f), divide f (x) in a manner similar to a lowpass and highpass filter. The low frequencies off (x)
are captured infa(x) — it assumes the average value off (x) in each integer interval — while the
high-frequency details are encoded infd(x).

4. Wavelet Transforms in One Dimension

4.1. The Wavelet Series Expansions.We begin by defining thewavelet series expansionof
function f (x) ∈ L2(R) relative to waveletψ(x) and scaling functionφ(x). Recall thatVj = Vj+1⊕
Wj+1, which can be factored further

Vj = Vj+1⊕Wj+1

= Vj+2⊕Wj+2⊕Wj+1

= Vj+3⊕Wj+3⊕Wj+2⊕Wj+1

= · · ·
= VJ⊕WJ⊕·· ·⊕Wj+1.

Thus,

f (x) = f j
a(x)+ f j

d(x)

= ∑
k

c j
kφ j

k (x)+∑
l

d j
l ψ j

l (x)

= ∑
k

cJ
kφJ

k +
J

∑
r= j+1

∑
l

dr
l ψ r

l (x).
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FIGURE 6. Haar wavelet functions inW0 andW−1.

Theck’s are normally calledapproximationand/orscaling coefficients; thedk’s are referred to as the
detailand/orwavelet coefficients.
If the expansion functions form an orthonormal basis or tight frame, which is often the case, the
expansion coefficients are calculated as

c j
k = 〈 f (x),φ j

k〉=
∫ ∞

−∞
f (x)φ j

k (x)dx=
∫ ∞

−∞
f (x)2− j/2φ

(
2− jx−k

)
dx(103)

and

d j
k = 〈 f (x),ψ j

k〉=
∫ ∞

−∞
f (x)ψ j

k(x)dx=
∫ ∞

−∞
f (x)2− j/2ψ

(
2− jx−k

)
dx.(104)
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EXAMPLE 4.1. Consider the function

y=

{

x2 0≤ x≤ 1

0 otherwise

shown in Figure 7(a). Using Haar wavelets — see Equations (97) and (102) — and a starting scale
j =−2. Along with the scaling and wavelet functions

φ0
0 = φ(x), ψ0

0 = ψ(x), ψ−1
0 =

√
2ψ(2x), ψ−1

1 =
√

2ψ(2x−1),

Equations (103) and (104) can be used to compute the following expansion coefficients:

c0
0 =

∫ 1

0
x2φ0

0(x)dx=
∫ 1

0
x2dx=

x3

3

∣
∣
∣
∣

1

0
=

1
3

d0
0 =

∫ 1

0
x2ψ0

0(x)dx=
∫ 1/2

0
x2dx−

∫ 1

1/2
x2dx=−1

4

d−1
0 =

∫ 1

0
x2ψ−1

0 (x)dx=
∫ 1/4

0

√
2x2dx−

∫ 1/2

1/4

√
2x2dx=−

√
2

32

d−1
1 =

∫ 1

0
x2ψ−1

1 (x)dx=
∫ 3/4

1/2

√
2x2dx−

∫ 1

3/4

√
2x2 dx=−3

√
2

32

Thus, the wavelet series expansion fory is

y=
1
3

φ0
0(x)

︸ ︷︷ ︸

V0

+

[

−1
4

ψ0
0(x)

]

︸ ︷︷ ︸

W0
︸ ︷︷ ︸

V−1=V0⊕W0

+

[

−
√

2
32

ψ−1
0 (x)− 3

√
2

32
ψ−1

1 (x)

]

︸ ︷︷ ︸

W−1

︸ ︷︷ ︸

V−2=V−1⊕W−1=V0⊕W0⊕W−1

+ · · ·

The first term in this expansion usesc0
0 to generate a subspaceV0 approximation of the function being

expanded. This approximation is shown in Figure 7(b) and is the average value of the original func-
tion. The second term usesd0

0 to refine the approximation by adding a level of detail from subspace
W0. The added detail and resultingV−1 approximation are shown in Figure 7(c) and (d), respectively.
Another level of detail is added by the subspaceW−1 coefficientsd−1

0 andd−1
1 . This additional detail

is shown in Figure 7(e), and the resultingV−2 approximation is depicted in Figure 7(f). Note that the
expansion is now beginning to resemble the original function. As finer scales (greater levels of detail)
are added, the approximation becomes a more precise representation of the function, realizing it in
the limit as j →−∞.

4.2. The Pyramidal Algorithm. Wavelet analysis on a dyadic grid is a form ofmultiresolution
analysis (MRA). This framework is a powerful tool for representing scale information in data by
decomposing it in terms of scaling and wavelet functions as described above. Furthermore, the MRA
framework is the natural setting for deriving the pyramidalalgorithm referred to next, which is used
for efficient computation of the multiresolution decomposition and reconstruction of a function (or
Mallat’s algorithm [40]).
The decomposition of the functionf (x) into spaces requires a means to compute the content off (x)
associated with each of the subspaces. This is accomplishedby the appropriate projection operators.
The entire discussion will be tremendously simplified by thefact that there is an especially simple
relationship between these operators as revealed by the relationships between their expansion coeffi-
cients.
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FIGURE 7. A wavelet series expansion ofy= x2 using Haar wavelets.

With this in mind we define the projection operatorsPj andQ j such that for anyf (x) ∈ L2(R)

Pj f ∈Vj and Q j f ∈Wj .

As a consequence of the results established in the previous section, we have

Pj−1 f = Pj f +Q j f .

The Pyramidal Decomposition (finer to coarser)

Given the scaling coefficients{c j−1
k : k ∈ Z} for some fixed resolutionj, we seeksimpleexpression

for {c j
k} and{d j

k}.
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PROPOSITION4.1. In the MRA framework,

φ j
k (x) = ∑

m
hm−2kφ j−1

m (x)(105)

and

ψ j
k(x) = ∑

m
gm−2kφ j−1

m (x).(106)

PROOF. Recall thatφ(x) =
√

2∑
n

hnφ(2x−n) andφ j
k (x) = 2− j/2φ(2− jx−k). Thus,

φ(2− jy−k) =
√

2∑
n

hnφ(2− j+1y−2k−n).

Let m= 2k+n, we have

φ(2− jy−k) =
√

2∑
m

hm−2kφ(2−( j−1)y−m),

which gives the claimed expression

φ j
k (y) = 2− j/2φ(2− jy−k) = ∑

m
hm−2k2

−( j−1)/2φ(2−( j−1)y−m) = ∑
m

hm−2kφ j−1
m (y).

Equation (106) can be shown similarly. �

To determine a recursion relation for the scaling coefficients, first write

c j
k = 〈 f ,φ j

k〉.
By Equation (105) in Proposition 4.1, this becomes

c j
k = 〈 f ,∑

m
hm−2kφ j−1

m 〉

= ∑
m

hm−2k〈 f ,φ j−1
m (x)〉

= ∑
m

hm−2kc
j−1
m .

