An Introduction to Geometric Data Analysis and its Possible Applications

JEN-MEI CHANG

Department of Mathematics and Statistics
California State University, Long Beach
jchang9@csulb.edu

CSU San Bernardino Mathematics Colloquium
Outline

1. Introduction
 - Analysis
 - Synthesis

2. Backgrounds
 - Linear Algebra
 - Geometry
 - Image Processing

3. Applications
 - Image Compression
 - Digit/Face Recognition with Tangent Distance
 - Face Recognition on the Grassmann Manifold
 - Missing Data with KL
 - Bankruptcy Prediction with LDA
 - Cocktail Party Problem with BSS
 - Others
Why analysis?

Representation
Visualization
Applications
Why synthesis?

Model building

Prediction and classification
Full SVD

Definition

Full SVD Any $m \times n$ real matrix A, with $m \geq n$, can be factorized into

$$A = U \begin{pmatrix} \Sigma \\ 0 \end{pmatrix} V^T,$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal, and $\Sigma \in \mathbb{R}^{n \times n}$ is diagonal with

$$\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n), \quad \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0.$$
Thin SVD

Definition

(Thin SVD) With the partitioning $U = (U_1, U_2)$, where $U_1 \in \mathbb{R}^{m \times n}$, we get the *thin SVD*

$$A = U_1 \Sigma V^T,$$

Structural Illustration:

$$A = U_1 \Sigma V^T = (u_1 \ u_2 \ \cdots \ u_n) \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{pmatrix} = \sum_{i=1}^{n} \sigma_i u_i v_i^T.$$
Distance

What is \(A \) closest to?

- No geometry: \(D \)
- With geometry: \(B \)
Distance

What is A closest to?
- No geometry: D
- With geometry: B
Distance

What is A closest to?

- No geometry: D
- With geometry: B
Distance

What is A closest to?
- No geometry: D
- With geometry: B
Data matrix
Data vector

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\vdots \\
1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

Image → Matrix → Vector
Approximation theorem

If we know the correct rank of A, e.g., by inspecting the singular values, then we can **remove the noise and compress the data** by approximating A by a matrix of the correct rank. One way to do this is to truncate the singular value expansion:

Theorem

If

$$A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T \quad (1 \leq k \leq r)$$

then

$$A_k = \min_{\text{rank}(B)=k} \|A - B\|_2 \quad \text{and} \quad A_k = \min_{\text{rank}(B)=k} \|A - B\|_F.$$
An example

The error term of rank k approximation is given by the $(k + 1)^{th}$ singular value σ_{k+1}.

(a) full rank (rank 480)
(b) rank 10, rel. err. = 0.0551
(c) rank 50, rel. err. = 0.0305
(d) rank 170, rel. err. = 0.0126
General classification paradigm

1. **Data collection**
 - Database creation
 - a.k.a. **Gallery**

2. **Present novel data**
 - a.k.a. **Probe**

1.5 **Preprocessing**
 - Geometric normalization,
 - Feature extraction, etc

3. **Classification**
 - Assign label to probe
 - and assess accuracy

Jen-Mei Chang (CSU, Long Beach)
Problem definition

Santa thought to himself, “only if these mails can go to the right place according to their zip code”.

?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Handwritten digit classification

Problem. (Human) handwritten digits are sometimes very hard to recognize, even by human operators.

Importance. Accurate identification of the digits ensures a reliable delivery system.

Beneficiaries. Postal services (mail sorting), seaports (cargo registration), etc.

Even Santa Clause can benefit from an efficient digit classification algorithm.
Task

How do we tell whether a new digit is a 4 or a 9?
Digit manifolds

Imagine a high-D surface (red curve) where all 4’s live on and a high-D surface (blue curve) where all 9’s live on.
Create a **Tangent Space** of the 4’s at F and create a **Tangent Space** of the 9’s at N.

Dimensions of the tangent spaces depend on the degree of variations.
Euclidean distance

- Euclidean distance between each pair of 4 and 9 varies drastically.
- Calculation is time-consuming.
Tangent distance captures the geometry.
Calculation is efficient.
Classification

So, is it a 4 or a 9?
Classification result

4 4 4 4 4 4 4 4
4 4 4 4 4 4

5 = 6

9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9
Face recognition
Face recognition paradigm

True Positive

False Positive

Who is it?

Gallery

Probe

JEN-MEI CHANG (CSU, LONG BEACH)
Illumination apparatus

Yale Face Database B

CMU-PIE
Illumination images

Yale Face Database B

CMU-PIE

(a) “lights” subset

(b) “illum” subset
Empirical fact

Images of a single person seen under variations of illumination appear to be more difficult to recognize than images of different people [Zhao et al., 2003].

Can you tell who this is?

Subject 1 Subject 2
The set of \(m \)-pixel monochrome images of an object seen under general lighting conditions forms a convex polyhedral cone (illumination cone) in \(\mathbb{R}^m \) [Belhumeur & Kriegman, 1998].
The illumination cone can be approximated by a 9-dimensional linear subspace [Basri & Jacobs, 2003], i.e., the illumination cone is low-dimensional and linear.
Set-up

I_1

I_2

I

probe

9-D linear subspace

9-D linear subspace

9-D linear subspace

9-D linear subspace
Definition of $G(k, n)$

These illumination cones are all elements of a parameter space called the Grassmannian (Grassmann manifold), $G(9, n)$, where n is in the ambient dimension.

Definition

The Grassmannian $G(k,n)$ or the Grassmann manifold is the set of k-dimensional subspaces in an n-dimensional vector space K^n for some field K, i.e.,

$$G(k, n) = \{ W \subset K^n \mid \dim(W) = k \}.$$
Principal angles [Björck & Golub, 1973]

It turns out that any attempt to construct an unitarily invariant metric on $G(k, n)$ yields something that can be expressed in terms of the **principal angles** [Stewart & Sun, 1990].

Definition

If X and Y are two vector subspaces of \mathbb{R}^m, then the principal angles $\theta_k \in [0, \frac{\pi}{2}]$, $1 \leq k \leq q$ between X and Y are defined recursively by

$$\cos(\theta_k) = \max_{u \in X} \max_{v \in Y} u^T v = u_k^T v_k$$

subject to $\|u\| = \|v\| = 1$, $u^T u_i = 0$ and $v^T v_i = 0$ for $i = 1 : k - 1$ and $q = \min \{\dim(X), \dim(Y)\} \geq 1$.
Grassmannian distances [Edelman et al., 1999]

These are the distance functions we will use to compare points on the Grassmann manifold.

<table>
<thead>
<tr>
<th>Metric Name</th>
<th>Mathematical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fubini-Study</td>
<td>$d_{FS}(\mathcal{X}, \mathcal{Y}) = \cos^{-1}\left(\prod_{i=1}^{k} \cos \theta_i\right)$</td>
</tr>
<tr>
<td>Chordal 2-norm</td>
<td>$d_{c2}(\mathcal{X}, \mathcal{Y}) = \left| 2 \sin \frac{1}{2} \theta \right|_F$</td>
</tr>
<tr>
<td>Chordal F-norm</td>
<td>$d_{cF}(\mathcal{X}, \mathcal{Y}) = \left| 2 \sin \frac{1}{2} \theta \right|_2$</td>
</tr>
<tr>
<td>Geodesic (Arc Length)</td>
<td>$d_g(\mathcal{X}, \mathcal{Y}) = \left| \theta \right|_2$</td>
</tr>
<tr>
<td>Chordal (Projection F-norm)</td>
<td>$d_c(\mathcal{X}, \mathcal{Y}) = \left| \sin \theta \right|_2$</td>
</tr>
<tr>
<td>Projection 2-norm</td>
<td>$d_{p2}(\mathcal{X}, \mathcal{Y}) = \left| \sin \theta \right|_\infty$</td>
</tr>
</tbody>
</table>
Empirical result - database

Since we are only concerned with the lighting variations, we fix the frontal pose, neutral expression and select the “illum” and “lights” subsets of CMU-PIE (68 subjects, 13 poses, 43 lightings, 4 expressions) [Sim et al., 2003] for experiments.

- lights: 21 illumination conditions with background lights on.
- illum: 21 illumination conditions with background lights off.

(a) “lights” subset

(b) “illum” subset
Empirical results

Error classification rate (%) vs. Number of principal angles used for different conditions:
- Room Lights On
 - All Subjects
 - No Glasses
- Room Lights Off
 - All Subjects
 - No Glasses

The graph shows the error classification rate (%) for different numbers of principal angles used, with separate sections for 'Room Lights On' and 'Room Lights Off' conditions, and for subjects with and without glasses.
Robustness

If the data set is perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2006a]:

![Image 1]

The data set is still perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2007bc]:

![Image 2]
Robustness

If the data set is perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2006a]:

The data set is still perfectly separable with the Grassmann method when using this kind of image [Chang et al., 2007bc]:
Potential use: low-res. illumination camera

Large private databases of facial imagery can be stored at a resolution that is sufficiently low to prevent recognition by a human operator yet sufficiently high to enable machine recognition.
KL procedure for missing data

1. Initialize the missing data with the ensemble average.
2. Compute the first estimate of the KL basis.
3. Re-estimate the ensemble using the gappy approximation and the KL basis.
4. Re-compute the KL basis.
5. Repeat Steps 3–4 until stopping criterion is satisfied.
A gappy example

Gappy data

After 1 repair
Gappy example continued

Eigenvectors of repaired data

Repaired
Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt.

1. If we form a feature vector for each firm.
2. The problem becomes a two-class classification problem.

adapted from Wikipedia
Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt\(^1\).

- If we form a feature vector for each firm.
- The problem becomes a two-class classification problem.

\(^1\)adapted from Wikipedia
Bankruptcy prediction is the art of predicting bankruptcy and various measures of financial distress of public firms. It is a vast area of finance and accounting research. The importance of the area is due in part to the relevance for creditors and investors in evaluating the likelihood that a firm may go bankrupt\(^1\).

- If we form a feature vector for each firm.
- The problem becomes a two-class classification problem.

\(^1\)adapted from Wikipedia
Linear Discriminant Analysis

Question: Characteristics of a GOOD projection?
Linear Discriminant Analysis

Question: Characteristics of a GOOD projection?
Two-Class LDA

\[m_1 = \frac{1}{n_1} \sum_{x \in D_1} w^T x, \quad m_2 = \frac{1}{n_2} \sum_{y \in D_2} w^T y \]

Look for a projection \(w \) that

- maximizes (inter-class) distance in the projected space,
- and minimizes the (intra-class) distances in the projected space.
Two-Class LDA

Namely, we desire a w^* such that

$$w^* = \arg \max_w \frac{(m_1 - m_2)^2}{S_1 + S_2},$$

where $S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$ and $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2$.

Alternatively, (with scatter matrices)

$$w^* = \arg \max_w \frac{w^T S_B w}{w^T S_W w},$$

with $S_W = \sum_{i=1}^2 \sum_{x \in D_i} (x - m_i)(x - m_i)^T$, $S_B = (m_2 - m_1)(m_2 - m_1)^T$.
Two-Class LDA

Namely, we desire a w^* such that

$$w^* = \arg \max_w \frac{(m_1 - m_2)^2}{S_1 + S_2},$$

where $S_1 = \sum_{x \in D_1} (w^T x - m_1)^2$ and $S_2 = \sum_{y \in D_2} (w^T y - m_2)^2$.

Alternatively, (with scatter matrices)

$$w^* = \arg \max_w \frac{w^T S_B w}{w^T S_W w},$$

with $S_W = \sum_{i=1}^2 \sum_{x \in D_i} (x - m_i)(x - m_i)^T$, $S_B = (m_2 - m_1)(m_2 - m_1)^T$.

Jen-Mei Chang (CSU, Long Beach)
The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

\[S_B w = \lambda S_W w. \]

LDA for multi-class follows similarly.
LDA

The criterion in Equation (1) is commonly known as the generalized Rayleigh quotient, whose solution can be found via the generalized eigenvalue problem

\[S_B w = \lambda S_W w. \]

LDA for multi-class follows similarly.
Cocktail Party Problem

(adapted from André Mouraux)
KL procedure for noisy data

- Decompose observed data into its *noise* and *signal* components:

\[x^{(\mu)} = s^{(\mu)} + n^{(\mu)}, \]

or, in terms of data matrices,

\[X = S + N. \quad (S = \text{signal}, \, N = \text{noise}) \]

- The optimal first basis vector, \(\phi \), is taken as a superposition of the data, i.e.,

\[\phi = \psi_1 x^{(1)} + \cdots + \psi_P x^{(P)} = X \psi. \]

- May decompose \(\phi \) into signal and noise components

\[\phi = \phi_n + \phi_s, \]

where \(\phi_s = S \psi \) and \(\phi_n = N \psi. \)
The basis vector ϕ is said to have maximum noise fraction (MNF) if the ratio

$$D(\phi) = \frac{\phi_n^T \phi_n}{\phi^T \phi}$$

is a maximum.

A steepest descent method yields the symmetric definite generalized eigenproblem

$$N^T N \psi = \mu^2 X^T X \psi.$$

This problem may be solved without actually forming the product matrices $N^T N$ and $X^T X$, using the generalized SVD (gsvd).

Note that the same orthonormal basis vector ϕ optimizes the signal-to-noise ratio. And this technique is called Blind Source Separation (BSS).
Convolution - sharpening

Filtering with high-pass filters.

\[w(x, y) \star f(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t) \]

\[= \sum_{s=-a}^{a} \sum_{t=-b}^{b} f(s, t) w(x - s, y - t) \]
Convolution - smoothing

Filtering with low-pass filters.
Convolution - threshold smoothing

Filtering with low-pass filters.

original
filtered with a 15 by 15 averaging filter
thresholded with 25% of highest intensity
Fourier analysis

\[F(u, v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-i2\pi \left(\frac{ux}{M} + \frac{vy}{N} \right)} \]
Speech recognition with Fourier analysis

(adapted from AT&T Lab Inc. - http://www.research.att.com/viewProject.cfm?prjID=49)
Multiresolution analysis - for image compression

\[X(b, a) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t) \psi^* \left(\frac{t - b}{a} \right) \, dt \]
References

References

