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Various Forms of Classification

Identification/Verification - Are you who you claim to be?

Personal usage, e.g., personal computer access, ATM
access, bank account access, cell phone access.

Public usage, e.g., company entry access.

Detection - Where are you?

Personal usage, e.g., face finding in digital cameras.
Public usage, e.g., video surveillance as part of face

recognition algorithm.

Recognition - Who are you?

Personal usage, .e.g., digital photo sorter, a greeting
system on PC.

Public usage, e.g., casino and airport security watch list.
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Example Biometrics - fingerprint

Advantages: accuracy, speed, reliable.

Disadvantages: willingness of people to use it.

pay clock door lock

palm pilot cell phone
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Example Biometrics - iris

Advantages: uniqueness of our eyes, low likelihood of false

positives, speed and ease of use.

Disadvantages: high-level subject cooperation, storage of

data.
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Example Biometrics - palm print

Advantages: excellent biometric when combined with

fingerprint.

Disadvantages: high error rate, high-level subject

cooperation, high precision of hardware.
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Example Biometrics - signature

Advantages: ease of use.

Disadvantages: sensitive to perturbations, e.g., rotation,

scaling, and translation, high false positives.

 

 
              (a)                                  (b) 

    
             (c)                                  (d)                         (e) 
 
Fig 2. Preprocessing steps: (a) scanning, (b) background Jen-Mei Chang Classification on the Grassmannians
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Example Biometrics - face

Advantages: non-intrusive, low-level subject cooperation.

Disadvantages: non-intrusive ⇒ violation of privacy,

changes in expression, lighting, pose, age, etc. Occlusion.

 !"#$%&'()*+,-./01,-"2 3&'(456789:78;  <01,=0>*?"@,/*AB C'DEF801(G H,IJK"%LMN87OPQR?STUV&>(!,I"@(W,X*?"@, B C !EF6YZ( 0%[K.I&'[)&\*I01]
,I&3LMN87OPQR?SA&>(M.-&'^<_)*?,`ab0'Uc"A !"E*-Uc.-YZ[<,-&'./*dBeSEfKghS\i@FbjXk *?"#()*?Yl,-YZmWYZ,+n%,I"E*?,o&1ap,-JK"A*+_K^)*+[)0'UV"  "Qk
*+nK*+,-"@$ Yq*r01]s*?&t.-"@[)&>.-,-"2 uYZ(vwxJKYsUyJ 0E( &>.-YZz>YZ()0E]:ab0'Uc"MYZ$r0Ez'"MYq*A"@]Z"EUc,-.-&>(KYqU#01]Z]ln{$%&W !Y|})"E t^!n
UV.I"E01,IYZ(KzA&WU@UV]l_)*?Yl&'()*cg)01[K[<]ZnWYZ(Kz%Po01_G*-*?Ys01(M^K]l_K.@gW.=0E() !&'$TY !@Yl(Kz~,-JK"X[KY"#!"#]�]Z&WU#01,-Yl&'(hg)0E() 30> K !Yl(Kz
0E( 01.-,IY�}�UcYq01]h^G0'U$%!z>.-&'_<() �jx5�Ylz'_K.I"~DA*?JK&EwQ*:"#]Z"EUV,I.-&>(KYqU@0E]Z]ln~$%&W !Y�}G"E �ab0'UV"XYZ$ 01z'"2*OwxJKYqU=JrwO"@.I"
UV&>.-.I"EUV,-]ln�Ys !"@(W,-Y|})"E �j

 !"#$%&'()*+, !-.-/'*+01&'230456789:*   ;< =>789?*@(A*B9:C%$8D'"EF)"#C%DG04HI04F)*JK

! ()"E$8"#D67LMN"EKO7L$%*

 !"E$8&'(A*PQ"!RSTM#*B9:FA()C%D'"U9V7BM#MEHWKXCYZ["\]6*BZ^"#K 7L$8*_0`F)/67LFab-*V(A*c9?C8()(A*B9:FAM#HW"UZY*VD[FA"\]3*_ZNd

