# An Introduction to Geometric Data Analysis and its Possible Applications

#### JEN-MEI CHANG

Department of Mathematics and Statistics California State University, Long Beach jchang9@csulb.edu

#### **Claremont Colleges Mathematics Colloquia**

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 1 / 54

# Outline



#### Introduction

- Analysis
- Synthesis

#### Backgrounds

- Linear Algebra
- Geometry
- Image Processing
- Applications
  - Image Compression
  - Digit/Face Recognition with Tangent Distance
  - Face Recognition on the Grassmann Manifold
  - Missing Data with KL
  - Bankruptcy Prediction with LDA
  - Cocktail Party Problem with BSS
  - Others

# Why analysis?











Applications

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

 ▲ ■ ▲ ■ ▲ ■ 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ● 
 ●

# Why synthesis?



Prediction and classification

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 4 / 54

\_\_\_\_>

# Full SVD

#### Definition

(Full SVD) Any  $m \times n$  real matrix A, with  $m \ge n$ , can be factorized into

$$A = U \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} V^{T},$$

where  $U \in \mathbb{R}^{m \times m}$  and  $V \in \mathbb{R}^{n \times n}$  are orthogonal, and  $\Sigma \in \mathbb{R}^{n \times n}$  is diagonal with

$$\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n), \ \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0.$$

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 5 / 54

# Thin SVD

#### Definition

(**Thin SVD**) With the partitioning  $U = (U_1, U_2)$ , where  $U_1 \in \mathbb{R}^{m \times n}$ , we get the *thin SVD* 

$$A = U_1 \Sigma V^T,$$

#### Structural Illustration:

$$A = U_1 \Sigma V^T = (u_1 \ u_2 \ \cdots \ u_n) \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_n \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{pmatrix} = \sum_{i=1}^n \sigma_i u_i v_i^T.$$

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 6 / 54

#### Distance



#### What is A closest to?

No geometry: D
 With geometry: 5

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 7 / 54

э

BACKGROUNDS

GEOMETRY

### Distance



# What is A closest to? ● No geometry: □

Image: Image:

< ∃ >

#### Distance



What is A closest to?

No geometry: D

< 17 ▶

• With geometry: B

#### Distance



What is A closest to?

• No geometry: D

< 17 ▶

• With geometry: B

## Data matrix



IMAGE PROCESSING

#### Data vector



#### $\mathsf{Image} \to \mathsf{Matrix} \to \mathsf{Vector}$

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 9 / 54

(E)

Image: Image:

# Approximation theorem

If we know the correct rank of A, e.g., by inspecting the singular values, then we can **remove the noise and compress the data** by approximating A by a matrix of the correct rank. One way to do this is to truncate the singular value expansion:

#### Theorem

lf

$$\boldsymbol{A}_{k} = \sum_{i=1}^{k} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \quad (1 \leq k \leq r)$$

then

$$A_k = \min_{\operatorname{rank}(B)=k} \|A - B\|_2 \quad \text{and} \quad A_k = \min_{\operatorname{rank}(B)=k} \|A - B\|_F.$$

#### IMAGE COMPRESSION

## An example

The error term of rank *k* approximation is given by the (k + 1)<sup>th</sup> singular value  $\sigma_{k+1}$ .



(a) full rank (rank 480)



(b) rank 10, rel. err. = 0.0551



(c) rank 50, rel. err. = 0.0305 (d) rank 170, rel. err. = 0.0126

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 1

11/54

# General classification paradigm



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

**OCTOBER 14, 2009** 

12/54

# Problem definition - globally

Santa thought to himself, "only if these mails can go to the right place according to their zip code".



# Handwritten digit classification



**Problem.** (Human) handwritten digits are sometimes very hard to recognize, even by human operators.

**Importance.** Accurate identification of the digits ensures a reliable delivery system.

**Beneficiaries.** Postal services (mail sorting), seaports (cargo registration), etc.

Even Santa Clause can benefit from an efficient digit classification algorithm.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

## Problem definition - locally

How do we tell whether a new digit is a 4 or a 9?

7 99 99 99 99 99 9 9 9 9 9 9 9 9 9 9

< ロ > < 同 > < 三 > < 三 >

## **Digit manifolds**

Imagine a high-D surface (red curve) where all 4's live on and a high-D surface (blue curve) where all 9's live on.



# Tangent spaces - training

Create a Tangent Space of the 4's at F and create a Tangent Space of the 9's at N.



Dimensions of the tangent spaces depend on the degree of variations.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 17 / 54

#### Distances



- Euclidean distance between each pair of 4 and 9 varies drastically while tangent distance captures the geometry and is less susceptible to variations.
- Pairwise Euclidean distance is time consuming while the tangent calculation is very efficient.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 18 / 54

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Classification

So, is it a 4 or a 9?



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 19 / 54

< ロ > < 同 > < 三 > < 三 >

## **Classification result**

79999999999 9999059999

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 20 / 54

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Face recognition



GEOMETRIC DATA ANALYSIS

# Face recognition paradigm



# Illumination apparatus



#### Yale Face Database B



CMU-PIE

< ロ > < 同 > < 三 > < 三 >

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 23 / 54

## Illumination images



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 24 / 54

< 🗇 > < 🖻 > <

## **Empirical fact**

Images of a single person seen under variations of illumination appear to be more difficult to recognize than images of different people [Zhao et al., 2003].





Subject 1

Subject 2

Can you tell who this is?



### Geometric facts - 1

The set of *m*-pixel monochrome images of an object seen under general lighting conditions forms a convex polyhedral cone (illumination cone) in  $\mathbb{R}^m$  [Belhumeur & Kriegman, 1998].



#### Geometric facts - 2

The illumination cone can be approximated by a 9-dimensional linear subspace [Basri & Jacobs, 2003], i.e., the illumination cone is low-dimensional and linear.



### Set-up



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 28 / 54

# Definition of G(k, n)

These illumination cones are all elements of a parameter space called the **Grassmannian (Grassmann manifold)**, G(9, n), where *n* in the ambient dimension.



#### Definition

The *Grassmannian* G(k,n) or the *Grassmann manifold* is the set of *k*-dimensional subspaces in an *n*-dimensional vector space  $K^n$  for some field K, i.e.,

$$G(k,n) = \{ W \subset K^n \mid \dim(W) = k \}.$$

# Principal angles [Björck & Golub, 1973]

It turns out that any attempt to construct an unitarily invariant metric on G(k, n) yields something that can be expressed in terms of the **principal angles** [Stewart & Sun, 1990].

#### Definition

If X and Y are two vector subspaces of  $\mathbb{R}^m$ , then the principal angles  $\theta_k \in [0, \frac{\pi}{2}]$ ,  $1 \le k \le q$  between X and Y are defined recursively by

$$\cos(\theta_k) = \max_{u \in X} \max_{v \in Y} u^T v = u_k^T v_k$$

subject to ||u|| = ||v|| = 1,  $u^T u_i = 0$  and  $v^T v_i = 0$  for i = 1 : k - 1 and  $q = \min \{\dim(X), \dim(Y)\} \ge 1$ .

# Grassmannian distances [Edelman et al., 1999]

These are the distance functions we will use to compare points on the Grassmann manifold.

| Metric Name                 | Mathematical Expression                                                                                                                                                                                                                                               |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fubini-Study                | $d_{FS}(\mathcal{X}, \mathcal{Y}) = \cos^{-1} \left( \prod_{i=1}^{k} \cos \theta_{i} \right)$ $d_{c2}(\mathcal{X}, \mathcal{Y}) = \left\  2 \sin \frac{1}{2} \theta \right\ _{F}$ $d_{cF}(\mathcal{X}, \mathcal{Y}) = \left\  2 \sin \frac{1}{2} \theta \right\ _{2}$ |
| Chordal 2-norm              | $d_{c2}(\mathcal{X},\mathcal{Y}) = \left\  2\sin\frac{1}{2}\theta \right\ _{F}$                                                                                                                                                                                       |
| Chordal F-norm              | $d_{cF}(\mathcal{X},\mathcal{Y}) = \left\  2\sin\frac{1}{2}\theta \right\ _{2}$                                                                                                                                                                                       |
| Geodesic (Arc Length)       | $d_{g}(\mathcal{X},\mathcal{Y}) = \ \theta\ _{2}$                                                                                                                                                                                                                     |
| Chordal (Projection F-norm) | $d_{c}(\mathcal{X},\mathcal{Y}) = \ \sin\theta\ _{2}$                                                                                                                                                                                                                 |
| Projection 2-norm           | $d_{p2}\left(\mathcal{X},\mathcal{Y} ight)=\left\ \sin	heta ight\ _{\infty}$                                                                                                                                                                                          |

## Empirical result - database

Since we are only concerned with the lighting variations, we fix the frontal pose, neutral expression and select the "illum" and "lights" subsets of CMU-PIE (68 subjects, 13 poses, 43 lightings, 4 expressions) [Sim et al., 2003] for experiments.

