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INTRODUCTION ANALYSIS

Why analysis?

Representation Visualization Applications
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INTRODUCTION SYNTHESIS

Why synthesis?

Model building

1I

2I

I

),9( nG

Prediction and classification
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BACKGROUNDS LINEAR ALGEBRA

Full SVD

Definition
(Full SVD) Any m × n real matrix A, with m ≥ n, can be factorized into

A = U
(

Σ

0

)
V T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is
diagonal with

Σ = diag(σ1, σ2, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
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BACKGROUNDS LINEAR ALGEBRA

Thin SVD

Definition
(Thin SVD) With the partitioning U = (U1,U2), where U1 ∈ Rm×n, we
get the thin SVD

A = U1ΣV T ,

Structural Illustration:

A = U1ΣV T = (u1 u2 · · · un)


σ1

σ2
. . .

σn




vT
1

vT
2
...

vT
n

 =
n∑

i=1

σiuivT
i .
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BACKGROUNDS GEOMETRY

Distance

B 

E

D
C 

A 

What is A closest to?
No geometry: D
With geometry: B

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 7 / 54



BACKGROUNDS GEOMETRY

Distance

B 

E

D
C 

A 

What is A closest to?
No geometry: D
With geometry: B

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 7 / 54



BACKGROUNDS GEOMETRY

Distance

B 

E

D
C 

A 

What is A closest to?
No geometry: D
With geometry: B

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 7 / 54



BACKGROUNDS GEOMETRY

Distance

B 

E

D
C 

A 

What is A closest to?
No geometry: D
With geometry: B

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 7 / 54



BACKGROUNDS IMAGE PROCESSING

Data matrix
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BACKGROUNDS IMAGE PROCESSING

Data vector

IMAGE → MATRIX → VECTOR
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APPLICATIONS IMAGE COMPRESSION

Approximation theorem

If we know the correct rank of A, e.g., by inspecting the singular
values, then we can remove the noise and compress the data by
approximating A by a matrix of the correct rank. One way to do this is
to truncate the singular value expansion:

Theorem
If

Ak =
k∑

i=1

σiuivT
i (1 ≤ k ≤ r)

then

Ak = min
rank(B)=k

‖A− B‖2 and Ak = min
rank(B)=k

‖A− B‖F .
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APPLICATIONS IMAGE COMPRESSION

An example

The error term of rank k approximation is given by the (k + 1)th

singular value σk+1.

(a) full rank (rank 480) (b) rank 10, rel. err. = 0.0551

(c) rank 50, rel. err. = 0.0305 (d) rank 170, rel. err. = 0.0126
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

General classification paradigm

3. Classification
Assign label to probe 
and assess accuracy 

2. Present novel data
a.k.a. Probe

1.5 Preprocessing
Geometric normalization, 

Feature extraction, etc 

1. Data collection
Database creation 

a.k.a. Gallery

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 12 / 54



APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Problem definition - globally

Santa thought to himself, “only if these mails can go to the right place
according to their zip code”.
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Handwritten digit classification

Problem. (Human) handwritten digits are sometimes very hard to
recognize, even by human operators.
Importance. Accurate identification of the digits ensures a
reliable delivery system.
Beneficiaries. Postal services (mail sorting), seaports (cargo
registration), etc.

Even Santa Clause can benefit from an efficient digit classification
algorithm.
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Problem definition - locally

How do we tell whether a new digit is a 4 or a 9?
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Digit manifolds

Imagine a high-D surface (red curve) where all 4’s live on and a high-D
surface (blue curve) where all 9’s live on.
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Tangent spaces - training

Create a Tangent Space of the 4’s at F and create a Tangent Space of
the 9’s at N.

Dimensions of the tangent spaces depend on the degree of variations.
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Distances

Euclidean distance between each pair of 4 and 9 varies drastically while tangent
distance captures the geometry and is less susceptible to variations.

Pairwise Euclidean distance is time consuming while the tangent calculation is
very efficient.
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Classification

So, is it a 4 or a 9?
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Classification result
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Face recognition
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Face recognition paradigm

True Positive

Who is it?Who is it? False Positive

= 

False Positive

= 

False Positive

= 

= 

ProbeGallerGallery y Probe
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Illumination apparatus

Yale Face Database B CMU-PIE
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Illumination images

Yale Face Database B CMU-PIE
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Empirical fact

Images of a single person seen under variations of illumination appear
to be more difficult to recognize than images of different people [Zhao
et al., 2003].

Can you tell 
who this is? 

Subject 1 Subject 2 
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Geometric facts - 1

The set of m-pixel monochrome images of an object seen under
general lighting conditions forms a convex polyhedral cone
(illumination cone) in Rm [Belhumeur & Kriegman, 1998].

Illumination Cone
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Geometric facts - 2

The illumination cone can be approximated by a 9-dimensional linear
subspace [Basri & Jacobs, 2003], i.e., the illumination cone is
low-dimensional and linear.