 
 
"

 
" #Ge[fghBi $ #Gejk  +l3h ! m % %ghBl3i'n&'!eYo

p;*J&'(q7BM`DI*VF1b-C8(#$'0%&>prp'(a/37Vst*W23*V*VD &304*BZ "#Du=>789:*v()*B9?C8$8DI"#F)"EC8D F)C 78Z'Z[(A*B0)0+04*Vst*J(q7LMw5'()C%2'M#*VK 0)!
$%*VD3Z[*V(a9?MU780A04"x]y9V7LFA"#C%Dz{j=>7%9:*r()*_9:C8$%D'"#FA"#C8D|{'7LD6ZX9:MU7%0)01"\]y9V7BF)"EC8DOCL=z=>7%9:"U7BMN**+Y5'()*_0)04"EC8D30?d ! D'*rCL=wF)/I*
*B7B()ME"#*B01FTZ[*JKXC8D301F)(}7LF)"EC8D30zCL=|prp~=�C8(!=>7%9:*-(A*B9V7BM#MI7L5'5'ME"U9V7BF)"EC8D30z&304*_Z !�C%/'C8DI*VD,-�0w780)01CY9:"U7BF)"Est*-KO7B5
���B,8��d���04"#DI$v7^01KO7LMEMz04*JF�CL=T=>7%9:*P"#KO7B$8*B0?{'789J9:&'(q7BF)*P()*_9V7LMEMNb�7%0 (A*V53C8(AF)*BZO*Vst*VDXb�/'*JD�F)/I*@"ED'5'&'F
"EKO7L$%*@b 780;st*J()HXD'C%"U01H�C8(ab�/'*VDu53C%()F)"EC8D30aCL=RF)/'*+"#KO7B$8*B0-bR*V()*PKX"�0)01"#D'$Id�.-/'"U0�9V7L537B2'"#ME"#F1HX/37%0
7BMU04Cv23*V*VDGZ[*VK�C8D301F)(q7BF)*BZX&301"#D'$vC85IF)"U9J7LMN/67L(qZYb�7L(A*O���BQL�>d

�VQ

Jen-Mei Chang Classification on the Grassmannians



Introduction

Classification on the Grassmannians

Example Face Classification Problems

Summary and Future Work

Overview of Classification

Classification Paradigms

The Grassmannians

Example Biometrics - face

Advantages: non-intrusive, low-level subject cooperation.

Disadvantages: non-intrusive ⇒ violation of privacy,

changes in expression, lighting, pose, age, etc. Occlusion.

 !"#$%&'()*+,-./01,-"2 3&'(456789:78;  <01,=0>*?"@,/*AB C'DEF801(G H,IJK"%LMN87OPQR?STUV&>(!,I"@(W,X*?"@, B C !EF6YZ( 0%[K.I&'[)&\*I01]
,I&3LMN87OPQR?SA&>(M.-&'^<_)*?,`ab0'Uc"A !"E*-Uc.-YZ[<,-&'./*dBeSEfKghS\i@FbjXk *?"#()*?Yl,-YZmWYZ,+n%,I"E*?,o&1ap,-JK"A*+_K^)*+[)0'UV"  "Qk
*+nK*+,-"@$ Yq*r01]s*?&t.-"@[)&>.-,-"2 uYZ(vwxJKYsUyJ 0E( &>.-YZz>YZ()0E]:ab0'Uc"MYZ$r0Ez'"MYq*A"@]Z"EUc,-.-&>(KYqU#01]Z]ln{$%&W !Y|})"E t^!n
UV.I"E01,IYZ(KzA&WU@UV]l_)*?Yl&'()*cg)01[K[<]ZnWYZ(Kz%Po01_G*-*?Ys01(M^K]l_K.@gW.=0E() !&'$TY !@Yl(Kz~,-JK"X[KY"#!"#]�]Z&WU#01,-Yl&'(hg)0E() 30> K !Yl(Kz
0E( 01.-,IY�}�UcYq01]h^G0'U$%!z>.-&'_<() �jx5�Ylz'_K.I"~DA*?JK&EwQ*:"#]Z"EUV,I.-&>(KYqU@0E]Z]ln~$%&W !Y�}G"E �ab0'UV"XYZ$ 01z'"2*OwxJKYqU=JrwO"@.I"
UV&>.-.I"EUV,-]ln�Ys !"@(W,-Y|})"E �j

 !"#$%&'()*+, !-.-/'*+01&'230456789:*   ;< =>789?*@(A*B9:C%$8D'"EF)"#C%DG04HI04F)*JK

! ()"E$8"#D67LMN"EKO7L$%*

 !"E$8&'(A*PQ"!RSTM#*B9:FA()C%D'"U9V7BM#MEHWKXCYZ["\]6*BZ^"#K 7L$8*_0`F)/67LFab-*V(A*c9?C8()(A*B9:FAM#HW"UZY*VD[FA"\]3*_ZNd

 
 
"

 
" #Ge[fghBi $ #Gejk  +l3h ! m % %ghBl3i'n&'!eYo

p;*J&'(q7BM`DI*VF1b-C8(#$'0%&>prp'(a/37Vst*W23*V*VD &304*BZ "#Du=>789:*v()*B9?C8$8DI"#F)"EC8D F)C 78Z'Z[(A*B0)0+04*Vst*J(q7LMw5'()C%2'M#*VK 0)!
$%*VD3Z[*V(a9?MU780A04"x]y9V7LFA"#C%Dz{j=>7%9:*r()*_9:C8$%D'"#FA"#C8D|{'7LD6ZX9:MU7%0)01"\]y9V7BF)"EC8DOCL=z=>7%9:"U7BMN**+Y5'()*_0)04"EC8D30?d ! D'*rCL=wF)/I*
*B7B()ME"#*B01FTZ[*JKXC8D301F)(}7LF)"EC8D30zCL=|prp~=�C8(!=>7%9:*-(A*B9V7BM#MI7L5'5'ME"U9V7BF)"EC8D30z&304*_Z !�C%/'C8DI*VD,-�0w780)01CY9:"U7BF)"Est*-KO7B5
���B,8��d���04"#DI$v7^01KO7LMEMz04*JF�CL=T=>7%9:*P"#KO7B$8*B0?{'789J9:&'(q7BF)*P()*_9V7LMEMNb�7%0 (A*V53C8(AF)*BZO*Vst*VDXb�/'*JD�F)/I*@"ED'5'&'F
"EKO7L$%*@b 780;st*J()HXD'C%"U01H�C8(ab�/'*VDu53C%()F)"EC8D30aCL=RF)/'*+"#KO7B$8*B0-bR*V()*PKX"�0)01"#D'$Id�.-/'"U0�9V7L537B2'"#ME"#F1HX/37%0
7BMU04Cv23*V*VDGZ[*VK�C8D301F)(q7BF)*BZX&301"#D'$vC85IF)"U9J7LMN/67L(qZYb�7L(A*O���BQL�>d

�VQ

Jen-Mei Chang Classification on the Grassmannians



Introduction

Classification on the Grassmannians

Example Face Classification Problems

Summary and Future Work

Overview of Classification

Classification Paradigms

The Grassmannians

Example Biometrics - face

Advantages: non-intrusive, low-level subject cooperation.

Disadvantages: non-intrusive ⇒ violation of privacy,

changes in expression, lighting, pose, age, etc. Occlusion.