Similarly, we can get a recursion relation for the wavelet coefficients,d j
k with Equation (106):

d j
k = 〈 f ,ψ j

k〉
= 〈 f ,∑

m
gm−2kφ j−1

m 〉

= ∑
m

gm−2k〈 f ,φ j−1
m (x)〉

= ∑
m

gm−2kc
j−1
m .

EXAMPLE 4.2. We can now use these recursion formulas to get a simplified formulas for the Haar
scaling and wavelet coefficients. Withh0 = h1 = 1/

√
2, g0 = 1/

√
2, andg1 =−1/

√
2, the recursion

formula for the Haar scaling and wavelet functions become

c j
k =

c j−1
2k +c j−1

2k+1√
2

(107)

and

d j
k =

c j−1
2k −c j−1

2k+1√
2

.(108)
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Notice that the coefficients ofc j
k at a given levelj are seen to besmoothedversions of the coefficients

at the higher resolution levelj −1; while the coefficients ofd j
k at a given levelj are produced by

differencing the scaling coefficients which creates asharpenedversions of the coefficients at the
higher resolution levelj −1.

The Pyramidal Reconstruction (coarser to finer)

Now we derive the recursion relations going the other way. Oppose to the recursion relation for the
decomposition, illustrated in Figure 8(a), we start with the function at its coarsest level and add on
the detail from each of the wavelet subspaces, illustrated in Figure 8(b). Letf j(x) = Pj f (x) and
sj(x) = Q j f (x). At each level we have

Pj−1 f (x) = Pj f (x)+Q j f (x),

or as functions,
f j−1(x) = f j(x)+sj(x) = ∑

k

c j
kφ j

k (x)+∑
k

d j
kψ j

k(x),

wheref j ∈Vj andsj ∈Wj . This decomposition is represented in terms of the subspaces in Figure 8(a).

The scaling coefficients at the( j −1)th level is

c j−1
n = 〈 f j−1,φ j−1

n 〉
= 〈∑

k

c j
kφ j

k (x)+∑
k

d j
kψ j

k(x),φ
j−1

n 〉

= ∑
k

c j
k〈φ

j
k ,φ

j−1
n 〉+∑

k

d j
k〈ψ

j
k ,φ

j−1
n 〉,

where

〈φ j
k ,φ

j−1
n 〉 = 〈∑

m
hm−2kφ j−1

m ,φ j−1
n 〉

= ∑
m

hm−2k〈φ j−1
m ,φ j−1

n

= hn−2k

and

〈ψ j
k ,φ

j−1
n 〉 = 〈∑

m
gm−2kφ j−1

m ,φ j−1
n 〉

= ∑
m

gm−2k〈φ j−1
m ,φ j−1

n

= gn−2k.

Thus, we have the general reconstruction formula

c j−1
n = ∑

k

hn−2kc
j
k+∑

k

gn−2kd j
k.(109)

In the case of the Haar wavelet, the reconstruction formulasare

c j−1
2k =

√
2

2

(

c j
k+d j

k

)

(110)

and

c j−1
2k+1 =

√
2

2

(

c j
k−d j

k

)

.(111)
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FIGURE 8. (a) The relationship of the wavelet and scaling subspacesin the pyramidal
decomposition. Only the data represented in the finest-resolution scaling subspace is
required. (b) The relationship of the wavelet and scaling subspaces in the pyramidal
reconstruction. Only the data represented in the coarsest-resolution scaling subspace
is required, in addition to all the wavelet-subspace projections, for perfect reconstruc-
tion.

EXAMPLE 4.3. Haar Multiresolution Analysis. We are now in a position to compute a wavelet decom-
position of a function (or vector). We take as an example the decomposition of the vectorf = [9120].
Viewing f as a function, we can write

f (x) =







9 if x∈
[
0, 1

4

)
,

1 if x∈
[

1
4,

1
2

)
,

2 if x∈
[1

2,
3
4

)
,

0 if x∈
[

3
4,1
)
.

We need to arbitrarily specify the size of the smallest scaleto start the pyramidal decomposition
algorithm. We will choose dimf = 4= 2− j . Thus the finest resolution required is at the levelV−2.
We shall see that the decomposition in this case will involvethe subspaces

V−2 = span{2φ(4x−k) : k∈ Z},
V−1 = span{

√
2φ(2x−k) : k∈ Z},

V0 = span{φ(x−k) : k∈ Z},
where the coefficients normalize the functions so that they are orthonormal.
At the finest resolution,j =−2, the scaling coefficients{c j

k} are found by projectionf onto the basis
for V−2. Thus, sinceP−2 f ∈V−2, we write

P−2 f (x) = ∑
k∈Z

c−2
k φ−2

k (x),

where

c−2
k = 〈 f ,φ−2

k 〉

=

∫ ∞

−∞
f ·22/2φ(22x−k)dx

= 2
∫ ∞

∞
f φ(4x−k)dx

= 2
∫ (k+1)/4

k/4
f (x)dx.

Evaluating the integrals for appropriate values ofk, we have

c−2
0 =

9
2
, c−2

1 =
1
2
, c−2

2 = 1, c−2
3 = 0, c−2

k = 0 ∀k> 3 and k< 0.
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Now project f ontoV−1 via P−1 f (x) and ontoW−1 via Q−1 f (x). We have

P−1 f (x) = ∑
k

c−1
k φ−1

k (x) and Q−1 f (x) = ∑
k

d−1
k ψ−1

k (x)

where, using the recursion formulas,

c−1
k =

c−2
k +c−2

2k+1√
2

and d−1
k =

c−2
k −c−2

2k+1√
2

,

we get

c−1
0 =

1√
2

(
c−2

0 +c−2
1

)
=

9/2+1/2√
2

=
5√
2
,

c−1
1 =

1√
2

(
c−2

2 +c−2
3

)
=

1+0√
2

=
1√
2
,

d−1
0 =

1√
2

(
c−2

0 −c−2
1

)
=

9/2−1/2√
2

=
4√
2
,

d−1
1 =

1√
2

(
c−2

2 −c−2
3

)
=

1−0√
2

=
1√
2
.

Therefore,

P−1 f (x) = c−1
0 φ−1

0 (x)+c−1
1 φ−1

1 (x) = 5φ(2x)+φ(2x−1)

and

Q−1 f (x) = d−1
0 ψ−1

0 (x)+d−1
1 ψ−1

1 (x) =
4√
2

ψ−1
0 +

1√
2

ψ−1
1 ,

which can then be rewritten (using the Haar relations) as

Q−1 f (x) =
4√
2

[

φ−2
0 −φ−2

1√
2

]

+
1√
2

[

φ−2
2 −φ−2

3√
2

]

=
4√
2

[
2√
2
(φ(4x)−φ(4x−1))

]

+
1√
2
· 2√

2
(φ(4x−2)−φ(4x−3))

= 4φ(4x)−4φ(4x−1)+φ(4x−2)−φ(4x−3) ∈W−1.