C
u

m
u

lative en
ergy 

Singular values 
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Set-up

1I

2I

1I

2I

1I

2I

9-D linear subspace

9-D linear subspace

III

9-D linear subspaceprobe
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Definition of G(k , n)

These illumination cones are all elements of a parameter space called
the Grassmannian (Grassmann manifold), G(9,n), where n in the
ambient dimension.

1I

2I

I

),9( nG

Definition
The Grassmannian G(k,n) or the
Grassmann manifold is the set of
k -dimensional subspaces in an
n-dimensional vector space K n for
some field K , i.e.,

G(k ,n) = {W ⊂ K n | dim(W ) = k} .
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Principal angles [Björck & Golub, 1973]

It turns out that any attempt to construct an unitarily invariant metric on
G(k ,n) yields something that can be expressed in terms of the
principal angles [Stewart & Sun, 1990].

Definition
If X and Y are two vector subspaces of Rm, then the
principal angles θk ∈

[
0, π

2

]
, 1 ≤ k ≤ q between X

and Y are defined recursively by

cos(θk ) = max
u∈X

max
v∈Y

uT v = uT
k vk

subject to ‖u‖ = ‖v‖ = 1, uT ui = 0 and vT vi = 0 for
i = 1 : k − 1 and q = min {dim(X ),dim(Y )} ≥ 1.
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Grassmannian distances [Edelman et al., 1999]

These are the distance functions we will use to compare points on the
Grassmann manifold.

Metric Name Mathematical Expression

Fubini-Study dFS (X ,Y) = cos−1

(
k∏

i=1

cos θi

)
Chordal 2-norm dc2 (X ,Y) =

∥∥∥∥2 sin
1
2
θ

∥∥∥∥
F

Chordal F-norm dcF (X ,Y) =

∥∥∥∥2 sin
1
2
θ

∥∥∥∥
2

Geodesic (Arc Length) dg (X ,Y) = ‖θ‖2
Chordal (Projection F-norm) dc (X ,Y) = ‖sin θ‖2
Projection 2-norm dp2 (X ,Y) = ‖sin θ‖∞
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Empirical result - database

Since we are only concerned with the lighting variations, we fix the
frontal pose, neutral expression and select the “illum” and “lights”
subsets of CMU-PIE (68 subjects, 13 poses, 43 lightings, 4
expressions) [Sim et al., 2003] for experiments.

lights: 21 illumination conditions with background lights on.
illum: 21 illumination conditions with background lights off.
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Empirical results

Error classification rate (%) 

Number of principal angles used 
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Robustness

If the data set is perfectly
separable with the
Grassmann method when
using this kind of image
[Chang et al., 2006a]:

The data set is still perfectly
separable with the
Grassmann method when
using this kind of image
[Chang et al., 2007bc]:
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Potential use: low-res. illumination camera

Large private databases of facial imagery can be stored at a resolution
that is sufficiently low to prevent recognition by a human operator yet
sufficiently high to enable machine recognition.
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APPLICATIONS MISSING DATA WITH KL

KL procedure for missing data

1. Initialize the missing data with the ensemble average.
2. Compute the first estimate of the KL basis.
3. Re-estimate the ensemble using the gappy approximation

and the KL basis.
4. Re-compute the KL basis.
5. Repeat Steps 3–4 until stopping criterion is satisfied.
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APPLICATIONS MISSING DATA WITH KL

A gappy example
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Gappy data After 1 repair
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APPLICATIONS MISSING DATA WITH KL

Gappy example continued
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

Bankruptcy prediction is the art of predicting bankruptcy and various
measures of financial distress of public firms. It is a vast area of
finance and accounting research. The importance of the area is due in
part to the relevance for creditors and investors in evaluating the
likelihood that a firm may go bankrupt1.

If we form a feature vector for each firm.
The problem becomes a two-class classification problem.

1adapted from Wikipedia
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

Linear Discriminant Analysis

Bad projection Good projection

Question: Characteristics of a GOOD projection?
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

Two-Class LDA

m1 =
1
n1

∑
x∈D1

wT x , m2 =
1
n2

∑
y∈D2

wT y

Look for a projection w that
maximizes (inter-class) distance in the projected space,
and minimizes the (intra-class) distances in the projected space.
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

Two-Class LDA

Namely, we desire a w∗ such that

w∗ = arg max
w

(m1 −m2)2

S1 + S2
,

where S1 =
∑
x∈D1

(wT x −m1)2 and S2 =
∑
y∈D2

(wT y −m2)2.

Alternatively, (with scatter matrices)

w∗ = arg max
w

wT SBw
wT SW w

, (1)

with SW =
2∑

i=1

∑
x∈Di

(x −mi)(x −mi)
T , SB = (m2 −m1)(m2 −m1)T .
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

LDA

The criterion in Equation (1) is commonly known as the generalized
Rayleigh quotient, whose solution can be found via the generalized
eigenvalue problem

SBw = λSW w .