 !"#$%&'()*+,-./01,-"2 3&'(456789:78;  <01,=0>*?"@,/*AB C'DEF801(G H,IJK"%LMN87OPQR?STUV&>(!,I"@(W,X*?"@, B C !EF6YZ( 0%[K.I&'[)&\*I01]
,I&3LMN87OPQR?SA&>(M.-&'^<_)*?,`ab0'Uc"A !"E*-Uc.-YZ[<,-&'./*dBeSEfKghS\i@FbjXk *?"#()*?Yl,-YZmWYZ,+n%,I"E*?,o&1ap,-JK"A*+_K^)*+[)0'UV"  "Qk
*+nK*+,-"@$ Yq*r01]s*?&t.-"@[)&>.-,-"2 uYZ(vwxJKYsUyJ 0E( &>.-YZz>YZ()0E]:ab0'Uc"MYZ$r0Ez'"MYq*A"@]Z"EUc,-.-&>(KYqU#01]Z]ln{$%&W !Y|})"E t^!n
UV.I"E01,IYZ(KzA&WU@UV]l_)*?Yl&'()*cg)01[K[<]ZnWYZ(Kz%Po01_G*-*?Ys01(M^K]l_K.@gW.=0E() !&'$TY !@Yl(Kz~,-JK"X[KY"#!"#]�]Z&WU#01,-Yl&'(hg)0E() 30> K !Yl(Kz
0E( 01.-,IY�}�UcYq01]h^G0'U$%!z>.-&'_<() �jx5�Ylz'_K.I"~DA*?JK&EwQ*:"#]Z"EUV,I.-&>(KYqU@0E]Z]ln~$%&W !Y�}G"E �ab0'UV"XYZ$ 01z'"2*OwxJKYqU=JrwO"@.I"
UV&>.-.I"EUV,-]ln�Ys !"@(W,-Y|})"E �j

 !"#$%&'()*+, !-.-/'*+01&'230456789:*   ;< =>789?*@(A*B9:C%$8D'"EF)"#C%DG04HI04F)*JK

! ()"E$8"#D67LMN"EKO7L$%*

 !"E$8&'(A*PQ"!RSTM#*B9:FA()C%D'"U9V7BM#MEHWKXCYZ["\]6*BZ^"#K 7L$8*_0`F)/67LFab-*V(A*c9?C8()(A*B9:FAM#HW"UZY*VD[FA"\]3*_ZNd

 
 
"

 
" #Ge[fghBi $ #Gejk  +l3h ! m % %ghBl3i'n&'!eYo

p;*J&'(q7BM`DI*VF1b-C8(#$'0%&>prp'(a/37Vst*W23*V*VD &304*BZ "#Du=>789:*v()*B9?C8$8DI"#F)"EC8D F)C 78Z'Z[(A*B0)0+04*Vst*J(q7LMw5'()C%2'M#*VK 0)!
$%*VD3Z[*V(a9?MU780A04"x]y9V7LFA"#C%Dz{j=>7%9:*r()*_9:C8$%D'"#FA"#C8D|{'7LD6ZX9:MU7%0)01"\]y9V7BF)"EC8DOCL=z=>7%9:"U7BMN**+Y5'()*_0)04"EC8D30?d ! D'*rCL=wF)/I*
*B7B()ME"#*B01FTZ[*JKXC8D301F)(}7LF)"EC8D30zCL=|prp~=�C8(!=>7%9:*-(A*B9V7BM#MI7L5'5'ME"U9V7BF)"EC8D30z&304*_Z !�C%/'C8DI*VD,-�0w780)01CY9:"U7BF)"Est*-KO7B5
���B,8��d���04"#DI$v7^01KO7LMEMz04*JF�CL=T=>7%9:*P"#KO7B$8*B0?{'789J9:&'(q7BF)*P()*_9V7LMEMNb�7%0 (A*V53C8(AF)*BZO*Vst*VDXb�/'*JD�F)/I*@"ED'5'&'F
"EKO7L$%*@b 780;st*J()HXD'C%"U01H�C8(ab�/'*VDu53C%()F)"EC8D30aCL=RF)/'*+"#KO7B$8*B0-bR*V()*PKX"�0)01"#D'$Id�.-/'"U0�9V7L537B2'"#ME"#F1HX/37%0
7BMU04Cv23*V*VDGZ[*VK�C8D301F)(q7BF)*BZX&301"#D'$vC85IF)"U9J7LMN/67L(qZYb�7L(A*O���BQL�>d

�VQ

Jen-Mei Chang Classification on the Grassmannians



Introduction

Classification on the Grassmannians

Example Face Classification Problems

Summary and Future Work

Overview of Classification

Classification Paradigms

The Grassmannians

Biometrics Comparison Chart

Biometric Accuracy Security Level User Acceptance

Fingerprint high high medium

Iris high high medium

Signature low-medium medium medium

Voice low-medium medium high

Face medium-high medium medium

Biometric Intrusive Ease of Use Cost/Hardware

Fingerprint somewhat high special, cheap

Iris non medium special, expansive

Signature non high special, mid-price

Voice non high common, cheap

Face non medium common, cheap
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Classification Paradigms

Traditionally
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Definition of the Grassmannians

Definition

The Grassmannian G(k , n) or the Grassmann manifold is the

set of k-dimensional subspaces in an n-dimensional vector

space K n for some field K . i.e.,

G(k , n) = {W ⊂ K n | dim(W ) = k}.

Example

For example, G(1, 3) = set of all lines through the origin in R
3

and G(2, 3) = set of all planes through the origin in R
3.
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Definition of the Grassmannians

Definition

G(k , n) =
{

[p] | p ∼ q if and only if q = QT p for some Q ∈ Ok

}

.

i.e., if we vectorize data by columns, then points on G(k,n) are

equivalence classes of n-by-k orthogonal matrices, where two

matrices are equivalent if their columns span the same

k-dimensional linear subspace.
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Images as Points on the Grassmannians - 1

An r -by-c gray scale digital image corresponds to an r -by-c

matrix where each entry enumerates one of the 256 possible

gray levels of the corresponding pixel.

128

97

c

r

c

r X = J = 

0

0

0

0

0

0

...

.

.

.

...

.

.
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Images as Points on the Grassmannians - 2

Now, realize X by its columns and concatenate columns into a

single column vector:

X =



x1 | x2 | · · · | xc



 ∈ R
r×c −→ x =











x1

x2
...

xc











∈ R
rc×1

Thus, an image J can be realized as a column vector of length

equal to the product of J ’s resolutions.
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Images as Points on the Grassmannians - 3

Now, for a subject i , we collect k distinct images (which

corresponds to k column vectors) and concatenate them

into a single data matrix X (i) so that

X (i) =



x
(i)
1 | x

(i)
2 | · · · | x

(i)
k





and rank(X (i)) = k with each x
(i)
j ∈ R

n being an image of

resolution n.

The column space of X (i) then gives a point on the

Grassmannian G(k , n).
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Images as Points on the Grassmannians - 4

Although the matrix representation of this point on G(k , n) is

not unique, X (i) does give a way to represent the equivalence

class in G(k , n) on the computer. Thus, A matrix X ∈ R
n×k

naturally corresponds to a subspace X ∈ G(k , n).k d i s t i n c t i m a g e s X…I m a g e S e t 1
…d i s t i n c t i m a g e sI m a g e S e t 2 ),( nkG

 !k    ,,, 21   Yk
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Connection

Thus, a face recognition problem where multiple images

are available for the probe and gallery → a classification

problem on the Grassmannians.

Like any classification problem, we need a way to measure

the geometrically sound distance between points in the

classification space.

It turns out that any attempt to construct a unitarily invariant

metric on the Grassmann manifold will yield something that

can be expressed in terms of principal angles.
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Principal AnglesX 1 2 Y
Definition (Björck & Golub, 1973)

If X and Y are two vector subspaces of a

unitary space E
n such that

p = dim(X ) ≥ dim(Y ) = q ≥ 1, then the

principal angles θk ∈ [0, π
2 ], 1 ≤ k ≤ q

between X and Y are defined recursively

by

cos(θk ) = max
u∈X

max
v∈Y

∣

∣

∣
uHv

∣

∣

∣
=
∣

∣

∣
uH

k vk

∣

∣

∣

subject to ||u||2 = ||v ||2 = 1, uHui = 0

and vHvi = 0 for i = 1, 2, . . . , k − 1.
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Grassmannian Distances

Let θ = (θ1, . . . , θq) be the principal angle vector.

Example Grassmannian Distances [Edelman et al., 1999]

arc length (geodesic) dg(X , Y ) = ‖θ‖2

Fubini-Study dFS(X , Y ) = cos−1

(

k
∏

i=1

cos θi

)

chordal (projection F) distance dc(X , Y ) = ‖ sin θ‖2

subspace distance ds(X , Y ) = ||θ||∞
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Various Realizations of the Grassmannian

1 First, as a quotient (homogeneous space) of the

orthogonal group,

G(k , n) = O(n)/O(k) × O(n − k). (1)

2 Next, as a submanifold of projective space,

G(k , n) ⊂ P(Λq
R

n) = P
(n

k)−1(R) (2)

via the Plücker embedding.
3 Finally, as a submanifold of Euclidean space,

G(k , n) ⊂ R
(n2+n−2)/2 (3)

via a projection embedding described recently

in [Conway et al., 1996].
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The Corresponding Grassmannian Distances

1 The standard invariant Riemannian metric on orthogonal

matrices O(n) descends via (1) to a Riemannian metric on

the homogeneous space G(k , n). We call the resulting

geodesic distance function on the Grassmannian the arc

length or geodesic distance and denote it dg.

2 If one prefers the realization (2), then the Grassmannian

inherits a Riemannian metric from the Fubini-Study metric

on projective space (see, e.g., [Griffiths & Harris, 1978]).

3 One can restrict the usual Euclidean distance function on

R
(n2+n−2)/2 to the Grassmannian via (3) to obtain the

projection F or chordal distance dc .
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1. Grassmann Separability Measure

A data set P =
{

C(1), C(2), . . . , C(N)
}

of N distinct classes

having subspace configurations C(i) =
{

S
(i)
1 , S

(i)
2

}

for each i is

Grassmann separable if maxi=j dij < mini 6=j dij .

d S
(1)
1 S

(2)
1 · · · S

(N)
1

S
(1)
2 d11 d12 · · · d1N

S
(2)
2 d21 d22 · · · d2N

...
...

...
. . .

...

S
(N)
2 dN1 dN2 · · · dNN

FAR at 0% FRR is the ratio of the number of off-diagonal entries

that have distances smaller than the maximum of the diagonal

entries divided by the total number of off-diagonal entries.
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2. Nearest Neighbor Classifier

“Distances used in classifications depend on the

Geometry of the data”

EDC B A
What’s the nearest neighbor of the point A on this S2?

So, if we were to classify A, then it would be assigned the

identity of B.
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Geometry of Illumination Variations - 1

The set of n-pixel monochrome images of an object of any

shape with a general reflectance function, seen under all

possible illumination conditions, forms a convex

polyhedral cone [Belhumeur & Kriegman, 1998].

A convex illumination cone 

Jen-Mei Chang Classification on the Grassmannians



Introduction

Classification on the Grassmannians

Example Face Classification Problems

Summary and Future Work

Illumination

Illumination and Mathematical Projections

Non-linear Classification Problems

Geometry of Illumination Variations - 2

The set of images of a convex, Lambertian object seen

under arbitrary distance light sources lies approximately in

a 9-dimensional linear subspace with over 99% of the

energy [Basri & Jacobs, 2003].

