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INTRODUCTION SYNTHESIS

Why synthesis?
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Model building

Prediction and classification
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Definition
(Full SVD) Any m x n real matrix A, with m > n, can be factorized into

g\ yT
A—U<O>V,

where U € R™*™ and V € R"™" are orthogonal, and & € R™"is
diagonal with

Z:diag(UhUZ:u-,Un)» 01 2022"' ZUnZO'
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Definition
(Thin SVD) With the partitioning U = (U;, U»), where U; € R™*", we
get the thin SVD

A=UzxVT,
Structural lllustration:
01 V1T
T n
o2 V2
A=UTVT = (ujtp - up) . : :Za;u,-v,-T.
- : i=1
On sz-
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BACKGROUNDS GEOMETRY

Distance

What is A closest to?
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BACKGROUNDS GEOMETRY

Distance

What is A closest to?
< @ No geometry:
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BACKGROUNDS GEOMETRY

Distance

What is A closest to?
< @ No geometry: D
@ With geometry:
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BACKGROUNDS GEOMETRY

Distance

What is A closest to?
< @ No geometry: D
@ With geometry: B
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Data matrix
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Data vector
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Approximation theorem

If we know the correct rank of A, e.g., by inspecting the singular
values, then we can remove the noise and compress the data by
approximating A by a matrix of the correct rank. One way to do this is
to truncate the singular value expansion:

Theorem

If

k
Ac=> o] (1<k<r)

then

Ac=_min |A-Bl, and Ac= min A~ B,
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00T LTSN
An example

The error term of rank k approximation is given by the (k + 1)’[h
singular value oy 1.

g e
St i\

(c) rank 50, rel. err. = 0.0305 (d) rank 170, rgl. err. =0.0126

X
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DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
General classification paradigm

: b \
1.5 Preprocessing

Geometric normalization,
Feature extraction, etc

1. Data collection
Database creation
a.k.a. Gallery
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3. Classification
Assign label to probe
and assess accuracy

2. Present novel data
a.k.a. Probe
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APPLICATIONS DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE

Problem definition

Santa thought to himself, “only if these mails can go to the right place
according to their zip code”.
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DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
Handwritten digit classification

Problem. (Human) handwritten digits are sometimes very hard to
recognize, even by human operators.

Importance. Accurate identification of the digits ensures a
reliable delivery system.

Beneficiaries. Postal services (mail sorting), seaports (cargo
registration), etc.

Even Santa Clause can benefit from an efficient digit classification
algorithm.
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How do we tell whether a new digitis a 4 or a 97

vs/qq‘f#ez,,_

A <
79 97 a;,
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DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
Digit manifolds

Imagine a high-D surface (red curve) where all 4’s live on and a high-D
surface (blue curve) where all 9’s live on.
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DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
Tangent spaces - training

Create a Tangent Space of the 4’s at F and create a Tangent Space of
the 9’s at N.

Dimensions of the tangent spaces depend on the degree of variations.

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 28, 2009 17756



DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
Euclidean distance

@ Euclidean distance between each pair of 4 and 9 varies drastically.
@ Calculation is time-consuming.
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DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
Tangent distance

@ Tangent distance captures the geometry.
@ Calculation is efficient.
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DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
Classification

So, isita 4 ora9?
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DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
Classification result

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 28, 2009 211/56



DIGIT/FACE RECOGNITION WITH TANGENT DISTANCE
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Face recognition paradigm

True Positive

False Positive

Probe
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

[llumination apparatus

’ > g -' i o ‘k\\
Yale Face Database B CMU-PIE
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
[llumination images
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Empirical fact

Images of a single person seen under variations of illumination appear

to be more difficult to recognize than images of different people [Zhao
et al., 2003].

Can you tell
who this is?
Subject 1 Subject 2
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Geometric facts - 1

The set of m-pixel monochrome images of an object seen under
general lighting conditions forms a convex polyhedral cone
(illumination cone) in R™ [Belhumeur & Kriegman, 1998].
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Geometric facts - 2

The illumination cone can be approximated by a 9-dimensional linear
subspace [Basri & Jacobs, 2003], i.e., the illumination cone is
low-dimensional and linear.

ABasus anne|nwNd

12 3 4 6 6 7 8 9 101 1213
Singular values
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9-D linear subspace

N

9-D linear subspace
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probe
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Definition of G(k, n)

These illumination cones are all elements of a parameter space called
the Grassmannian (Grassmann manifold), G(9, n), where nin the
ambient dimension.