LDA for multi-class follows similarly.
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APPLICATIONS COCKTAIL PARTY PROBLEM WITH BSS

Cocktail Party Problem

(adapted from André Mouraux)
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APPLICATIONS COCKTAIL PARTY PROBLEM WITH BSS

KL procedure for noisy data

Decompose observed data into its noise and signal components:

x(µ) = s(µ) + n(µ),

or, in terms of data matrices,

X = S + N. (S = signal ,N = noise )

The optimal first basis vector, φ, is taken as a superposition of the
data, i.e.,

φ = ψ1x(1) + · · ·+ ψPx(P) = Xψ.

May decompose φ into signal and noise components

φ = φn + φs,

where φs = Sψ and φn = Nψ.
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APPLICATIONS COCKTAIL PARTY PROBLEM WITH BSS

MNF/BBS

The basis vector φ is said to have maximum noise fraction (MNF)
if the ratio

D(φ) =
φT

nφn

φTφ

is a maximum.
A steepest descent method yields the symmetric definite
generalized eigenproblem

NT Nψ = µ2X T Xψ.

This problem may be solved without actually forming the product
matrices NT N and X T X , using the generalized SVD (gsvd).
Note that the same orthonormal basis vector φ optimizes the
signal-to-noise ratio. And this technique is called Blind Source
Separation (BSS).
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APPLICATIONS OTHERS

Convolution - sharpening

w(x , y) ? f (x , y) =
a∑

s=−a

b∑
t=−b

w(s, t)f (x − s, y − t)

=
a∑

s=−a

b∑
t=−b

f (s, t)w(x − s, y − t)

Blurred image Filter mask 1 Laplacian enhanced image

A blurred image Laplacian edge filter Enhanced image
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APPLICATIONS OTHERS

Convolution - smoothing

original

weigthed average, center = 2 weigthed average, center = 4
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APPLICATIONS OTHERS

Convolution - threshold smoothing

orginal filtered with a 15 by 15 averaging filter thresholded with 25% of highest intensity
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APPLICATIONS OTHERS

Fourier analysis

F (u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

f (x , y)e−i2π( ux
M + vy

N )
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(a) Image. (b) Spectrum.
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(c) Centered spectrum. (d) log transform
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APPLICATIONS OTHERS

Multiresolution analysis

X (b,a) =
1√
|a|

∫ ∞
−∞

x(t)Ψ∗
(

t − b
a

)
dt

Approximation coef. at level 1

Decomposition at level 1

Image Selection

dwt

idwt

Original Image

20 40 60 80 100 120
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Synthesized Image

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 52 / 54



REFERENCES

References

[Basri & Jacobs, 2003] R. Basri & D. Jacobs, “Lambertian reflectance and
linear subspaces”, PAMI, 25(2):218–233, 2003.

[Belhumeur & Kriegman, 1998] P. Belhumeur & D. Kriegman, “What is the set
of images of an object under all possible illumination conditions”, IJCV,
28(3):245–260, 1998.

[Björck & Golub, 1973] A. Björck & G. Golub, “Numerical methods for
computing angles between linear subspaces”, Mathematics of Computation,
27(123):579–594, 1973.

[Chang et al., 2006a] J.-M. Chang, M. Kirby, H. Kley, J. R. Beveridge, C.
Peterson, B. Draper, “Illumination face spaces are idiosyncratic”, Int’l Conf. on
Image Proc. & Comp. Vision, 2: 390–396, 2006.

[Chang et al., 2007b] J.-M. Chang, M. Kirby, H. Kley, J. R. Beveridge, C.
Peterson, B. Draper, “Recognition of digital images of the human face at ultra low
resolution via illumination spaces”,ACCV’07, LNCV, Springer, 4844: 733–743,
2007.

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 53 / 54



REFERENCES

References

[Chang et al., 2007c] J.-M. Chang, M. Kirby, C. Peterson, “Feature Patch
Illumination spaces and Karcher compression for face recognition via
Grassmannian”, under review, 2009.

[Edelman et al., 1999] A. Edelman, T. Arias, & S. Smith, “The Geometry of
algorithms with orthogonality constraints”, SIAM J. Matrix Anal. Appl.,
20(2):303–353, 1999.

[Stewart & Sun, 1990] G.W. Stewart & J.-G. Sun, “Matrix Perturbation Theory”,
Academic Press, 1990.

[Zhao et al., 2003] W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld, “Face
recognition: A literature survey”. ACM Comp. Surv., 35(4):399–458, 2003.

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 14, 2009 54 / 54


	Introduction
	Analysis
	Synthesis

	Backgrounds
	Linear Algebra
	Geometry
	Image Processing

	Applications
	Image Compression
	Digit/Face Recognition with Tangent Distance
	Face Recognition on the Grassmann Manifold
	Missing Data with KL
	Bankruptcy Prediction with LDA
	Cocktail Party Problem with BSS
	Others

	References