The projection ontoV0 proceeds similarly via the computation ofP0 f (x). The scaling coefficients at
the level j = 0 are found using

c0
k =

c−1
2k +c−1

2k+1√
2

.

The single nonzero scaling coefficient is given by

c0
0 =

5√
2
+ 1√

2√
2

= 3

and the associated wavelet coefficient is

d0
0 =

5√
2
− 1√

2√
2

= 2.

So, we have

P0 f (x) = c0
0φ0

0(x) = 3φ(x) ∈V0



4. WAVELET TRANSFORMS IN ONE DIMENSION 135

and

Q0 f (x) = d0
0ψ0

0(x)

= 2

[
1√
2

(
φ−1

0 −φ−1
1

)
]

=
2√
2

(√
2φ(2x)−

√
2φ(2x−1)

)

= 2φ(2x)−2φ(2x−1) ∈W0.

In summary,

f (x) = P−2 f (x) ∈V−2

= P−1 f (x)+Q−1 f (x) ∈V−1⊕W−1

= P0 f (x)+Q0 f (x)+Q−1 f (x) ∈V0⊕W0⊕W−1.

4.3. Discrete Wavelet Transform (DWT). Like the Fourier series expansion, the wavelet se-
ries expansion of the previous sections maps a function of a continuous variable into a sequence of
coefficients. If the function being expanded is discrete (i.e., a sequence of numbers), the resulting co-
efficients are calleddiscrete wavelet transform (DWT). For example, iff (n) = f (x0+n∆x) for some
x0, ∆x, andn= 0,1,2, . . . ,M−1, then the wavelet series expansion coefficients forf (x) become the
forwardDWT coefficients for sequencef (n):

c j
k =

1√
M

∑
n

f (n)φ i
k(n),(112)

d j
k =

1√
M

∑
n

f (n)ψ j
k(n)(113)

and

f j(n) =
1√
M

(

∑
k

c j+1
k φ j+1

k (n)+∑
k

d j+1
k

)

(114)

EXAMPLE 4.4. To illustrate the use of Equations (112) through (114),consider the discrete function
of eight points:f (0) = 448, f (1) = 768, f (2) = 704, f (3) = 640, f (4) = 1280, f (5) = 1408, f (6) =
1600, f (7) = 1600. BecauseM = 8 = 2− j , there will be 3 (J = −3) steps (levels) of MRA with
j =−3,−2,−1, and 0. We will use the Haar scaling and wavelet functions and assume that the eight
samples off (x) are distributed over the support of the basis functions, which is 1 in width. Notice

that at the finest level,c−3
k =

1√
8
∑
n

f (n)
√

8φ(8n−k) = f (n). At the next level, we use the recursion

formulas:

c−2
k =

c−3
2k +c−3

2k+1√
2

and d−2
k =

c−3
2k −c−3

2k+1√
2

.
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Thus, in matrix notations, we get the system

H1
︷ ︸︸ ︷

















1√
2

1√
2

0 0 0 0 0 0
1√
2

1√
2

0 0 0 0
1√
2

1√
2

0 0
1√
2

1√
2

1√
2

− 1√
2

0 0 0 0 0 0
1√
2

− 1√
2

0 0 0 0
1√
2

− 1√
2

0 0
1√
2

− 1√
2



















f
︷ ︸︸ ︷













448
768
704
640
1280
1408
1600
1600














=

y1
︷ ︸︸ ︷

1√
2














608
672
1344
1600
−160

32
−64

0














=

[
y1|V−2

y1|W−2

]

The action of left multiplying the signalf by the Haar matrixH1 produces the vectory1 that consists
of theapproximationcoefficients inV−2 in its upper half and thedetailcoefficients inW−2 in its lower
half. To get the approximation and detail at the next level (j =−1), we consider only the components
of y1 in V−2, i.e.,

H2
︷ ︸︸ ︷







1√
2

1√
2

0 0

0 0 1√
2

1√
2

1√
2

− 1√
2

0 0

0 0 1√
2

− 1√
2









y1|V−2
︷ ︸︸ ︷





608
672
1344
1600






=

1√
2







640
1472
−32
−128






=

[
y2|V−1

y2|W−1

]

with

y2 = [y2|V−1
y2|W−1

y1|W−2
]T = [640 1472 −32 −128 −160 32 −64 0]T .

Lastly, to obtain the approximation and detail components at the bottom levelj = 0, we consider only
the components ofy2 in V−1, i.e.,

H3
︷ ︸︸ ︷[

1√
2

1√
2

1√
2

− 1√
2

][
640
1472

]

=
1√
2

[
1056
−416

]

=

[
y3|V0
y3|W0

]

with

y3= [y3|V0
y3|W0

y2|W−1
y1|W−2

]T =
1√
2
[1056 −416 −32 −128 −160 32 −64 0]T .

Notice that this process is entirely reversible since theH’s are invertible. A simply compression
method takes advantage of this fact. For example, a threshold compression method eliminates all
entries below a threshold value and retains all entries above it. In this example, set−64/

√
2 and

−160/
√

2 in y1 to 0 to obtain ˜y1 =
1√
2
[608,672,1344,1600,0,32,0,0]T, then a compressed version

of f is given by f̃ = H−1
1 ỹ1.

5. Wavelet Transforms in Two Dimension

The one-dimensional transforms of the previous sections are easily extended to two-dimensional
functions like images. In two dimensions, a two-dimensional scaling function,φ(x,y), and three
two-dimensional wavelets,ψH(x,y), ψV(x,y), andψD(x,y) are required. Each is the product of two
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FIGURE 9. The analysis filter bank.

one-dimensional functions. Excluding products that produce one-dimensional results, likeφ(x)ψ(x),
the four remaining products produce theseparablescaling function

φ(x,y) = φ(x)φ(y)(115)

and separable, “directionally sensitive” wavelets

ψH(x,y) = ψ(x)φ(y),(116)

ψV(x,y) = φ(x)ψ(y),(117)

and

ψD(x,y) = ψ(x)ψ(y).(118)

These wavelets measure functional variations — intensity variations for images — along different
directions:ψH measures variations along columns (for example, horizontal edges),ψV responds to
variations along rows (like vertical edges), andψD corresponds to variations along diagonals. The
directional sensitivity is a natural consequence of the separability in Equations (116) to (118); it does
not increase the computational complexity of the 2-D transform discussed in this section.
Given separable two-dimensional scaling and wavelet functions, extension of the 1-D DWT to two
dimensions is straightforward. We first define the scaled andtranslated basis functions:

φ j
m,n(x,y) = 2− j/2φ(2− jx−m,2− jy−n)

(
ψ j

m,n(x,y)
)i

= 2− j/2ψ i(2− jx−m,2− jy−n), i = {H,V,D}.
Rather than an exponent,i is a superscript that assumes the valuesH, V, andD. The discrete wavelet
transform of imagef (x,y) of sizeM×N is then

c j
m,n =

1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x,y)φ j
m,n(x,y)

(
d j

m,n

)i
=

1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x,y)
(
ψ j

m,n(x,y)
)i
, i = {H,V,D}.