Dimension

C
um

ulative energy 
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Connection to Classification on the Grassmannians

A point on the 

Grassmannian

G(9, n)

9-dimensional basis of 
an illumination subspace 

Illumination images 
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Example Classification Results [Chang et al., 2006b]
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Three Forms of Projection

The idiosyncratic nature of the illumination spaces persist

under all forms of mathematical projections.

(a) Patch collapsing

(b) Patch projections
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Example Classification Result - Patch

Collapsing [Chang et al., 2007a]
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Potential Use: 25-pixel Illumination Camera

Large private databases of facial imagery can be stored at

a resolution that is sufficiently low to prevent recognition

by a human operator yet sufficiently high to enable

machine recognition.
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Non-linear Problems

The method of mapping sets of images to points on the

Grassmann manifold is not limited to intrinsically linear

data sets.

Two class problems (e.g. tree or non-tree, cloud or tree,

human or non-human, cat or dog) versus multi-class

problems (e.g. a group of human subjects, a collection of

oranges).
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Glasses vs. No-glasses

(a) glasses class

(b) no-glasses class
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Empirical Evidences [Chang et al., 2006a]

Gallery set size = 10, glasses vs. no-glasses

Trial number

ℓ 1 2 3 4 5 6 7 8 9 10 µ

1 0 0 0 0 0 0 0 0 0 0 0

2 50 38 13 45 35 48 28 38 35 40 37

3 53 55 53 63 48 48 48 53 70 45 53

Table: Misclassification percentage out of 40 testing sets where 20
are of glasses class and 20 are of no-glasses class. Gallery size

refers to the number of distinct sets used in representing the glasses
and no-glasses classes. The distance function is the ℓ-truncated

chordal distance. The experiment is repeated ten times with the

mean shown in the last column.
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Male vs. Female

(a) female class

(b) male class
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Empirical Evidences [Chang et al., 2006a]

gallery set size = 3, male-female

Trial number

ℓ 1 2 3 4 5 6 7 8 9 10 µ ± σ

1 0 0 0 0 0 0 23 0 10 0 3±8

2 35 0 0 5 13 28 23 5 10 8 13±12

3 30 0 0 0 0 28 28 5 23 0 11±14

Table: Misclassification percentage out of 40 testing sets where 20

are of male class and 20 are of female class. Gallery set size refers
to the number of distinct sets used in representing the male and

female classes. The distance function is the ℓ-truncated chordal
distance. The experiment is repeated ten times where the mean and

standard deviation is reported in the last column of the table.
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Pose Problem

(a) pose and illumination variations of subject 1

(b) pose and illumination variations of subject 2
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Pose Problem - Difficulty
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Empirical Evidences [Chang et al., 2007b]

Error Rate (%) Experiment

Database I II III

Extended YDB 0 0 6.7

CMU-PIE 0 0 43.2

Table: Average recognition error rate for Experiments I – III with d1
c on

both Extended YDB and CMU-PIE.

pose c02 c05 c07 c09 c11 c14 c22

error (%) 13.4 31.3 83.6 73.1 0 1.5 23.9

pose c25 c27 c29 c31 c34 c37

error (%) 82.1 22.4 16.4 80.6 76.1 56.7

Table: Average break-down recognition error rate for each pose in

Experiment III using d1
c on CMU-PIE.
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Summary

1 When the classification problem is defined as comparing

distances of a set of images to a set of images, this

corresponds naturally to a classification problem on the

Grassmannians.

2 Well-established metrics (in terms of principal angles) on

the Grassmann manifold are available for calculating

distances between points on the manifold.

3 Example face recognition problems are given to

demonstrate the potential use of this paradigm.
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Future Work

1 Consider the statistics on the Grassmann manifold and the

use of Karcher mean as a prototype to compress data and

accelerates computations.

2 Use perturbation theory for matrices to evaluate the

robustness of the Grassmann method.

3 Examine the effect of image resolution to the accuracy of

classification algorithms.
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