Definition

The Grassmannian G(k,n) or the
Grassmann manifold is the set of
k-dimensional subspaces in an

n-dimensional vector space K" for
some field K, i.e.,

G(k,n)={W c K" | dim(W) = K}
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Principal angles [Bjorck & Golub, 1973]

It turns out that any attempt to construct an unitarily invariant metric on
G(k, n) yields something that can be expressed in terms of the
principal angles [Stewart & Sun, 1990].

Definition
If X and Y are two vector subspaces of R, then the

principal angles 6y € [0, 3], 1 < k < q between X
and Y are defined recursively by

T T

Ccos(fx) = maxmaxu' v = ugV,
( k) ueX vey k Yk
subject to |lu|| = ||v|]| =1, uTu;=0and vTv; = 0 for

i=1:k—1andq = min{dim(X),dim(Y)} > 1.
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Grassmannian distances [Edelman et al., 1999]

These are the distance functions we will use to compare points on the
Grassmann manifold.

Metric Name Mathematical Expression
Fubini-Study drs (X,Y) = cos™' Hcos&)
Chordal 2-norm de2 (X,)) = ‘ZSIH %9

F
Chordal F-norm der (X,Y) = HZ sin %0

2
Geodesic (Arc Length) dg (X,Y) = 9],
Chordal (Projection F-norm) | d¢ (X,Y) = ||sin6]|,
Projection 2-norm Ao (X, ) = [|sind]|
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Empirical result - database

Since we are only concerned with the lighting variations, we fix the
frontal pose, neutral expression and select the “illum” and “lights”
subsets of CMU-PIE (68 subjects, 13 poses, 43 lightings, 4
expressions) [Sim et al., 2003] for experiments.

@ lights: 21 illumination conditions with background lights on.
@ illum: 21 illumination conditions with background lights off.

EE E E E B b2

(a) “lights” subset

(b) “illum” subset
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Empirical results

(0g) 3. UOIeOL}ISSe}o 10113
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Hoom Lights On Hoom Lights On
All Subjects No Glasses
— - 25
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— - 15
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— -5
—| OO | OO | O
Hoom Lights Off Hoom Lights Off
All Subjects No Glasses
] & -
E T T T T T T =
5 10 15
Number of principal angles used
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Robustness

If the data set is perfecily The data set is still perfectly
separable with the separable with the
Grassmann method when Grassmann method when
using this kind of image using this kind of image
[Chang et al., 2006a]: [Chang et al., 2007bc]:
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FACE RECOGNITION ON THE GRASSMANN MANIFOLD
Robustness

If the data set is perfecily The data set is still perfectly
separable with the separable with the
Grassmann method when Grassmann method when
using this kind of image using this kind of image
[Chang et al., 2006a]: [Chang et al., 2007bc]:
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APPLICATIONS FACE RECOGNITION ON THE GRASSMANN MANIFOLD

Potential use: low-res. illumination camera
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Large private databases of facial imagery can be stored at a resolution
that is sufficiently low to prevent recognition by a human operator yet
sufficiently high to enable machine recognition.
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KL procedure for missing data

1. Initialize the missing data with the ensemble average.
2. Compute the first estimate of the KL basis.

3. Re-estimate the ensemble using the gappy approximation
and the KL basis.

4. Re-compute the KL basis.
5. Repeat Steps 3—4 until stopping criterion is satisfied.
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A gappy example

After 1 repair
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Gappy example continued
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GEOMETRIC DATA ANALYSIS OCTOBER 28, 2009 40/56



APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

Bankruptcy prediction is the art of predicting bankruptcy and various
measures of financial distress of public firms. It is a vast area of
finance and accounting research. The importance of the area is due in
part to the relevance for creditors and investors in evaluating the
likelihood that a firm may go bankrupt!.

Tadapted from Wikipedia
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

Bankruptcy prediction is the art of predicting bankruptcy and various
measures of financial distress of public firms. It is a vast area of
finance and accounting research. The importance of the area is due in
part to the relevance for creditors and investors in evaluating the
likelihood that a firm may go bankrupt!.

@ If we form a feature vector for each firm.

'adapted from Wikipedia
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

Bankruptcy prediction is the art of predicting bankruptcy and various
measures of financial distress of public firms. It is a vast area of
finance and accounting research. The importance of the area is due in
part to the relevance for creditors and investors in evaluating the
likelihood that a firm may go bankrupt!.

@ If we form a feature vector for each firm.
@ The problem becomes a two-class classification problem.

'adapted from Wikipedia
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BANKRUPTCY PREDICTION WITH LDA
Linear Discriminant Analysis

QO OO~ .
Q0 o' \ e n 0?®

Bad projection Good projection
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BANKRUPTCY PREDICTION WITH LDA
Linear Discriminant Analysis

QO OO~ .
Q0 o' \ e n 0?®

Bad projection Good projection

Question: Characteristics of a GOOD projection?
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Two-Class LDA

wa mp = —- Zwy

X€D1 EDZ

Look for a projection w that
@ maximizes (inter-class) distance in the projected space,
@ and minimizes the (intra-class) distances in the projected space.
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Two-Class LDA

Namely, we desire a w* such that

(my — my)?

w* =argmax —— ",
gw S+ S

where Sy = > (w/x—m)Pand S = > (wy — mp)2.
x€Dy yeD,
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Two-Class LDA

Namely, we desire a w* such that

* (my — mp)?
w* =argmax —— =",
gw S+ S
where Sy = > (w/x—m)Pand S = > (wy — mp)2.
x€Dy yeD,
Alternatively, (with scatter matrices)

w’ Sgw
wTSyw’

(1)

w* = arg max
w

2
with S =Y ") " (x = m))(x —my)7, Sg = (mz — my)(mz —my) 7.

i=1 xeD;
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

LDA

The criterion in Equation (1) is commonly known as the generalized

Rayleigh quotient, whose solution can be found via the generalized
eigenvalue problem

Sgw = ASyw.
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APPLICATIONS BANKRUPTCY PREDICTION WITH LDA

LDA

The criterion in Equation (1) is commonly known as the generalized

Rayleigh quotient, whose solution can be found via the generalized
eigenvalue problem

Sgw = ASyw.

LDA for multi-class follows similarly.

JEN-MEI CHANG (CSU, LONG BEACH) GEOMETRIC DATA ANALYSIS OCTOBER 28, 2009 45/56



COCKTAIL PARTY PROBLEM WITH BSS
Cocktail Party Problem

Three people are simultaneously talking in the same room.
Three microphones record their conversations.
Each recording is a linear mixture of each of the three conversations ...

(adapted from André Mouraux)
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APPLICATIONS COCKTAIL PARTY PROBLEM WITH BSS

KL procedure for noisy data

@ Decompose observed data into its noise and signal components:

x) = g() 4 pw)

or, in terms of data matrices,
X=8+N. (S=signal, N = noise)

@ The optimal first basis vector, ¢, is taken as a superposition of the
data, i.e.,
¢ = ixM . 4 ypx(P) = Xy

@ May decompose ¢ into signal and noise components
¢ = ¢n + d)Sa
where ¢s = Sy and ¢n = Nip.
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APPLICATIONS COCKTAIL PARTY PROBLEM WITH BSS

MNF/BBS

@ The basis vector ¢ is said to have maximum noise fraction (MNF)
if the ratio .
_ PnPn

- 0T

D(¢)

is a maximum.

@ A steepest descent method yields the symmetric definite
generalized eigenproblem

NTNy = 12XT X

This problem may be solved without actually forming the product
matrices N7 N and X7 X, using the generalized SVD (gsvd).

@ Note that the same orthonormal basis vector ¢ optimizes the
signal-to-noise ratio. And this technique is called Blind Source
Separation (BSS).
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APPLICATIONS OTHERS

Convolution - sharpening
Filtering with high-pass filters.

a b
wixy)xfxy) = Y Y w(s,t)f(x—sy—1t)
s=—at=-b
a b
= Z Zf(SJ’)W(X*Sv.y*t)
s=—at=-b

A blurred image Laplacian edge filter Enhanced image
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APPLICATIONS OTHERS

Convolution - smoothing

Filtering with low-pass filters.
-—=- mm

e |
-z-a— -’Z-a—
IIIIIIIIIII
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APPLICATIONS OTHERS

Convolution - threshold smoothing

Filtering with low-pass filters.

orginal filtered with a 15 by 15 averaging filter thresholded with 25% of highest intensity
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APPLICATIONS OTHERS

Fourier analysis

M—1N—1
—27r
F(u,v) MN Z Z f(x,y)e™ (% +%)
x=0 y=0
a) Image. b) Spectrum.

(c) Centered spectrum.  (d) log transform
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APPLICATIONS OTHERS

Speech recognition with Fourier analysis

ACOUSTIC MODEL

FEATURE
o Sy PATTERN CLASSIFICATION DDE“F'E’E”':‘E
peech =g e Aligns speech lealutes lo — CORING
Pills voica . phanemes in acouslic model; maiches Evaluabis probabibty M Text
""*"0" leatures lrom audia phoneme saquences to wards n gramma of each malch

GRAMMAR DicTIONARY
Spallings for words in

Set ofwords to be

racognized grammar

(adapted from AT&T Lab Inc. - http://www.research.att.com/viewProject.cfm?prjID=49)
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APPLICATIONS OTHERS

Multiresolution analysis - for image compression
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