Like the 1-D discrete wavelet transform, the 2-D DWT can be implemented using digital filters and
downsamplers. With separable two-dimensional scaling andwavelet functions, we simply take the
1-D FWT of the rows off (x,y), followed by the 1-D FWT of the resulting columns. Figure 9 shows
the process in block diagram form.
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FIGURE 10. The 2-dimensional wavelet transform takes an image on the left, and
applies four combinations of smoothing and differencing toobtain the transform in
the middle. At the next level, we perform the same operationsto only the upper left
sub-image as shown in the right.
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FIGURE 11. (a) Original fingerprint. (b) The resulted 4 sub-images after a single level
of discrete wavelet transform. (c) Result after 2 levels of DWT, corresponding to the
right panel in Figure 10.

In general, the 2-dimensional wavelet transform proceeds by creating four sub-images of the original
image. The image in quadrant II is the result of reducing the resolution of the columns and rows of
the original image. This is achieved by applying the 1-dimensional scaling transform (thus, lowpass
filter) to both the columns and rows; for short we refer to these operations as L column, L row. The
image in quadrant I is obtained by applying the scaling transform to the rows and wavelet transform
to the columns of the original image, i.e., H column and L row.Quadrant III is obtained via L column
and H row while quadrant IV is obtained via H column and H row. These operations are summarized
in Figure 10. An example is shown in Figure 11.
The image in quadrant II may be used to calculate the next level of the decomposition. The result is to
divide this quadrant into four new quadrants. This basic idea may be applied to the upper left corner
image as many times as deemed useful, illustrated in the right panel of Figure 10.
The two-dimensional wavelet transform has found a number ofimportant applications, including an
FBI fingerprint identification system as well as JPEG 2000, a standard for image storage and retrieval.



CHAPTER 8

Suggested Exercises

1. Set One

1.1. Theory.

(1) Let the basisB1 be the standard basis, i.e.,e(1) = (10)T , e(2) = (01)T , and the basisB2 be
given by the two vectorsv(1) = (11)T , v(2) = (−11)T . GivenuB1 = (11)T , find uB2.

1.2. Computing.

(1) Write a code to generate 1000 random numbers contained onthe unit circle. Apply several
random matrices to this data and describe your results in theterminology of bases and change
of bases. How do your results differ if the multiplying matrix is constrained to be orthogonal?

(2) Given an algorithm [35] for computing small principal angles between two subspaces given
by the real matricesX andY, whereX is in Rn×p andY is in Rn×q (Principal angles are
defined to be between 0 andπ/2 and listed in ascending order):

Input: matricesX (n-by-p) andY (n-by-q).
Output: principal anglesθ between subspacesR(X) = X andR(Y) = Y .

(a) Find orthonormal basesQx andQy for X andY such that

QT
x Qx = QT

y Qy = I and R(Qx) = X ,R(Qy) = Y .

(b) Compute SVD for cosine:QT
x Qy = HΣZT , whereΣ = diag(σ1, . . . ,σq).

(c) Compute matrix

Y =

{

Qy−Qx(QT
x Qy) if rank(Qx)≥ rank(Qy);

Qx−Qy(QT
y Qx) otherwise.

(d) SVD for sine:[H,diag(µ1, . . . ,µq),Z] = svd(Y).
(e) Compute the principal angles, fork= 1, . . . ,q

θk =

{

arccos(σk) if σ2
k < 1

2;

arcsin(µk) if µ2
k ≤ 1

2.

(a) Implement this algorithm in MATLAB under the function nameprinAngles. Your func-
tion should have the input and output arguments:

[theta] = prinAngles(X1,X2)
where theta is the principal angles listed from the smallest to the largest, X1 is the
first set of images listed by the columns, andX2 is the second set of images listed the
columns as well.

(b) To verify that your implementation is correct, downloadface1.mat and face2.mat from
the course website where face1.mat contains 21 distinct images of person 1 in its columns
and face2.mat contains 21 distinct images of person 2 in its columns and test your im-
plementation with this data. Note: in case you want to see what the images look like, the

139
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images are of resolution 160×138. The following MATLAB commands will display
the first image of person 1:

>> load face1
>> imagesc( reshape(face1(:,1),160,138)), colormap(

gray), axis off

(3) Write a function in MATLAB using the homogeneous coordinates that scales (enlarge and
shrink) a 2D image about a pointP = [tx, ty, 1]’. Specifically, the first line of your function
will be (other than the comments)

function [newImg] = scale(Img, alpha, P)

wherealpha = [sx, sy]’ is the scale parameter that controls how much scaling is applied in
x-direction and iny-direction, respectively. Make sure your routine works by applying it to
an image of your choice. The MATLAB commands that are useful here:

>> meshgrid
>> interp2
>> imread
>> imagesc
>> reshape

For example, to find out how to use meshgrid, type

>> Help meshgrid

in the MATLAB command prompt.
(4) Writ a routine in MATLAB using the homogeneous coordinates that translates a 2D im-

age horizontally and a routine that translates the image vertically. Specifically, one of your
functions should have the input and output arguments

[newImg] = translateH(Img, tx)
wheretx is the amount of horizontal translation applied (make sure it works for both positive
and negative values). Test your routine by applying it to an image of your choice.

(5) Write a routine in MATLAB using the homogeneous coordinates that rotates a 2D image
about a pointP = [tx, ty, 1]’. Specifically, your function should have the input and output
arguments

[newImg] = rotate[Img, theta, P]
wheretheta is the amount of rotation applied in counterclockwise orientation. Make sure

your routine works by applying it to an image of your choice.

2. Set Two

2.1. Theory.
(1) LetW1 andW2 be vector subspaces andW =W1+W2. Show, by giving an example, that the

decomposition of a vectorx ∈W is not unique, i.e.,

x = w1+w2 = w
′
1+w

′
2,

wherew1 6= w
′
1, w2 6= w2

′, w1,w
′
1 ∈W1, w2,w

′
2 ∈W2.

(2) Consider the matrix

A=





1 −1
2 −2
3 −3



 .
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Determine bases for the column space, row space, null space,and left null space ofA.
(3) LetV = R3, let

u(1) =





1
2
0



 , u(2) =





−1
0
1



 , ,x =





0
2
1



 ,

and defineW1 = span(u(1),u(2)). Find the orthogonal projection ofx ontoW1. Also find the
projection matrixP associated with this mapping.