- lights: 21 illumination conditions with background lights on.
- illum: 21 illumination conditions with background lights off.



## **Empirical results**



#### Robustness

If the data set is perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2006a]:



The data set is still perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2007bc]:

GEOMETRIC DATA ANALYSIS

#### Robustness

If the data set is perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2006a]:



The data set is still perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2007bc]:



GEOMETRIC DATA ANALYSIS

## Potential use: low-res. illumination camera



Large private databases of facial imagery can be stored at a resolution that is sufficiently low to prevent recognition by a human operator yet sufficiently high to enable machine recognition.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 36 / 54

# KL procedure for missing data



- 1. Initialize the missing data with the ensemble average.
- 2. Compute the first estimate of the KL basis.
- 3. Re-estimate the ensemble using the gappy approximation and the KL basis.
- 4. Re-compute the KL basis.
- 5. Repeat Steps 3–4 until stopping criterion is satisfied.

#### MISSING DATA WITH KL

# A gappy example



GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 38 / 54

MISSING DATA WITH KL

## Gappy example continued



Eigenvectors of repaired data



Repaired

Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt<sup>1</sup>.

- If we form a feature vector for each firm.
- The problem becomes a two-class classification problem.

<sup>1</sup>adapted from Wikipedia

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 40 / 54

Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt<sup>1</sup>.

If we form a feature vector for each firm.

• The problem becomes a two-class classification problem.

<sup>1</sup>adapted from Wikipedia

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 40 / 54

Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt<sup>1</sup>.

- If we form a feature vector for each firm.
- The problem becomes a two-class classification problem.

JEN-MEI CHANG (CSU, LONG BEACH)

# Linear Discriminant Analysis



Question: Characteristics of a GOOD projection?

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 41 / 54

# Linear Discriminant Analysis



Question: Characteristics of a GOOD projection?

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 41 / 54

## **Two-Class LDA**

$$m_1 = \frac{1}{n_1} \sum_{x \in D_1} w^T x, \quad m_2 = \frac{1}{n_2} \sum_{y \in D_2} w^T y$$



Look for a projection *w* that

- maximizes (inter-class) distance in the projected space,
- and minimizes the (intra-class) distances in the projected space.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

## **Two-Class LDA**

Namely, we desire a  $w^*$  such that

$$w^* = \arg\max_{w} \frac{(m_1 - m_2)^2}{S_1 + S_2},$$
  
where  $S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$  and  $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2.$   
Alternatively, (with scatter matrices)  
 $w^* = \arg\max_{w} \frac{w^T S_B w}{w^T S_W w},$  (1)

with  $S_W = \sum_{i=1}^{2} \sum_{x \in D_i} (x - \mathbf{m}_i) (x - \mathbf{m}_i)^T$ ,  $S_B = (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^T$ .

## **Two-Class LDA**

Namely, we desire a  $w^*$  such that

$$w^* = rgmax_w rac{(m_1-m_2)^2}{S_1+S_2},$$

where 
$$S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$$
 and  $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2$ .  
Alternatively (with scatter matrices)

Alternatively, (with scatter matrices)

$$w^* = \arg\max_{w} \frac{w^T S_B w}{w^T S_W w},\tag{1}$$

with 
$$S_W = \sum_{i=1}^2 \sum_{x \in D_i} (x - \mathbf{m}_i) (x - \mathbf{m}_i)^T$$
,  $S_B = (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^T$ .



# The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

$$S_B w = \lambda S_W w.$$

LDA for multi-class follows similarly.

The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

$$S_B w = \lambda S_W w.$$

LDA for multi-class follows similarly.

## **Cocktail Party Problem**



#### (adapted from André Mouraux)

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 45 / 54

3

ヘロト ヘ戸ト ヘヨト ヘヨト

# KL procedure for noisy data

• Decompose observed data into its *noise* and *signal* components:

$$\mathbf{x}^{(\mu)} = \mathbf{s}^{(\mu)} + \mathbf{n}^{(\mu)},$$

or, in terms of data matrices,

$$X = S + N$$
. ( $S =$ signal,  $N =$ noise)

 The optimal first basis vector, φ, is taken as a superposition of the data, i.e.,

$$\phi = \psi_1 \mathbf{x}^{(1)} + \dots + \psi_P \mathbf{x}^{(P)} = X \psi.$$

• May decompose  $\phi$  into signal and noise components

$$\phi = \phi_{\mathbf{n}} + \phi_{\mathbf{s}},$$

where  $\phi_{s} = S\psi$  and  $\phi_{n} = N\psi$ .

#### **MNF/BBS**

 The basis vector φ is said to have maximum noise fraction (MNF) if the ratio

$$D(\phi) = \frac{\phi_{\mathbf{n}}^T \phi_{\mathbf{n}}}{\phi^T \phi}$$

is a maximum.

• A steepest descent method yields the *symmetric definite* generalized eigenproblem

$$N^T N \psi = \mu^2 X^T X \psi.$$

This problem may be solved without actually forming the product matrices  $N^T N$  and  $X^T X$ , using the generalized SVD (gsvd).

 Note that the same orthonormal basis vector φ optimizes the signal-to-noise ratio. And this technique is called Blind Source Separation (BSS).

JEN-MEI CHANG (CSU, LONG BEACH)

OCTOBER 14, 2009 47 / 54

# **Convolution - sharpening**

$$w(x, y) \star f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$
$$= \sum_{s=-a}^{a} \sum_{t=-b}^{b} f(s, t) w(x - s, y - t)$$



A blurred image



Laplacian edge filter



Enhanced image

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 48 / 54

## Convolution - smoothing













JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 49 / 54

< ロ > < 同 > < 回 > < 回 >

# Convolution - threshold smoothing

orginal



#### filtered with a 15 by 15 averaging filter



thresholded with 25% of highest intensity



< ロ > < 同 > < 三 > < 三 >

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 50 / 54

## Fourier analysis

$$F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-i2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 51 / 54

# Multiresolution analysis

$$X(b,a) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t) \Psi^*\left(\frac{t-b}{a}\right) dt$$





Image Selection

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 52 / 54

э

#### References

[Basri & Jacobs, 2003] R. Basri & D. Jacobs, "Lambertian reflectance and linear subspaces", *PAMI*, 25(2):218–233, 2003.

[Belhumeur & Kriegman, 1998] P. Belhumeur & D. Kriegman, "What is the set of images of an object under all possible illumination conditions", *IJCV*, *28(3):245–260, 1998*.

**[Björck & Golub, 1973]** A. Björck & G. Golub, "Numerical methods for computing angles between linear subspaces", *Mathematics of Computation, 27(123):579–594, 1973.* 

[Chang et al., 2006a] J.-M. Chang, M. Kirby, H. Kley, J. R. Beveridge, C. Peterson, B. Draper, "Illumination face spaces are idiosyncratic", *Int'l Conf. on Image Proc. & Comp. Vision, 2: 390–396, 2006.* 

[Chang et al., 2007b] J.-M. Chang, M. Kirby, H. Kley, J. R. Beveridge, C. Peterson, B. Draper, "Recognition of digital images of the human face at ultra low resolution via illumination spaces", *ACCV'07, LNCV, Springer, 4844: 733–743, 2007.* 

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

#### References

[Chang et al., 2007c] J.-M. Chang, M. Kirby, C. Peterson, "Feature Patch Illumination spaces and Karcher compression for face recognition via Grassmannian", *under review, 2009*.

[Edelman et al., 1999] A. Edelman, T. Arias, & S. Smith, "The Geometry of algorithms with orthogonality constraints", *SIAM J. Matrix Anal. Appl.*, 20(2):303–353, 1999.

**[Stewart & Sun, 1990]** G.W. Stewart & J.-G. Sun, "Matrix Perturbation Theory", *Academic Press, 1990.* 

[Zhao et al., 2003] W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld, "Face recognition: A literature survey". *ACM Comp. Surv.*, *35*(4):399–458, 2003.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >