An Introduction to Geometric Data Analysis and its Possible Applications

JEN-MEI CHANG

Department of Mathematics and Statistics California State University, Long Beach jchang9@csulb.edu

Claremont Colleges Mathematics Colloquia

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 1 / 54

Outline

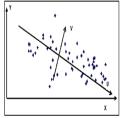
Introduction

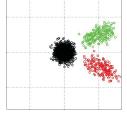
- Analysis
- Synthesis

Backgrounds

- Linear Algebra
- Geometry
- Image Processing
- Applications
 - Image Compression
 - Digit/Face Recognition with Tangent Distance
 - Face Recognition on the Grassmann Manifold
 - Missing Data with KL
 - Bankruptcy Prediction with LDA
 - Cocktail Party Problem with BSS
 - Others

Why analysis?





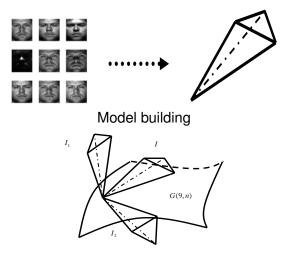
Applications

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

 ▲ ■ ▲ ■ ▲ ■
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Why synthesis?



Prediction and classification

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 4 / 54

____>

Full SVD

Definition

(Full SVD) Any $m \times n$ real matrix A, with $m \ge n$, can be factorized into

$$A = U \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} V^{T},$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{n \times n}$ is diagonal with

$$\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n), \ \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0.$$

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 5 / 54

Thin SVD

Definition

(**Thin SVD**) With the partitioning $U = (U_1, U_2)$, where $U_1 \in \mathbb{R}^{m \times n}$, we get the *thin SVD*

$$A = U_1 \Sigma V^T,$$

Structural Illustration:

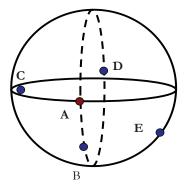
$$A = U_1 \Sigma V^T = (u_1 \ u_2 \ \cdots \ u_n) \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots & \\ & & & \sigma_n \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{pmatrix} = \sum_{i=1}^n \sigma_i u_i v_i^T.$$

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 6 / 54

Distance



What is A closest to?

No geometry: D
 With geometry: 5

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

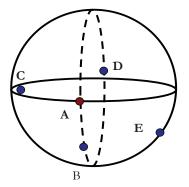
OCTOBER 14, 2009 7 / 54

э

BACKGROUNDS

GEOMETRY

Distance

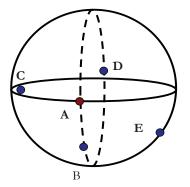


What is A closest to? ● No geometry: □

Image: Image:

< ∃ >

Distance



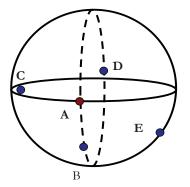
What is A closest to?

No geometry: D

< 17 ▶

• With geometry: B

Distance



What is A closest to?

• No geometry: D

< 17 ▶

• With geometry: B

Data matrix

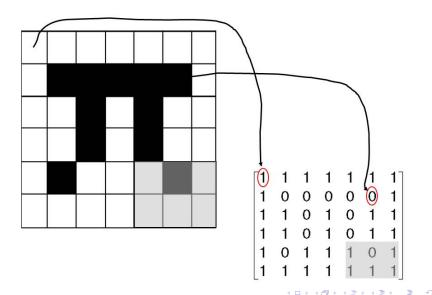
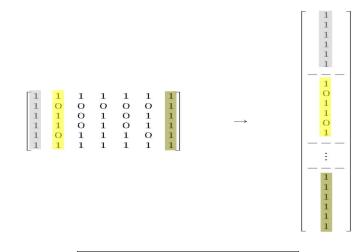


IMAGE PROCESSING

Data vector



$\mathsf{Image} \to \mathsf{Matrix} \to \mathsf{Vector}$

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 9 / 54

(E)

Image: Image:

Approximation theorem

If we know the correct rank of A, e.g., by inspecting the singular values, then we can **remove the noise and compress the data** by approximating A by a matrix of the correct rank. One way to do this is to truncate the singular value expansion:

Theorem

lf

$$\boldsymbol{A}_{k} = \sum_{i=1}^{k} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T} \quad (1 \leq k \leq r)$$

then

$$A_k = \min_{\operatorname{rank}(B)=k} \|A - B\|_2 \quad \text{and} \quad A_k = \min_{\operatorname{rank}(B)=k} \|A - B\|_F.$$

IMAGE COMPRESSION

An example

The error term of rank *k* approximation is given by the (k + 1)th singular value σ_{k+1} .

(a) full rank (rank 480)

(b) rank 10, rel. err. = 0.0551

(c) rank 50, rel. err. = 0.0305 (d) rank 170, rel. err. = 0.0126

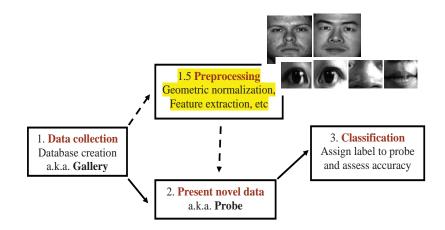
JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 1

11/54

General classification paradigm



JEN-MEI CHANG (CSU, LONG BEACH)

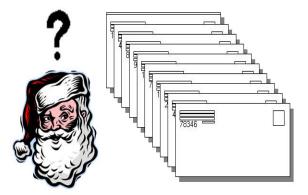
GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009

12/54

Problem definition - globally

Santa thought to himself, "only if these mails can go to the right place according to their zip code".



Handwritten digit classification

Problem. (Human) handwritten digits are sometimes very hard to recognize, even by human operators.

Importance. Accurate identification of the digits ensures a reliable delivery system.

Beneficiaries. Postal services (mail sorting), seaports (cargo registration), etc.

Even Santa Clause can benefit from an efficient digit classification algorithm.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

Problem definition - locally

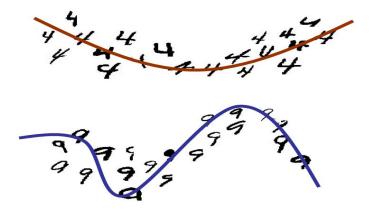
How do we tell whether a new digit is a 4 or a 9?

7 99 99 99 99 99 9 9 9 9 9 9 9 9 9 9

< ロ > < 同 > < 三 > < 三 >

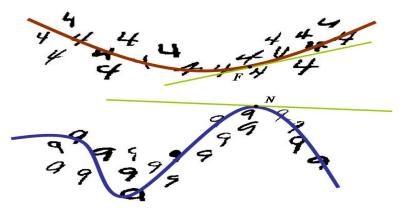
Digit manifolds

Imagine a high-D surface (red curve) where all 4's live on and a high-D surface (blue curve) where all 9's live on.



Tangent spaces - training

Create a Tangent Space of the 4's at F and create a Tangent Space of the 9's at N.



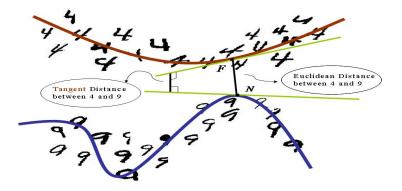
Dimensions of the tangent spaces depend on the degree of variations.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 17 / 54

Distances



- Euclidean distance between each pair of 4 and 9 varies drastically while tangent distance captures the geometry and is less susceptible to variations.
- Pairwise Euclidean distance is time consuming while the tangent calculation is very efficient.

JEN-MEI CHANG (CSU, LONG BEACH)

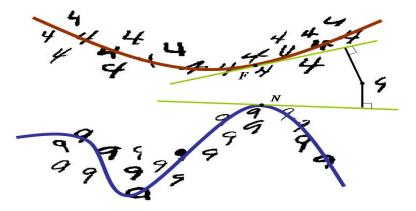
GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 18 / 54

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classification

So, is it a 4 or a 9?



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 19 / 54

< ロ > < 同 > < 三 > < 三 >

Classification result

79999999999 9999059999

JEN-MEI CHANG (CSU, LONG BEACH)

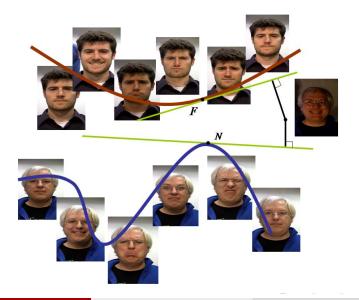
GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 20 / 54

3

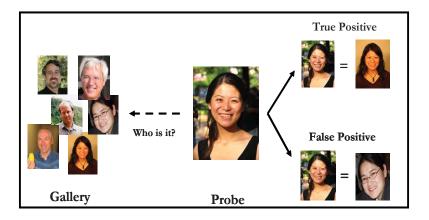
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Face recognition



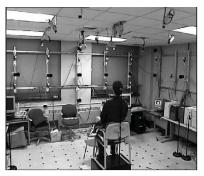
GEOMETRIC DATA ANALYSIS

Face recognition paradigm



Illumination apparatus

Yale Face Database B



CMU-PIE

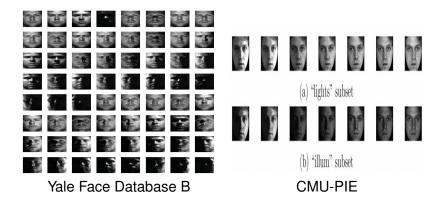
< ロ > < 同 > < 三 > < 三 >

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 23 / 54

Illumination images



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 24 / 54

< 🗇 > < 🖻 > <

Empirical fact

Images of a single person seen under variations of illumination appear to be more difficult to recognize than images of different people [Zhao et al., 2003].

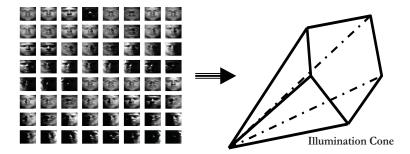
Subject 1

Subject 2

Can you tell who this is?

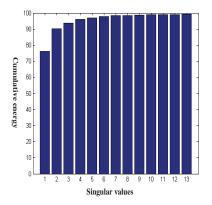
Geometric facts - 1

The set of *m*-pixel monochrome images of an object seen under general lighting conditions forms a convex polyhedral cone (illumination cone) in \mathbb{R}^m [Belhumeur & Kriegman, 1998].

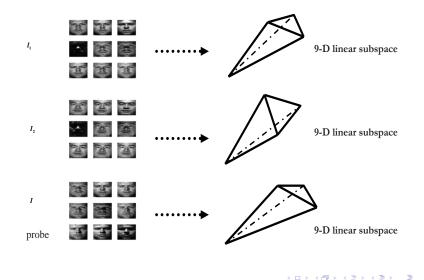


Geometric facts - 2

The illumination cone can be approximated by a 9-dimensional linear subspace [Basri & Jacobs, 2003], i.e., the illumination cone is low-dimensional and linear.



Set-up



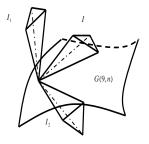
JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 28 / 54

Definition of G(k, n)

These illumination cones are all elements of a parameter space called the **Grassmannian (Grassmann manifold)**, G(9, n), where *n* in the ambient dimension.



Definition

The *Grassmannian* G(k,n) or the *Grassmann manifold* is the set of *k*-dimensional subspaces in an *n*-dimensional vector space K^n for some field K, i.e.,

$$G(k,n) = \{ W \subset K^n \mid \dim(W) = k \}.$$

Principal angles [Björck & Golub, 1973]

It turns out that any attempt to construct an unitarily invariant metric on G(k, n) yields something that can be expressed in terms of the **principal angles** [Stewart & Sun, 1990].

Definition

If X and Y are two vector subspaces of \mathbb{R}^m , then the principal angles $\theta_k \in [0, \frac{\pi}{2}]$, $1 \le k \le q$ between X and Y are defined recursively by

$$\cos(\theta_k) = \max_{u \in X} \max_{v \in Y} u^T v = u_k^T v_k$$

subject to ||u|| = ||v|| = 1, $u^T u_i = 0$ and $v^T v_i = 0$ for i = 1 : k - 1 and $q = \min \{\dim(X), \dim(Y)\} \ge 1$.

Grassmannian distances [Edelman et al., 1999]

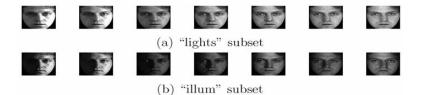
These are the distance functions we will use to compare points on the Grassmann manifold.

Metric Name	Mathematical Expression
Fubini-Study	$d_{FS}(\mathcal{X}, \mathcal{Y}) = \cos^{-1} \left(\prod_{i=1}^{k} \cos \theta_{i} \right)$ $d_{c2}(\mathcal{X}, \mathcal{Y}) = \left\ 2 \sin \frac{1}{2} \theta \right\ _{F}$ $d_{cF}(\mathcal{X}, \mathcal{Y}) = \left\ 2 \sin \frac{1}{2} \theta \right\ _{2}$
Chordal 2-norm	$d_{c2}(\mathcal{X},\mathcal{Y}) = \left\ 2\sin\frac{1}{2}\theta \right\ _{F}$
Chordal F-norm	$d_{cF}(\mathcal{X},\mathcal{Y}) = \left\ 2\sin\frac{1}{2}\theta \right\ _{2}$
Geodesic (Arc Length)	$d_{g}(\mathcal{X},\mathcal{Y}) = \ \theta\ _{2}$
Chordal (Projection F-norm)	$d_{c}(\mathcal{X},\mathcal{Y}) = \ \sin\theta\ _{2}$
Projection 2-norm	$d_{p2}\left(\mathcal{X},\mathcal{Y} ight)=\left\ \sin heta ight\ _{\infty}$

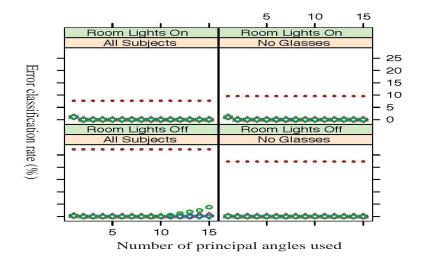
Empirical result - database

Since we are only concerned with the lighting variations, we fix the frontal pose, neutral expression and select the "illum" and "lights" subsets of CMU-PIE (68 subjects, 13 poses, 43 lightings, 4 expressions) [Sim et al., 2003] for experiments.

- lights: 21 illumination conditions with background lights on.
- illum: 21 illumination conditions with background lights off.



Empirical results



Robustness

If the data set is perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2006a]:

The data set is still perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2007bc]:

GEOMETRIC DATA ANALYSIS

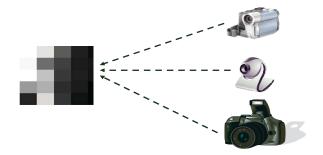
Robustness

If the data set is perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2006a]:

The data set is still perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2007bc]:

GEOMETRIC DATA ANALYSIS

Potential use: low-res. illumination camera



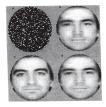
Large private databases of facial imagery can be stored at a resolution that is sufficiently low to prevent recognition by a human operator yet sufficiently high to enable machine recognition.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 36 / 54

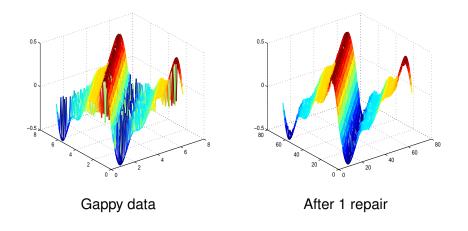
KL procedure for missing data



- 1. Initialize the missing data with the ensemble average.
- 2. Compute the first estimate of the KL basis.
- 3. Re-estimate the ensemble using the gappy approximation and the KL basis.
- 4. Re-compute the KL basis.
- 5. Repeat Steps 3–4 until stopping criterion is satisfied.

MISSING DATA WITH KL

A gappy example

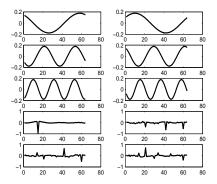


GEOMETRIC DATA ANALYSIS

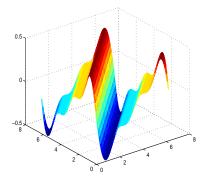
OCTOBER 14, 2009 38 / 54

MISSING DATA WITH KL

Gappy example continued



Eigenvectors of repaired data



Repaired

Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt¹.

- If we form a feature vector for each firm.
- The problem becomes a two-class classification problem.