(4) Reconsider Problem 3. Find vectors such thatx=UUTx andx 6=UUTx where the matrixU
consists of the basis vectors from Problem 3. Draw a picture to show the set of vectors for
whichUUT acts as the identity.

(5) Determine the SVD of the data matrix






−2 −1 1
0 −1 0
−1 1 2
1 −1 1






,

and compute the rank-one, -two, and -three approximations to A.
(6) Propose a method to compute a random orthogonal transformation.

2.2. Computing.

(1) Consider the training set consisting of the following three patterns consisting of 5×4 arrays
of black squares

Using Kohonen’s novelty filter, find the novelty in the pattern

Proceed by assuming that the black square entries have numerical value one and the blank
entries have numerical value zero. Concatenate the columnsof each pattern to make vectors
in R20.

(2) Compute the SVD of the matrixA whose entries come from the pattern
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and display the reconstructionsA1,A2,A3,A4. Again, treat the squares as ones and the blanks
as zeros. Your reconstructions should be matrices with numerical values. Interpret your
results.

(3) This assignment requires the use of a MATLAB image. Choose your favorite image for
this exercise (be sure to choose an image whose resolution isat least 300-by-300.). All the
necessary MATLAB syntax is described as follows. To begin, load the MATLAB image into
the matrixA using

>> A = imread(’myImage.tif’);
% adjust accordingly with the image extension

If your image is in color,A will have three dimensions where the first two give the resolution
of the image and the last one contains a layer of red, a layer ofgreen, and a layer of blue. To
turn a color image into a monochrome one, use the MATLAB command

>> B = rgb2gray(A);

You don’t necessarily have to work with a black and white picture, but it is definitely easier
and computationally cheaper to start with one. The full and reduced SVD may then be
executed simply by

>> A = double(A); % data matrix has to be in double
precision in order to perform mathematics on
it

>> [U,S,V] = svd(A);
>> [U_thin,S_thin,V_thin] = svd(A,0);
%% the zero (not the letter "o") indicates economy

size
%% ‘double’ converts any 8-bit single (uint8) into

16-bit double precision

where U (resp. Uthin), S (resp. Sthin), and V (resp. Vthin) are the left-singular vectors,
the singular values, and the right-singular vectors (resp.reduced). A rank-k approximation
of the image may be found via

>> A_k = U(:,1:k) * S(1:k,1:k) * V(:,1:k)’;

The resulting image may be displayed using

>> imagesc(A_k);
% may use the option: axis off, axis square for

better display

or

>> image(A_k);
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For better viewing, one can reset the colormap to gray scaleswith the command

>> imagesc(A_k), colormap( gray)

Now, do the following:
(a) Plot the singular value distribution of your image, where thex-axis is the counting index

while they-axis is the magnitude of the singular values. If we define thecumulative
energyof A∈ Rm×n with rankr to be

Ek =
∑k

i=1 σ2
i

∑r
i=1 σ2

i

, wherek≤ r,

identify the number of singular values (σis) needed to retain at least 95% of the energy.
This number is often callednumerical rankof the matrixA. Is the numerical rank for
your image large or small? Explain why.

(b) Compute the rank-10, rank-50, rank-100, and rank-200 approximations to your cho-
sen image along with therelative errorsof approximation (use the title, xlabel, and
ylabel commands to specify appropriate information), display them on the same figure
(using subplot), and interpret your results. (Recall that the absoluteerror of a rank-k
approximation is measured by thek+1th singular value, so therelativeerror is given
by σk+1/σ1.)

3. Set Three

3.1. Theory.
(1) Show that

∇v(v,v) = 2v
and that ifC is a symmetric matrix, then

∇v(v,Cv) = 2Cv.

(2) Show that
(φ (1),Cφ (2)) = (Cφ (1),φ (2)).

AssumeC is symmetric.
(3) Does periodic data imply that the ensemble average covariance matrixC will have eigenval-

ues with multiplicity greater than 1? IfC has eigenvalues of multiplicity greater than 1, is
the data necessarily periodic?

(4) Given the data matrix

X =







−2 −1 1
0 −1 0
−1 1 2
1 −1 1






,

compute the eigenvalues and eigenvectors ofXXT andXTX. Foru(1), confirm the statement

u( j) =
1
σ j

P

∑
k=1

v( j)
k x(k),

where j = 1, . . . , rankX.
(5) It was shown that the expansion coefficients may be computed using formula

A= ΣVT ,

providing an alternative to the direct computation via

A=UTX.
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Compute the number of add/multiplies required to computeA via both formulas, using the
data matrix and eigenvectors given in the previous Problem.Which way is computationally
cheaper in general? Why?

3.2. Computing.
(1) The object of this programming assignment is to write a code to apply thesnapshotmethod

to a collection ofP high-resolution image files. Your program should compute (and order)
the eigenpictures. It should also have a subroutine to determine the projection of a given
picture onto the bestD-element subspace (D is typically chosen empirically). Your program
report should include the following information:
(a) A display of the ensemble-average image.
(b) A picture of a mean-subtracted image, for one of the images chosen at random from the

ensemble.
(c) A collection of eigenpictures (based on mean-subtracted data) for a broad range of

eigenvalues. The eigenpictures must be mapped to integers on the interval[0,255].
(d) Partial reconstructions of a selected image for variousvalue ofD. Include the recon-

struction error||x−xD|| in each case and confirm that you obtain perfect reconstruction
whenD is equal to the rank of the data matrix.

(e) A graph ofλi/λmaxvs i, whereλi is theith eigenvalue of the mean-subtracted, ensemble-
averaged covariance matrix. How does this plot help you determining the bestD value
to use?

(f) Now, devise (describe) a classification algorithm that uses this idea of best basis to
classify a probe (testing) data against a given gallery. (For your reference: this process
is calledPrincipal Component Analysis.) Why is this more efficient than classifying
data points in their resolution dimension?

The data for this problem may be downloaded from the course website. The data file
faces1.mat contains 109 images whose dimensions are 120×160. It is a single matrix, where
each column has length 19,200, which is 120×160. The format of the data is “uint8”, which
stands for unsigned integer, 8 bits. Before you use the data for KL, change it to “double”
format.

(2) Test your theory from 1(f) on the following data set: Digits.mat can be downloaded from
the course website. It contains three variables:Gallery, Probe, andphoto size, where
Gallery is a 1024×500 matrix with 50 digits of 0 in its first 50 columns, 50 digitsof 9 in its
last 50 columns, etc. The row dimension comes from the resolution of the images stored in
photo size. The variableProbe stores a set of novel digits from 0 to 9 that do not appear
in the Gallery. UsePrincipal Component Analysisto classify the probe images against the
gallery images. How well did the algorithm perform? Report and analyze your result.

4. Set Four

4.1. Theory.
(1) Consider the two eigenvector problems

Cxu = λxu

and
Csv = λsv

where the matrices are related byCx =Cs+αI , whereα is a real number andI is the usual
identity matrix. Show that ifu is an eigenvector ofCx, then it is also an eigenvector ofCs
associated with eigenvalueλs= λx−α.
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(2) Let A be a realm×n. Show that the matrixM defined as

M = α2I +AAT

is nonsingular, whereI = Im andα is a nonzero real number.
(3) Show that the between-class scatter matrix,SB, in the multi-classFisher Discriminant Anal-

ysisis given by

SB =
M

∑
i=1

ni(mi −m)(mi −m)T ,

whereM is the total number of distinct classes,ni is the number of data points in classi, mi

is the class mean of theith class, andm is the mean across alln data points. You may use
the facts that

ST = SB+SW, SW =
M

∑
i=1

∑
x∈Di

(x−mi)(x−mi)
T , and ST =

n

∑
i=1

(xi −m)(xi −m)T .

4.2. Computing.
(1) This project concerns the application of the KL procedure for incomplete data [18]. Let the

complete data set be translation- invariant:

f (xm, tµ) =
1
N

N

∑
k=1

1
k

sin[k(xm− tµ)],

wherem= 1, . . . ,M, with M dimension of the ambient space (size of the spatial grid), and

µ = 1, . . . ,P, with P the number of points in the ensemble. Letxm =
(m−1)2π

M
andtµ =

(µ −1)2π
P

. Select an ensemble of masks
{

m(µ)
}

, µ = 1, . . . ,P, where 10% of the indices

are selected to be zero for each mask. Each pattern in the incomplete ensemble may be
written as

x̃(µ) = m(µ).f(µ),

where
(

f(µ)
)

m
=

1
N

N

∑
k=1

1
k

sin[k(xm− tµ)]. Let P= M = 64 andN = 3.

(a) Compute the eigenvectors of this ensemble using the gappy algorithm [18].
(b) Plot the eigenvalues as a function of the iteration, and continue until they converge.
(c) Plot your final eigenfunctions corresponding to the 10 largest eigenvalues.
(d) Plot the element̃x(1) and the vector̃xD repaired according to Equation

x̃ ≈ x̃D =
D

∑
n=1

ãnφ (n).(119)

Determine the value ofD that provides the best approximation to the original non-gappy
pattern vector.

(2) This project allows you to apply the two-classLinear Discriminant Analysis (LDA)on a
simple EEG data. You will download the zipped file EEGfor LDA from the course website.
Once you unzip the archive, you will find 20 files whose file names follow the format “class-
C seq-T”, where C stands for the task number (C = 2 and C = 3) and T stands for the trial
number which ranges from 0 to 9. The participants were asked to count in task 2 and to
perform visual rotation in task 3. The EEG data were collected in 19 channels with sampling
at 256 Hz over 10 trials for each task. Upon loading the files, the variable “classC seq T”
is a 19-by-1040 matrix, where each row represents a reading from one of the 19 channels
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(electrodes on the skull) and each column represents a reading at a single time stamp. A
sample reading for task 2, trial 0 is shown below.

(a) Write a MATLAB routine to produce an optimal projection direction,w, using the two-
class LDA criterion

w= argmax
w

J(w) = argmax
w

wTSBw
wTSWw

,

where

SB = (m2−m1)(m2−m1)
T and SW =

2

∑
i=1

∑
x∈Di

(x−mi)(x−mi)
T

are the between-class scatter matrix and the within-class scatter matrix, respectively.
That is, your code should take in a set of data points with a clear indication which
points belong to class one and which points belong to class 2,and output a single vector
w that is the solution of the generalized eigenvalue problemSBw= λSWw. (If you are
interested in the implementation of multi-class LDA, see [4] for more details on how to
deal with the singularity ofSW.)

(b) Now, use your subroutine in part (a) to project the EEG data onto a real line. Particu-
larly, we can form a data point inR1040×19 by concatenating the columns for each trial,
therefore having 10 data points for task 0 and 10 data points for task 2. You would
then project these 20 points onto the real line with thew found with part (a). Plot the
projected data on the real line and distinguish the classes with different symbols. Do
you see a clear separation? Analyze your results.

(3) Construct a 250×10 data set of your choice with correlated noise in the columns. (You may
construct the noise by first constructing a data set of 250 points inR3 and map it toR10 via
right multiplication by a random 3×10 matrix. This accomplishes the correlation aspect.)
That is, the data matrix will containP = 10 noisy signals, each of lengthn = 250 where
each column has had mean removed. Apply the MNF method to filter the data. In particular,
examine the effect of aD-mode reconstruction on a singe noisy signal for various values of
D. Plot the the result of filtered data, noisy data, as well as the original den-noised data in
the same graph to compare.

(4) Implement a 3×3 median filterand apply the filtering process on a corrupted image of “app-
ndt-Chip-5.JPG” located via the course website. Specifically, corrupt “app-ndt-Chip-5.JPG”
with salt-and-peppernoise, where the corrupted pixels are either set to the maximum value
(which looks like snow in the image) or have single bits flipped over. In some cases, single
pixels can be set alternatively to zero or to the maximum value (i.e., 255 on a 8-bit machine).
Then apply the median filter to de-noise the corrupted image.Compare your result with the
original.
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(5) Given an image “CTimage.JPG” on the course website. Perform the following operations:
(a) Construct a 3×3 average filter to smooth the image.
(b) Then use a 2D Laplacian filter mask to extract the edges of the smoothed image.
(c) Finally, enhance the smoothed image with the result frompart (b). How does this image

compare to the original?

5. Set Five

5.1. Theory.

(1) Find the Fourier series for the 2π-periodic square wave function

f (ω) =

{

−k if −π < ω < 0

k if 0 < ω < π
and f (ω +2π) = f (ω)

(2) Compute by hand the Haar wavelet decomposition (Pyramidal decomposition) of the vector
xT = [1,7,−3,2] by viewing it as

f (x) =







1 if x∈
[
0, 1

4

)
,

7 if x∈
[1

4,
1
2

)
,

−3 if x∈
[

1
2,

3
4

)
,

2 if x∈
[3

4,1
)
.

Graphically show the projections onto the scaling and wavelet subspaces.
(3) Let x ∈ RM, and lety be the 1D DWT ofx. If we write the Haar wavelet transform and its

inverse as matrix operations, i.e.,

y =Wx

and
x = W̃y,

what areW andW̃? This should be done in terms of the Haar Pyramidal Decomposition
algorithm, i.e., the expressions ofW andW̃ depend on the level of the decomposition/re-
construction. Ifx = [576,704,1152,1280,1344,1472,1536,1536], what is its Haar wavelet
transform after 3(23 = 8) levels of decompositions?

5.2. Computing.

(1) Write a MATLAB code to implement the 1D Discrete Haar Wavelet Transform (1D HWT)
including the algorithms for
• Haar pyramidal decomposition, and
• Haar pyramidal reconstruction.

Compute the six-level decomposition of the data

fn = sin

(
n2

10000

)

+ηn,

wheren = 1, . . . ,1024, andηn is selected from a normal distribution with mean zero and
variance 0.2. (See figure below) Initialize the transform by assuming that f ∈V0. Include the
following plots in your report:
(a) Pi f = f i

a ∈Vi for all i = 1, . . . ,6,
(b) Qi f = f i

d ∈Wi for all i = 1, . . . ,6.
Be sure that each plot has domain[1,1024].
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(2) Test your codes with your favorite image for this problem. Make sure your codes are as
general as possible and be sure to plot the results.
(a) Write a function in MATLAB to compute theapproximationand each of the threedetail

components of an image. (i.e., you will produce 4extremelyshort codes here) Notice
that the resolution of LL, HL, LH, and HH will beM/2×N/2, where(M,N) is the
resolution of the original image.

(b) Write a subroutine to reconstruct an image fromonly theapproximationcomponent as
a function of level. Notice that the resolution of the reconstructed image will be of size
M×N.

(c) Compress the image up to level 3. Compute the compressionratio as a function of
each compression level. Plot the compressed images for eachlevel along with their
compression ratio. Note that the compression ratio is defined as

CR=
# of nonzero entries in the transformed
# of nonzero entries in the compressed

.

Some useful MATLAB commands for this problem:

>> dwt2
>> wavedec2
>> wrcoef2

6. Group Final Project

6.1. Data: Imges of Cats and Dogs.The following data are available on the course website.

(1) PatternRecData.mat which contains two variables: the 198-by-198 matrix KLDATA.mat and
a row vector sub-labels of length 160. The data matrix KLDATAcontains distinct images of
cats and dogs (courtesy of Dave Bolme and Dr. Ross J. Beveridge, Department of Computer
Science, Colorado State University) in its columns. There are 99 of each animal and they are
randomly placed in the columns of KLDATA. The vector sub-labels gives you the identity
(with cat = 1 and dog = 0) of the first 160 patterns.

(2) TIFFtraining.zip which contains TIFF images for the first 160 patterns in KLDATA. There
is a little glitch to the file Dog96.tif, which is a 64×64×2 matrix instead of simply 64×64.
The first layer is what you would need.

6.2. Project Assignment.Use the data given above to build different pattern recognition ar-
chitectures from the methods that you learned in class over the semester or methods you acquired
elsewhere that are relevant to the problem.Include as many methods as the number of members in the
group. Note there is no limit to group size but that the entiregroup will receive the same grade.
Submit a write-up that that are coherent to the format described in syllabus. Once you are satisfied
with your pattern recognition routine on the known data, classify the last 38 unknown columns in
KLDATA as either cats or dogs. Save the result as a row vector of zeros (= dogs) and ones (= cats)
and email it to me by the end of the semester. Alternatively, if you wish to classify the raw data
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(instead of the KL data), you would design your classifier to take in either a 4096-by-1 column vector
or a 4096-by-38 matrix and output their class labels as either cats or dogs.
Your final write-up will be sure to include the following items.

(1) Classification errors as a 2-by-2 confusion matrix (dogsclassified as dogs, dogs classified as
cats, cats classified as cats, cats classified as dogs). You can accomplish this by splitting the
data into testing and training and provide classification errors on the testing set.

(2) Description of the classification method and details about how the classifier is constructed.
(3) Predicted class membership for the 38 unlabeled data.
(4) Codes used in the exploration process. These codes can beinserted wherever they fit or

shuffled all the way at the end of the report depending on your writing style.

6.3. Suggestions for Possible Approaches.The following list is by no means complete. The
purpose is to provide you with some initial directions.

(1) Determine the covariance matrix of the cats and the covariance matrix of the dogs and con-
struct optimal bases for each using maximum noise fraction.Project new samples onto the
cat basis and dog basis and see which gives a better representation.

(2) Use vector quantization, e..g, Kohonen’s self-organizing map on a 2D lattice.
(3) Use eigen-cats and eigen-dogs and the Principal Component Analysis (PCA) on the raw data.
(4) 2D Discrete Wavelet Analysis (DWT) or Fourier Analysis on the raw data for frequency

content information.
(5) Radial Basis Function (map cats to ones and dogs to zeros).
(6) Fisher’s Linear Discriminant Analysis (LDA).
(7) Labeled Voronoi cell classification.
(8) One-sided or two-sided tangent distances.
(9) Set-to-set comparison with principal angles and Grassmannian distances.

(10) A combination of any of the methods above with weights.
A prize will be given to the team who has the highest classification rate (or lowest misclassification
rate).
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APPENDIX A

Supplementary Materials

1. Linear Independence and Bases

Given a set of vectors{v1,v2, . . . ,vn} in Rm, m≥ n, the set of linear combinations

span(v1,v2, . . . ,vn) = {y | y= α1v1+α2v2+ · · ·+αnvn}
is called thespanof the set of vectorsv1,v2, . . . ,vn. If we concatenate the vectors into a single matrix
X, i.e.,

X = [v1 |v2 | · · · |vn],

then the span(v1,v2, . . . ,vn) is equal to therangeof the (transformation) matrixX or thecolumn space
of the transformationX, denoted byR(X). The vectorsv1,v2, . . . ,vn are linearly independentif the

only way to write
n

∑
j=1

α jv j = 0 is whenαi = 0 for all i = 1, . . . ,n. A set ofm linearly independent

vectors inRm is called abasisin Rm. This is equivalent to say that any vector inRm can be written as
a linear combination of the basis vectors.
If we have a set of linearly dependent vectors, then we can keep a linearly independent subset and
express the rest in terms of the linearly independent ones. Thus we can consider the numberof
linearly independent vectors as a measure of the information contents of the set and compress the set
accordingly: take the linearly independent vectors as representatives (basis vectors) for the set, and
compute the coordinates of the rest in terms of the basis. However, in real applications we seldom
haveexactly linearly dependent vectorsbut ratheralmost linearly dependent vectors. It turns out that
for such adata reduction procedureto be practical and numerically stable, we need the basis vectors
to be not only linearly independent butorthogonal. So, how do we find out whether or not a set of
vectors is linearly independent or not in large data sets? The answer lies within the concept ofrank.

2. The Rank of a Matrix

The rank of a matrix is defined as the maximum number of linearly independent columns. It is a
standard result in linear algebra that the number of linearly independent column vectors is equal to
the number of linearly independent row vectors. In real dataset, we seldom calculate the exact rank
of the data matrix. Instead, we consider thenumerical rankof the data matrix. We will visit this
concept in the main text. If a matrix is not full rank, then it is said to berank-deficient.
A square matrixA∈ Rn×n with rankn (full rank) is callednonsingularand has an inverseA−1 satis-
fying

AA−1 = A−1A= I .

If we multiply the linearly independent vectors by a nonsingular matrix, then the resulting vectors
remain linearly independent.

PROPOSITION 2.1. Assume that the vectors v1,v2, . . . ,vp are linearly independent. Then for any
nonsingular matrix T , the vectors Tv1,Tv2, . . . ,Tvp are linearly independent.

EXAMPLE 2.1. The matrixA= uvT has rank 1.
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3. The Similarity Transformation in Registration Problem

Let

S=





sx 0 0
0 sy 0
0 0 1



 ,T =





1 0 tx
0 1 ty
0 0 1



 , and R=





cosθ −sinθ 0
sinθ cosθ 0

0 0 1



=





a −b 0
b a 0
0 0 1





represent the scaling, translation, and rotation matrix, respectively. Composition of the three gives a
similarity transform (order doesn’t matter)

M = RST=





asx −bsy atxsx−btysy
bsx asy btxsx+atysy
0 0 1



 .

If the horizontal and vertical scaling are not the same, thistransformation matrix has 6 degrees of
freedom. To simplify the problem, we will assumesx = sy. Therefore

M =





A −B C
B A D
0 0 1



 ,

which has 4 degrees of freedom. To solve the parametersA,B,C, andD, we will need 2 points. Say,
for example, we have two known eye coordinates (left and right pupil positions) given in[x0,y0,1]T

and[x1,y1,1]T , which are calledsource points. Given the correspondingtarget points(where the two
eye coordinates are mapped to at the end of the transformation) [u0,v0,1]T and[u1,v1,1]T , we have
the following relations





u0
v0
1



=





A −B C
B A D
0 0 1









x0
y0
1



 , and





u1
v1
1



=





A −B C
B A D
0 0 1









x1
y1
1



 .

Multiplication gives the system of 4 equations

x0A−y0B +C =u0

y0A+x0B+ +D=v0

x1A−y1B +C =u1

y1A+x1B+ +D=v1

In matrix notation, we have






x0 −y0 1 0
y0 x0 0 1
x1 −y1 1 0
y1 x1 0 1







︸ ︷︷ ︸

m







A
B
C
D






=







u0
v0
u1
v1






.

Therefore






A
B
C
D






= m−1







u0
v0
u1
v1






.

With the parametersA,B,C andD are now known, the final similarity transformationM can be used
to transform any 2D image to a prescribed image plane.
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4. Generalized Singular Value Decomposition

THEOREM 4.1. [22] (Generalized Singular Value Decomposition) If we have A∈ Rm×p with m≥ p
and B∈ Rn×p, there exist orthogonal U∈ Rm×m and V∈Rn×n and an invertible X∈ Rp×p such that

UTAX =C= diag(c1, . . . ,cp) ci ≥ 0(120)

and

VTBX = S= diag(s1, . . . ,sq) si ≥ 0(121)

where q= min(p,n).

To see that these assignments do give rise to the relation

S2ATAX =C2BTBX,

consider the following. From Equation 120 and 121, we haveCT = XTATU andST = XTBTV. Since
C andSare diagonal, soCTC=C2, STS= S2. Thus,

CTC = (XTATU)(UTAX) = XTATAX =C2 ⇒ XT =C2X−1A−1(AT)−1

STS = (XTBTV)(VTBX) = XTBTBX = S2 ⇒ XT = S2X−1B−1(BT)−1

Equating(XT)−1’s to obtain
ATAX(C2)−1 = BTBX(S2)−1.

Multiply through byC2 andS2 appropriately to get

S2ATAX =C2BTBX.

To see how this is related to the symmetric definite generalized eigenproblem

NTNψ = µ2XXψ

in the maximum-noise-fraction problem, first suppose that if ψ = [ψ(1), . . . ,ψ(p)] satisfy

s2
i ATAxi = c2

i BTBxi , i = 1 : p

andsi 6= 0, thenATAxi = µ2BTBxi , whereµi = ci/si. Thus,xi are termed the generalized singular
vectors of the pair(A,B). ReplaceN with A, X with B, andψ with x, we see that the maximum-noise-
fraction problem can be solved by using the GSVD method.

4.1. MATLAB Syntax. To compute GSVD of two data matricesA∈ Rm×p andB ∈ Rn×p, use
the command

%% full version
[U,V,X,C,S] = gsvd(A,B);
[U,V,X,C,S] = gsvd(A,B,0); % thin version

so that

A=UCXT(122)

and

B=VSXT ,(123)

CTC+STS= I with unitary matricesU andV and non-negative diagonal matricesC and S, also
satisfying

S2ATA(XT)−1 =C2BTB(XT)−1.

Note that #col(A) = #col(B), but #row(A) does not necessarily have to be equal to #row(B). The
command
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S = gsvd(A,B);

returns the vector of generalized singular values, i.e.,

S = sqrt( diag(C’ * C)./ diag(S’ * S))

In the economic version, the resultingU andV have at mostp columns, andC andShave at mostp
rows. The generalized singular values arediag(C)./diag(S).
There is a minor bug in the gsvd command. From Equations 122 and 123, we getC =UA(XT)−1 =
UTA(X−1)T andS= VTB(XT)−1 = VTB(X−1)T , which are equivalent toCT = X−1ATU andST =
X−1BTV. Thus,

CTC = C2 = X−1ATA(X−1)T = X−1ATA(XT)−1 ⇒ X−1 =C2XTA−1(AT)−1

STS = S2 = X−1BTB(X−1)T = X−1BTB(XT)−1 ⇒ X−1 = S2XTB−1(BT)−1

EquatingX’s to obtain
(
C2XTA−1(AT)−1)−1

=
(
S2XTB−1(BT)−1)−1

⇒ (C2)−1ATA(XT)−1 = (S2)−1BTB(XT)−1

⇒ S2ATA(XT)−1 =C2BTB(XT)−1

Thus, letψ = (XT)−1 in the maximum-noise-fraction algorithm to achieve the correct solutions.

function [Phi] = mnf(N,X)
%% this algorithm requires the knowledge of N (noise)
%% treat N as noise and X as data in the gsvd.

[U,V,A,C,S] = gsvd(N,X,0);
psi = inv(A.’);
Phi = X * psi; % optimal basis vectors

5. Derivation of Generalized Eigenvalue Problem

We establish the generalized eigenvalue problem found in Section 1.1. RecallJ(w) =
N(w)
D(w)

=

wTSBw
wTSWw

. SinceS is symmetric,
d

dw

(
wTSw

)
= 2Sw. Thus,

∇J(w) =
wTSWw(2SBw)−wTSBw(2SWw)

(wTSWw)2 .

Setting∇J(w) = 0 gives

wTSWw(2SBw)−wTSBw(2SWw) = 0.
That is,

D(w)SBw= N(w)SWw⇒ SBw= λSWw,

whereλ =
N(w)
D(w)

.

This is a generalized eigenvalue problem.
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