¹adapted from Wikipedia

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 40 / 54

Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt¹.

If we form a feature vector for each firm.

• The problem becomes a two-class classification problem.

¹adapted from Wikipedia

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

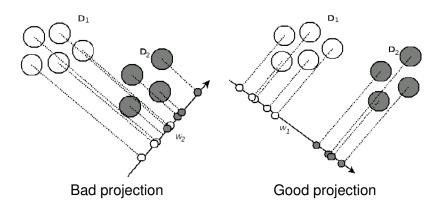
OCTOBER 14, 2009 40 / 54

Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt¹.

- If we form a feature vector for each firm.
- The problem becomes a two-class classification problem.

JEN-MEI CHANG (CSU, LONG BEACH)

Linear Discriminant Analysis



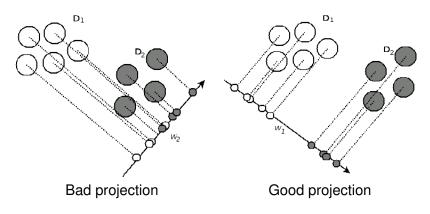
Question: Characteristics of a GOOD projection?

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 41 / 54

Linear Discriminant Analysis



Question: Characteristics of a GOOD projection?

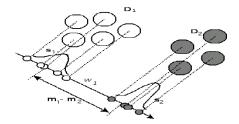
JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 41 / 54

Two-Class LDA

$$m_1 = \frac{1}{n_1} \sum_{x \in D_1} w^T x, \quad m_2 = \frac{1}{n_2} \sum_{y \in D_2} w^T y$$



Look for a projection *w* that

- maximizes (inter-class) distance in the projected space,
- and minimizes the (intra-class) distances in the projected space.

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

Two-Class LDA

Namely, we desire a w^* such that

$$w^* = \arg\max_{w} \frac{(m_1 - m_2)^2}{S_1 + S_2},$$

where $S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$ and $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2.$
Alternatively, (with scatter matrices)
 $w^* = \arg\max_{w} \frac{w^T S_B w}{w^T S_W w},$ (1)

with $S_W = \sum_{i=1}^{2} \sum_{x \in D_i} (x - \mathbf{m}_i) (x - \mathbf{m}_i)^T$, $S_B = (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^T$.

Two-Class LDA

Namely, we desire a w^* such that

$$w^* = rgmax_w rac{(m_1-m_2)^2}{S_1+S_2},$$

where
$$S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$$
 and $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2$.
Alternatively (with scatter matrices)

Alternatively, (with scatter matrices)

$$w^* = \arg\max_{w} \frac{w^T S_B w}{w^T S_W w},\tag{1}$$

with
$$S_W = \sum_{i=1}^2 \sum_{x \in D_i} (x - \mathbf{m}_i) (x - \mathbf{m}_i)^T$$
, $S_B = (\mathbf{m}_2 - \mathbf{m}_1) (\mathbf{m}_2 - \mathbf{m}_1)^T$.

The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

$$S_B w = \lambda S_W w.$$

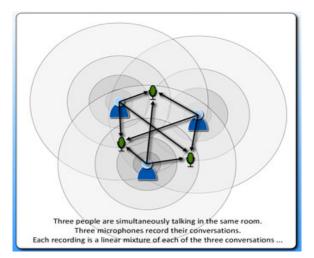
LDA for multi-class follows similarly.

The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

$$S_B w = \lambda S_W w.$$

LDA for multi-class follows similarly.

Cocktail Party Problem



(adapted from André Mouraux)

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

October 14, 2009 45 / 54

3

ヘロト ヘ戸ト ヘヨト ヘヨト

KL procedure for noisy data

• Decompose observed data into its *noise* and *signal* components:

$$\mathbf{x}^{(\mu)} = \mathbf{s}^{(\mu)} + \mathbf{n}^{(\mu)},$$

or, in terms of data matrices,

$$X = S + N$$
. ($S =$ signal, $N =$ noise)

 The optimal first basis vector, φ, is taken as a superposition of the data, i.e.,

$$\phi = \psi_1 \mathbf{x}^{(1)} + \dots + \psi_P \mathbf{x}^{(P)} = X \psi.$$

• May decompose ϕ into signal and noise components

$$\phi = \phi_{\mathbf{n}} + \phi_{\mathbf{s}},$$

where $\phi_{s} = S\psi$ and $\phi_{n} = N\psi$.

MNF/BBS

 The basis vector φ is said to have maximum noise fraction (MNF) if the ratio

$$D(\phi) = \frac{\phi_{\mathbf{n}}^T \phi_{\mathbf{n}}}{\phi^T \phi}$$

is a maximum.

• A steepest descent method yields the *symmetric definite* generalized eigenproblem

$$N^T N \psi = \mu^2 X^T X \psi.$$

This problem may be solved without actually forming the product matrices $N^T N$ and $X^T X$, using the generalized SVD (gsvd).

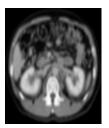
 Note that the same orthonormal basis vector φ optimizes the signal-to-noise ratio. And this technique is called Blind Source Separation (BSS).

JEN-MEI CHANG (CSU, LONG BEACH)

OCTOBER 14, 2009 47 / 54

Convolution - sharpening

$$w(x, y) \star f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$
$$= \sum_{s=-a}^{a} \sum_{t=-b}^{b} f(s, t) w(x - s, y - t)$$



A blurred image

Laplacian edge filter

Enhanced image

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 48 / 54

Convolution - smoothing

JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

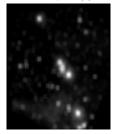
OCTOBER 14, 2009 49 / 54

< ロ > < 同 > < 回 > < 回 >

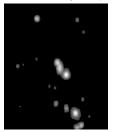
Convolution - threshold smoothing

orginal

filtered with a 15 by 15 averaging filter



thresholded with 25% of highest intensity



< ロ > < 同 > < 三 > < 三 >

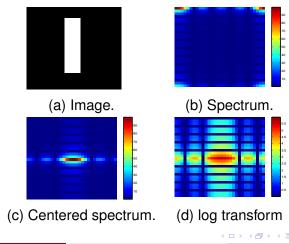
JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 50 / 54

Fourier analysis

$$F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-i2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$



JEN-MEI CHANG (CSU, LONG BEACH)

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 51 / 54

Multiresolution analysis

$$X(b,a) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t) \Psi^*\left(\frac{t-b}{a}\right) dt$$

Image Selection

GEOMETRIC DATA ANALYSIS

OCTOBER 14, 2009 52 / 54

э

References

[Basri & Jacobs, 2003] R. Basri & D. Jacobs, "Lambertian reflectance and linear subspaces", *PAMI*, 25(2):218–233, 2003.

[Belhumeur & Kriegman, 1998] P. Belhumeur & D. Kriegman, "What is the set of images of an object under all possible illumination conditions", *IJCV*, *28(3):245–260, 1998*.

[Björck & Golub, 1973] A. Björck & G. Golub, "Numerical methods for computing angles between linear subspaces", *Mathematics of Computation, 27(123):579–594, 1973.*

[Chang et al., 2006a] J.-M. Chang, M. Kirby, H. Kley, J. R. Beveridge, C. Peterson, B. Draper, "Illumination face spaces are idiosyncratic", *Int'l Conf. on Image Proc. & Comp. Vision, 2: 390–396, 2006.*

[Chang et al., 2007b] J.-M. Chang, M. Kirby, H. Kley, J. R. Beveridge, C. Peterson, B. Draper, "Recognition of digital images of the human face at ultra low resolution via illumination spaces", *ACCV'07, LNCV, Springer, 4844: 733–743, 2007.*

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

References

[Chang et al., 2007c] J.-M. Chang, M. Kirby, C. Peterson, "Feature Patch Illumination spaces and Karcher compression for face recognition via Grassmannian", *under review, 2009*.

[Edelman et al., 1999] A. Edelman, T. Arias, & S. Smith, "The Geometry of algorithms with orthogonality constraints", *SIAM J. Matrix Anal. Appl.*, 20(2):303–353, 1999.

[Stewart & Sun, 1990] G.W. Stewart & J.-G. Sun, "Matrix Perturbation Theory", *Academic Press, 1990.*

[Zhao et al., 2003] W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld, "Face recognition: A literature survey". *ACM Comp. Surv.*, *35*(4):399–458, 2003.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >