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ABSTRACT OF DISSERTATION

CLASSIFICATION ON THE GRASSMANNIANS: THEORY AND APPLICATIONS

This dissertation consists of four parts. It introduces a novel geometric framework

for the general classification problem and presents empirical results obtained from ap-

plying the proposed method on some popular classification problems. An analysis of the

robustness of the method is provided using matrix perturbation theory, which in turn

motivates an optimization problem to improve the robustness of the classifier. Lastly,

we illustrate the use of compressed data representations based on Karcher mean.

The success of this geometric framework builds upon the facts that the geometry

and statistics of the Grassmannians are well-understood and families of patterns with a

common characterization possesses discriminatory variations that are useful for classifi-

cation. Under the right conditions, these families of patterns can be viewed as points on

the Grassmannian where distances are available for classification. In this dissertation,

we will make precise this connection, review various ways these metrics arise, and how

to efficiently compute distances between points on this manifold.

Under this framework, we achieve excellent classification results for a variety of

applications in face recognition and offer new insights to the problem in general. At-

tempting to break the method, we consider nonlinear data sets and images of extremely

low resolutions. We are pleased to learn that the Grassmann method is robust against

resolution reductions.

In order to understand how robust the Grassmann method is against perturbation,

we draw support from matrix perturbation theory where we exploit the natural corre-

spondence between linear subspaces and points on the Grassmannians. We are then led

to formulate an optimization problem using these characteristics as an objective function

and further connect this optimization criterion to the idea of Fisher Linear Discriminant
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on general image sets. Numerical solutions obtained show promising improvements on

the separability criterion.

The thesis is concluded by providing a novel algorithm that computes subject pro-

totypical points using the Karcher mean on the Grassmannian. A lot of new ideas

for geometric data analysis are generated through studies of old ideas. We hope that

the suite of these frameworks and algorithms can collectively provide useful insights in

studying geometric aspects of large data sets.

Jen-Mei Chang

Department of Mathematics

Colorado State University

Fort Collins, Colorado 80523-1874

Spring 2008
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Chapter 1

INTRODUCTION

The general techniques of pattern analysis can be seen in numerous interesting ap-

plications, such as hurricane modeling, biometrics, understanding of brain wave patterns,

stock market trend modeling, landscape ecology, etc. The analysis of patterns in data

has typically been a subject in statistics and engineering. Recently, however, fundamen-

tal mathematical theory in areas such as differential/algebraic geometry and topology

have provided a new mathematical framework and insights for understanding large data

sets residing in spaces of large ambient dimensions. Consequently, understanding the

geometry of the data becomes an essential ingredient in algorithm selection.

As the technology of digital imaging grows, the task of organizing and analyzing

high-dimensional data becomes increasingly important and difficult. For example, the

development of high-speed digital cameras brings the need for sophisticated high-capacity

memory storage. Data are often captured in high resolution but needed to be analyzed

in coarse resolution. This is precisely why we are interested in both the understanding

of large data sets in spaces of large dimensions and modeling of such data sets in much

lower dimensions. Not only do we want to develop a way to correctly identify subject

classes in a large data set, but we want to do so in the most efficient way.

An application that utilizes the geometry in patterns is the discipline of biometrics

with significant emphasis on face, iris, fingerprint, and voice recognition. The federal

government and industry have identified a pressing need to provide robust identity man-

agement tools and principles on how to employ these tools intelligently to meet national

and international needs. This is because the existing identity management tools, such as

passwords, personal identification numbers (PINs), tokens and cards, which are in use

today for applications ranging from employee verification to theme park access, fail to
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provide a definitive response. Hence, these traditional management tools are vulnerable

to compromise and identity theft. Biometric systems present an advantage over these

other tools since they are based on an individual’s physiological and behavioral character-

istics, making them more difficult to steal, copy, and compromise. A successful working

example using biometrics is Federal Bureau of Investigation’s (FBI’s) Integrated Au-

tomated Fingerprint Identification System (IAFIS), which provides non-stop automated

fingerprint search capabilities, latent search capability, electronic image storage and elec-

tronic exchange of fingerprints and responses in support of thousands of law enforcement

organizations. The system contains biometrics records of more than 51 million criminal

subjects and provides an open-set identification of submitted fingerprints. It normally

returns responses within two hours of a criminal request and within 24 hours of civil fin-

gerprint submissions [61]. On the other hand, the use of biometrics in border control and

law enforcement is also abundant internationally (e.g. ePassport with iris recognition

in UK, access of entry with fingerprint in Hong-Kong). In the meantime, academia is

also assisting this development by implementing biometrics courses in both undergradu-

ate and graduate curricula (e.g. West Virginia University, IEEE Tab Committee) while

commercial applications of biometrics include bank surveillance and security as well as

personal computer and cell phone securities (e.g. more commercial applications are cur-

rently being investigated at Korea’s Biometrics Engineering Research Center (BERC)).

Because of the need for analyzing massive data sets, a lot of effort has been devoted

to feature extraction and classifier building. Classification done in the reduced feature

space simplifies computational complexity, and by considering an appropriate classifier,

accuracy can be improved. Therefore, the heart of our quest for the ideal classification

paradigm centers around these two topics. Ever since the early 1980’s when automated

pattern classification first became popular, it has always been a standard practice to

consider the subspace method for pattern recognition tasks. Typically, a signal or wave-

form or picture contains much redundant information that may be removed by using,

e.g., Karhunen-Loève (KL) transform. Each class then has its own set of representative

features extracted from KL transform that forms a vector subspace (so-called feature

space) of the original pattern space. The subspace method is a geometrically sound ap-

proach since these class subspaces can be used to classify an input sample into the best

fitting class and they tell us something about the properties shared by all the items in
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that category. For this reason, subspace method works extremely well when samples are

selected from a uniformly distributed variation state. It is very fast to compute since the

classification rule is based on a small number of inner products. On the other hand, if the

classifier depends solely on a single input sample, the method will be sensitive to outliers

and anomalies. Therefore, to improve and extend the traditional subspace method, we

consider the case where multiple input (probe) samples per class are available.

In the traditional sense of the subspace method, class subspaces are formed for the

gallery samples but not for the probe samples. Since geometry is present in the subject

subspaces formed by performing KL on the gallery samples, why not consider the geom-

etry of the subject subspaces obtained from performing KL on the probe samples? From

this, we introduce the many-to-many or set-to-set subspace method.

Collections of patterns with a common characterization may be viewed as families

of patterns and such characterization or variation can be modeled by subspaces. The

collection of these raw patterns for a single subject can be mathematically represented

by a matrix of dimension n-by-k, where k is the number of distinct patterns and n is the

resolution of the patterns. The linear span of this matrix forms a k-dimensional vector

subspace in Rn, which can be realized naturally as a point on the Grassmannian G(k, n).

Now, performing classification of sets (of patterns) in their natural setting is equiva-

lent to performing classification of points on the Grassmannians. Distance measures on

the Grassmannians are well-established in this context and can be applied readily to

this problem. Overall, classification on the Grassmannians is a mathematically simple

framework that can be extended to any pattern classification problem that requires a

many-to-many data comparison.

We will review and examine how different classification paradigms evolved in Chap-

ter 2 and provide mathematical justifications to the set-to-set framework in Chapter 3

along with algorithmic details. We will formally introduce the notion of Grassmann

separability in Chapter 4 and present two simple examples to illustrate the use of the

Grassmann framework. More examples are shown in Chapters 5 and 6 where we present

excellent classification results in a variety of face recognition applications. We further

dwell on the ways to make the proposed method more efficient and applicable in Chap-

ters 7 and 8 where two classes of linear transformations are introduced and applied to

raw data. It is reasonable to ask ourselves whether or not this proposed approach is
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robust against representations. Matrix perturbation theory that is relevant to studying

this question is given in Chapter 9, from which we derive theories and obtain numerical

solutions for improving robustness of the proposed classifier in Chapter 10. The disser-

tation is concluded by demonstrating how another geometric concept, Karcher mean,

can be used to provide prototype representations in objective classification problems in

Chapter 11. Finally, the concluding remarks are given in Chapter 12.
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Chapter 2

SUBSPACE METHODS

As mentioned in the Chapter 1, classification using multiple instances of subject

classes is the fundamental architecture of a classification scheme that we are interested

in developing in this thesis. We will make the definition of a set-to-set classification

paradigm precise in Chapter 2.4 immediately followed by the development of vector space

framework for classification, single-to-single, and single-to-many classification paradigms

in Chapters 2.1, 2.2, and 2.3, respectively. A formal introduction of the Grassmann

method is given in Chapter 2.5 that will be referred to throughout the thesis. We

will then review some state-of-the-art set-to-set classification techniques that have been

successfully applied to face recognition problems in Chapter 2.6.

2.1 Vector Space Framework

The general approach to the pattern classification problem is to compare labeled

instances of data to new, unlabeled exemplars. Implementation in practice depends on

the nature of the data and the method by which features are extracted from the data

and used to create a representation optimized for classification.

In general, an r-by-c gray scale digital image corresponds to an r-by-c matrix where

each entry enumerates one of the 256 (on 8-bit machines) possible gray levels of the

corresponding pixel. See Figure 2.1 for a graphical correspondence between an image J

and its matrix representation X . Given a color image, the image can be represented in

each of the three color channels, red (R), blue (B), and green (G), with a similar matrix.

Different color channels contain different information regarding the image. Although

gray scale (luminance) images are often used for classifications, this should not prohibit

us from exploring the discriminatory information contained in the color channels.
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Figure 2.1: How an gray-scaled image can be realized as a mathematical matrix.

Now, partition the image matrix into columns, xi, and concatenate the columns to

obtain a long column vector as depicted below:

X =
[
x1 | x2 | · · · | xc

]
∈ R

r×c −→ x =








x1

x2

...
xc







∈ R

rc×1

Thus, an image J , whose matrix representation X , can be realized as a column vector

of length equal to the product of J ’s resolutions. Thus, from now on, 2D images can be

realized as a data point in high-dimensional space, the dimension of which is equal to

the number of pixels in the image.

2.2 Single-to-Single Classification Paradigm

Given a set G =
{
x(1), x(2), . . . , x(m)

}
, x(i) ∈ Rn, of m points and an assignment

map f : G → C = {1, 2, . . . , N}, where f(x(i)) = j for some 1 ≤ j ≤ N . When given

a new point p ∈ Rn, we can ask the question “What is the class of p among the known

identities 1 through N?” A straightforward way to answer this question is to compute

the pairwise distances between p and x(i) ∈ G for all i ∈ 1, . . . , N . p is then assigned

the identity of the class k such that d(p, x(k)) < d(p, x(i)) for all i 6= k. The set G is

commonly known as the gallery and the point p is known as the probe. The choice of

the distance function d can be any appropriate metric. Different metrics may provide

different geometric quantities between p and the points in G. We refer to this type of

comparison as the single-to-single classification scheme and a cartoon illustration is

given in Figure 2.2.
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Figure 2.2: Structural illustration for a single-to-single classification paradigm, where a
probe subject possesses a single instance of data and all of the gallery subjects possess
a single data example as well.

2.3 Single-to-Many Classification Paradigm

Imagine now if every class in the gallery has multiple examples and the probe is

still a single vector, i.e., G =
{
X(1), X(2), . . . , X(m)

}
, where X(i) =

[

x
(i)
1 |x(i)

2 | · · · |x(i)
ik

]

for all i = 1, . . . ,m. There are a number of ways to assign labels to a probe vector.

A naive approach would be to apply the single-to-single vector comparison described

in Chapter 2.2 to each of the vectors in X(i) for all i and assign p the identity of the

class k where the minimal pairwise distance d(p, x
(k)
j ) occurs for some j. This method

overlooks the intrinsic variability of the sets in the gallery. For example, what if p is close

to α1X
(i) + α2X

(2)? Moreover, this brute force method requires heavy computational

resources when the number of examples for each class is large.

One way to get around both of these problems simultaneously is to consider the

subspace method [65]. The method essentially assigns probe vector the class in gallery

where the longest projection in terms of Euclidean norm occurs. Typically, a signal or

waveform or picture contains much redundant information that may be removed by using,

e.g., Karhunen-Loève (KL) transform. Each class then has its own set of representative

features extracted from KL transform that forms a vector subspace of the original pattern

space. Classification of a single probe vector is done by finding the best fitting class (in

terms of projections) in the gallery. The low-dimensional subspace representation of

faces was first proposed by Sirovich and Kirby [76] in 1987 as an application of the

Principal Component Analysis (PCA) and later popularized by Turk and Pentland [84].

There have now been many applications of this idea in the context of face recognition.

The central idea of PCA in face recognition is to find a small set of eigenfaces that best
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represent points in a face data set. This statistical method is particularly suited for

data with linear structure and can be extended (e.g. Kernal PCA [95]) and applied to

nonlinear data. However, despite its relatively simple methodology, PCA-based methods

perform poorly when images are acquired in uncontrolled settings, such as unstable light

source directions and unpredictable facial movements of the subjects. This is primarily

due to the fact that the recognition is based on a single-shot. For instance, a test

image that is captured under a different illumination condition than the training images

possesses a variability that is not inherited in the training images, therefore more likely

to be wrongfully classified. This type of comparison is known as the single-to-many

comparison. For an Automatic Face Recognition (AFR) scheme to be applicable in

real-world situations, it needs to take into account of unforeseen variability in pose,

illumination, and facial expression, etc. In fact, it is much easier to ask someone to

perform random head motions under varying illumination conditions than to request the

person to perform strictly defined motions under controlled lighting conditions. We refer

to this classification scheme as single-to-many and a cartoon illustration of this type

is given in Figure 2.3.

,)1(X )2(X
Eigenfaces

)( NX…
… … … …

 

Project  

Figure 2.3: Structural illustration for a single-to-many classification paradigm, where
a probe subject possesses a single instance of data while one or more of the gallery
subjects possess multiple examples. In this figure, a set of basis vectors that span a
feature subspace of significantly lower resolution is first obtained. Classification of a
probe image is done by projecting the probe onto the feature space and assigning identity
based on the Euclidean differences with the subject classes.
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2.4 Many-to-Many Classification Paradigm

It is then natural to consider a set of images and the subspace it forms. Since the

subspace can effectively represent the distribution of the changes, comparing subspaces is

therefore more stable against the influence of illumination variations, head motions, and

facial expressions. Therefore the notion of many-to-many comparison arises. In this set-

ting, we consider collecting multiple examples of a probe class so that p = [p1|p2| · · · |pk]

is an n-by-k matrix with each pi being an element of Rn and keeping the structure of

the gallery the same as before. Now both the probe and each class in the gallery have

multiple examples to be used in the process of comparison. We refer to this type of

classification scheme as many-to-many or set-to-set with a cartoon illustration of this

type given in Figure 2.4.

,  … … ……
)1(X )2(X )( NX…

Figure 2.4: Structural illustration for a many-to-many classification paradigm, where
probe and gallery subjects possess multiple instances of data. In this figure, each set of
images (selected from probe or gallery) can be realized as a point on some parameter
space. Therefore, classification of a probe class requires only calculation of the pairwise
distances between these points.

Notice that the number of data in any probe class does not necessarily have to equal

the number of data in any gallery class. For example, often times the gallery images are

collected in a controlled setting whereas probe images are recorded in a much noisier

environment. It is not uncommon to have fewer probe images than gallery images for
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recognition. Thus, when we speak of many-to-many paradigm, we do not assume a

symmetric comparison. Rather, it is particularly interesting to investigate the minimum

number of images required for either the probe or gallery in order to ensure a perfect

classification in a general x-set to y-set classification problem.

Under this paradigm, one can choose to solve the general classification problem

by computing the pairwise distances between each point in the probe with each point

in the gallery as mentioned in Chapter 2.3. On the contrary, if we form a subspace

from the instances of the probe and for each class in the gallery, then this many-to-

many comparison only requires m pairwise distance calculations where m is the number

of image sets. It is reported in [29] that when given two average-length sequences,

determining the match score by single-to-single matching is roughly 400 times more

expansive than a single many-to-many match. Nevertheless, this still raises the concerns

about the computational cost for the many-to-many matching.

Learning from multiple instances allows us to construct subspaces that embody

the natural variability of the data. Incorporating these subspace representations into

a classification paradigm provides geometric insight in understanding the neighboring

relationships between subjects in a data set. In a world where parallelization has become

a reality and where we have no upper bound on the computational resources, why should

we limit ourselves to an algorithm that is relatively faster but inaccurate and less robust

(single-to-many) when we have access to an algorithm that is otherwise accurate and

robust (many-to-many).

2.5 The Grassmann Method

The geometry of the data sets affects the fundamental design of a classification

algorithm. For example, it is reasonable to quantify the distances between points on

the xy-plane with Euclidean metric but rather foolish to do so among a set of points

on the 2-sphere, S2, using the same metric. In any case, the optimal choice for the

metric is the appropriate “geodesic” on that space. In this section, we introduce a novel

geometric framework, so-called Grassmann method, that is suitable for the many-to-many

classification paradigm.

Let K be a field (such as the field of real numbers), and let V be a vector space

over K. As usual, we call elements of V vectors and call elements of K scalars. Suppose
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that W is a subset of V . If W is a vector space itself, with the same vector space

operations as V has, then it is a subspace of V . Now, let V ∈ Rn, then a collection of

k distinct data points give rise to a matrix X of size n-by-k where each column of X

is a distinct data point. Further denote R(X) to be the column space (or range) of X .

We can always associate a basis (e.g., obtained by QR-decomposition or Singular Value

Decomposition) to the column space of X , which is a k-dimensional linear subspace

of Rn. Let G(k, n) denote the Grassmann manifold (Grassmannian) parameterizing k-

dimensional real vector subspaces of the n-dimensional vector space Rn, then the many-

to-many classification problem can be transformed to a problem on G(k, n) if we realize

the linear span of a set of k images as a k-dimensional vector subspace of the space of

all possible images at a given resolution. Our objective is to match an unlabeled set of

images by comparing its associated point with a collection of given points on G(k, n).

As a consequence of the encoding of sets of images as points on a Grassmann manifold

we may avail ourselves of a variety of well-known distance measures between points on

the manifold.

The Grassmann method is a linear method since the Grassmannian is a parameter

space for linear subspaces. Once we have established a concrete paradigm for classifica-

tion on linear data sets, we can attempt to solve the nonlinear cases by exploring their

linear structures. For example, nonlinear data manifolds exhibit local linear structures

characterized by the tangent spaces. By associating tangent spaces with points on the

Grassmann manifold, the method of the Grassmann can proceed as depicted before.

In summary, the general approach to transforming a conventional classification prob-

lem into one on the Grassmannians requires two basic steps:

1. Find linear subspaces by forming bases for the data and consequently realize these

subspaces as points on the Grassmannians.

2. Assign class label of probe points by determining neighborhood relationship using

the distances of corresponding points on the Grassmannians.

2.6 Face Recognition Using Many-to-Many Framework

Traditionally, work on face recognition has focused on comparisons between single

still images. Recently, however, Experiment 2 of the Face Recognition Grand Challenge
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considered many-to-many comparisons [66]. Sets of four images were compared based

on four by four (sixteen total) single image comparisons. This was enough to raise the

recognition performance of the baseline algorithm from about 66% on single still images

to about 88% on the four-way comparison. Works of [29, 90, 2, 50, 49], with images

selected from video sequences, and [13, 14, 15, 16] with 2-dimensional still images have

promising results supporting the use of set-to-set image comparisons.

The earliest work on using set-to-set image comparison in object recognitions can

be found in [94] and [75]. A crude partition of the contemporary approaches in multi-set

image comparison yields two branches: model-based and sample-based methods [50].

Three well-known representatives in the model-based approaches utilize the concepts of

Tangent Distance [75, 12], Manifold Density Divergence [73, 2], and Canonical Correla-

tion Analysis (Principal Angles) [94, 13]. Sample-based methods, such as using image

similarities, generally require heavy computational capacities as they require a compari-

son of every pairwise samples of any two sets. Furthermore, it does not take into account

the natural variability of the data due to the 3D nature of the observed objects and it

generally performs worse than the subspace methods. Thus, we will concentrate on the

discussions of model-based methods that will eventually lead us to discover fundamental

properties of a data set.

When the manifold is made up of images obtained via affine transformations (e.g.,

rotations, translations and scaling), the manifold has the differential topology of a Lie

Group. Thus it is possible to calculate an optimal linear approximation of an image p

on the manifold that captures the relevant linear effects of deformation. This subspace,

called the tangent space, typically offers a low-dimensional characterization of the image

and contains nearly the same information as the original manifold for small transforma-

tions, since tangent space Tp(M) is the best linear approximation of a manifold M at

the point p ∈ M. Measuring the distance between two images can then easily be done

by forming their respective deformation manifold (multi-set) and tangent space followed

by finding the gap distance between the two tangent spaces. This distance is called the

two-sided tangent distance [75]. One known drawback of the method is that the accuracy

of the tangent distance depends on the point of tangency [28, 43, 85]. This adversely

makes the tangent distance method less robust and sensitive to outliers. As an alter-

native, Fitzgibbon and Zisserman in [29] and Chang in [12] proposed the uses of Joint
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Manifold Distance and Subspace Distance, respectively, that are essentially the subspace

analogue of tangent distance. In essence, tangent spaces are replaced by subspaces in

the computation of the tangent distance.

When using manifold density divergence to compare sets, each set of images is

typically represented by a Gaussian distribution function and compared against other

sets by the Kullback-Leibler Divergence (KLD) [73, 2]. This method works well when

the density distribution of the sets is a priori known and when the training and testing

sets have strong statistical correlations.

Yamaguchi et al. [94] used the minimal principal angle (or maximum correlation)

between training and testing subspaces to capture the similarity between the two sets

and named their method Mutual Subspace Method. Since then, the concept of canonical

correlation has been widely used. For example, the central idea in Constraint Mutual

Subspace Method (CMSM) [33] is that by projecting the probe and gallery subspaces

to a constrained subspace (generated by considering the difference subspaces), the new

principal angle preserves the difference between people while excluding unnecessary com-

ponents for recognition, namely, undesirable variations. In Multiple Constrained Mu-

tual Subspace Method (MCMSM) [63], multiple constrained subspaces are created using

methods of ensemble learning (bagging and boosting) where probe and gallery subspaces

are projected onto and MSM is used to classify. The combined similarity between two

subspaces is given by combining the similarities calculated on each constrained subspace.

In Hierarchical Image-Set Matching (HISM) [64], sets of face images of the same individ-

ual are acquired from multiple cameras and integrated. A distribution of each individual

is created and compared using MSM. In [83, 82], authors proposed a new feature ex-

traction method and a new feature fusion strategy based on the generalized canonical

correlation analysis (GCCA). Kim et al. proposed in [50] a method that maximizes the

canonical correlations of within-class sets and minimizes the canonical correlations of

between-class sets that is inspired by Linear Discriminative Analysis.

In another extension of CCA, Wolf and Shashua [90] constructed a positive definite

kernel f(A,B) =
∏k

i=1 cos2 θi that is used to compare two image sets A and B where θi’s

are the principal angles between the column spaces of A and B. Kim et al. [49] addressed

one of the major shortcomings of MSM-based methods: ad-hoc fusion of information

contained in different principal angles. They proposed using principal angles to build
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simple weak classifiers which are then combined using the AdaBoost algorithm [32]. The

algorithm learns a weighting of decisions cast by weak learners and by examining the

magnitude of these weights, it is easy to see which principal angles are more significant

and should be used in building a similarity measure. They go on and extend this idea

to build a similarity measure that would capture the nonlinearity in the data. Table 2.1

gives a comprehensive and comparative summary of these current state-of-the-art face

recognition algorithms that are implemented with principal angles. It goes without

saying that the use of principal angles has been widely spread and future research on

how to further employ CCA is highly anticipated. Future research on face recognition is

likely to take much more seriously the question of how to best compare sets of images.

Two major distinctions between the prior works and the proposed Grassmann frame-

work are worth pointing out. First, with the exception of [94] and [90], all of the work

presented in Table 2.1 require some form of training prior to classification. This could

be subspace training [33, 63, 64], feature extraction [82, 50], or classifier training [49].

On the contrary, when applying the Grassmann method to face recognition problems, it

can be implemented without training while obtaining excellent classification outcomes.

Secondly, these authors have not put their work in the context of Grassmann manifolds,

therefore limiting the geometric scope of the ideas. By introducing the idea of the Grass-

mannian and pre-existing tools to quantify its geometry, we are able to come up with

many new and useful tools, such as Karcher mean on the Grassmannians, to study the

geometry of the data sets.
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Chapter 3

DISTANCE MEASURES ON THE

GRASSMANNIANS

In a many-to-many classification paradigm, we are interested in knowing how far

apart given image sets are. This question can be cast into a question regarding the

subspaces formed by considering the linear spans of the image sets. What people do

next is exactly where the differences occur. As described earlier in the prior works, the

idea of principal angles (a.k.a. the canonical correlation analysis) is widely used as a tool

to measure variations and similarities between subspaces. For example, Kim et al. used

the sum of all the canonical correlations between two subspaces in [50] as a similarity

measure between the two subspaces and Yamaguchi et al. used the maximum canonical

correlation between two subspaces as a similarity measure in [94] as well. These two

measurements are merely “similarity” functions and do not qualify as actual “distance”

functions, since they fail the definition of being a metric. We propose to look at the

problem from a geometric point of view. By viewing these subspaces as points on the

Grassmann manifold, we can avail ourselves of the actual “distance” measures naturally

available on the Grassmann manifold. Because of this connection, not only can we

determine how far apart subspaces are from each other using actual distance functions,

but afford new geometric insights in designing classification algorithms that incorporate

the geometry of the Grassmann manifold.

In this chapter, we will first show the connection between matrix representation of

images to matrix representation of points on the Grassmann manifold in Chapter 3.1,

then discuss how various Grassmannian distances arise from embedding the Grassmanni-

ans into various types of spaces as well as in the context of linear algebra in Chapter 3.2.

Finally, a quantitative measure for determining how well a distance function performs
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in classification problems is introduced in Chapter 3.3 and numerical algorithms for cal-

culating distances between points on the Grassmann manifold are given along with a

complexity analysis in Chapter 3.4.

3.1 Matrix Representation For Points on The Grassmann Manifold

As mentioned in Chapter 2.1, an r×c gray scale digital image corresponds to an r×c

matrix where each entry enumerates one of the 256 (on 8-bit machines) possible gray

levels of the corresponding pixel. After concatenation by columns, an image vector of

length n = r · c can be seen as a point in Rn. In the original subspace method, this point

will then be projected into a feature space of a much lower dimension for classification.

We will, however, group k (generally independent) example images of a subject and

consider the k-dimensional feature subspace they span in Rn. The connection between

this linear subspace to a point on the Grassmann manifold will be made precise next.

Definition 3.1.1. The Grassmannian G(k, n) or the Grassmann manifold is the set of

k-dimensional subspaces in an n-dimensional vector space Kn for some field K. i.e.,

G(k, n) = {W ⊂ Kn | dim(W ) = k}.

Let V be a vector space of dimension n with basis {e1, . . . , en}, then for k ≥ 0 we

can define a new vector space over K:

ΛkV =







K, if k = 0;

0, if k > n;

space with basis ei1 ∧ ei2 ∧ . . . ∧ eik

1, 1 ≤ i1 < . . . < ik ≤ n.

Furthermore, if we define

V × V × · · · × V
Φ−→ ΛkV

by

Φ(ei1 , · · · , eik
) =

{

0, if ij = il for some j 6= l;

sgn(σ)
(
eiσ(1)

∧ · · · ∧ eiσ(k)

)
, otherwise;

where σ is the unique permutation of {1, 2, . . . , k} such that iσ(1) < · · · < iσ(k), then it is

easy to see that Φ is alternating. We can then write Φ(v1, v2, . . . , vk) = v1 ∧ v2 ∧ · · · ∧ vk

for all vi ∈ V .
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Theorem 3.1.1. Let V be a vector space and

Ψ : V × V × · · · × V = V k −→W

a multilinear map from V ’s to W , which is alternating. Namely,

Ψ(vσ(1), · · · , vσ(k)) = sgn(σ)Ψ(v1, · · · , vk), ∀σ ∈ Sk,

where Sk is the set of permutations of k elements. Then there exists a unique linear map

L : ΛkV →W such that Ψ = L◦Φ. i.e., V k → ΛkV is unique up to unique isomorphism

and satisfies the following commutative diagram.

V k

Φ

��

Ψ // W

ΛkV

L
z

z
z

==
z

z
z

z

Then by the universal property of ΛkV , any map

Φ : V × V × · · · × V −→ ΛkV

that is multilinear and alternating is unique up to isomorphism. Thus we can talk about

the kth exterior power of V over a field K.

The Grassmannian can then be viewed as a subset of projective space, P(ΛkV ), via

the Plücker embedding:

G(k, n)
Pl−→ P(ΛkV )

W 7→ ΛkW

where dim(P(ΛkV )) =
(
n
k

)
− 1. This map is injective. The homogeneous coordinates on

P(ΛkV ) are called the Plücker coordinates on G(k, n). Moreover, Pl(G(k, n)) = class of

totally decomposable multivectors, is a subvariety of P(ΛkV ) [41].

In coordinates, we can explicitly represent a plane W ∈ G(k, n) by a unique matrix

up to a change of basis transformation. Let W be a k-dimensional vector subspace of V

with basis fj =
∑n

i=1 bijei, j = 1, 2, . . . , k and let B = (bij). Moreover, assume U is the

standard affine open subset of P(ΛkV ) whose first k × k minor is nonzero. Then

B =
[
bij
]
∼





Ik
−−−−
B′

(n−k)×k



 .
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The matrix B is determined up to right multiplication by an invertible k × k change

of basis matrix. B uniquely determines B′, and B′ uniquely determines W . Then the

entries of B′ give the bijection of U ∩ G(k, n) with Kk(n−k), i.e., G(k, n) is covered by

affine space of dimension k(n − k). Consequently, dim(G(k, n)) = k(n − k) when the

Grassmannian is realized as a submanifold of a projective space.

It is now clear that points in the Grassmannian are equivalence classes of n-by-k

orthonormal matrices, where two matrices are equivalent if their columns span the same

k-dimensional linear subspace, i.e.,

G(k, n) = {[p] | p ∼ q if and only if q = QT p for some Q ∈ Ok},

where p and q are n-by-k orthogonal matrices and Ok is the group of k-by-k orthogonal

matrices.

Therefore, the Grassmann manifold G(k, n) can be identified as the quotient group

On/(Ok × On−k). Despite this abstract mathematical representation of the Grassman-

nian, one may choose to represent a point on the Grassmannian by specifying an arbitrary

orthonormal basis stored as an n-by-k matrix. Although this choice of the orthogonal

matrix is not unique for points on the Grassmannian, it does give rise to a k-dimensional

linear subspace that is obtained via the column space of the matrix and will serve as a

representative of the equivalence class on the computer [24].

3.2 Grassmannian Distances

In this section, we will present an overview of how distances may be computed

between subspaces, or points on G(k, n). We will do this in a few steps. First, a charac-

terization of the distance between subspaces by defining gap functions is given. We then

go on to show that all gap functions are equivalent and induce the same gap topology.

Finally, a discussion on unitarily invariant metrics and their relations to principal angles

is presented. We will conclude the section by noting that ultimately any unitarily invari-

ant norm on two subspaces can be written in terms of some symmetric gauge function of

the principal angles between the subspaces [67]. In particular, we will focus our attention

on characterizing (with principal angles) the Grassmannian metrics that arise naturally

from realizing the Grassmann manifold as subsets of various spaces.
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It is natural to first consider the distance between a point in C
n and a subspace

of Cn, then develop the notion of distance between two subspaces. Also note that the

definitions and results given here can easily be given in the space of reals. Much of this

presentation follows [79], including Definitions 3.2.1 — 3.2.3.

Definition 3.2.1. Let X be a subspace of C
n and y ∈ C

n. If ν is a norm on C
n, then

the ν−distance between y and X is the function

δν(y,X ) := min
x∈X

ν(y − x). (3.1)

Now, the distance between two subspaces of Cn follows naturally from Equation (3.1).

Definition 3.2.2. Let X ,Y ∈ G(m,n) and let ν be a norm on C
n. Then the ν-gap

between X and Y is the number

ρg,ν(X ,Y) := max






max
x∈X

ν(x)=1

δν(x,Y), max
y∈Y

ν(y)=1

δν(y,X )






. (3.2)

Note that the gap function does not need to be a metric. At this point, the gap

functions closely depend on the norm function. It would be convenient if all gap functions

give rise to the same topology regardless the choice of the norm so we can speak of the

subspace topology. In fact, it turns out that all gap functions are equivalent in the same

sense that all norms are equivalent. Once we can establish that one gap function is a

metric, it will then follow from their equivalence that all gap functions generate the same

topology. With that being said, we will only present the results to show that the gap

function ρg,2 is a metric, which will be used extensively to serve as a foundation in the

development of perturbation theory for subspaces. As a preliminary step, we will review

the notion of principal angles (a.k.a. canonical angles) between subspaces as well as some

of the results about projection matrices in conjunction to the principal angles.

The concept of principal angles was introduced by Jordan in 1875 [44] and Hotelling

introduced the recursive definition in 1936 [42]. During the past century, numerous

researchers have developed theories and algorithms to quantify principal angles. Two

well-known algorithms that are used extensively in various applications are based on

Singular Value Decomposition (SVD) and CS Decomposition. Björck and Golub gave a

numerically stable algorithm in 1973 in terms of the SVD of the matrices characterizing
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the subspaces [9], while Stewart cast the problem in the form of CS decomposition [78]

which he first introduced in 1977 [77]. We will adapt recursive definition of principal

angles given in [9].

Definition 3.2.3. If x and y are two nonzero vectors in Cn, then the angle between x

and y is defined to be

∠(x, y) := cos−1

∣
∣yHx

∣
∣

||x||2||y||2
.

Definition 3.2.4. [9] If X and Y are two vector subspaces of a unitary space En such

that p = dim(X ) ≥ dim(Y) = q ≥ 1, then the principal angles θk ∈ [0, π
2 ], 1 ≤ k ≤ q

between X and Y are defined recursively by

cos(θk) = max
u∈X

max
v∈Y

∣
∣uHv

∣
∣ =

∣
∣uH

k vk

∣
∣ (3.3)

subject to ||u||2 = ||v||2 = 1, uHui = 0 and vHvi = 0 for i = 1, 2, . . . , k − 1.

Henceforth, θ = (θ1, . . . , θq) will denote the principal angle vector while Θ =

diag(θ1, . . . , θq) will denote the diagonal matrix with entries from the principal angle

vector. A numerically stable algorithm that computes the canonical correlations (cosine

of these principal angles) between subspaces X and Y is given in the following the-

orem. Note that this algorithm is proved to be mixed stable, and QR factorizations

with the complete pivoting are recommended for computing UX and UY [23]. Moreover,

the algorithm is accurate for large principal angles (> 10−8) [52] and requires about

4n(q2 + 2p2) + 2pq(n + q) + 12q3 flops [36]. The sine-based algorithm for calculating

small principal angles is available in [52].

Theorem 3.2.1. [9] Let X ∈ G(p, n) and Y ∈ G(q, n), p ≥ q. Assume that the columns

of matrices UX and UY form unitary bases for the two subspaces X and Y, respectively.

Let the SVD of the p× q matrix UH
X UY be

UH
X UY = UCV H , C = diag(c1, c2, . . . , cq), (3.4)

where UHU = V HV = V V H = Iq. If we assume that c1 ≥ c2 ≥ . . . ≥ cq, then the

principal angles θ1, . . . , θq associated with X and Y satisfy

cos θk = ck, k = 1, . . . , q.
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Notice that in the Equation (3.4), for any complex matrix UH
X UY there always exists

such a decomposition with positive singular values [36].

In many cases, we would like to represent subspaces using their unique orthogonal

projections to be rid of ambiguity given by their non-unique basis representations. The

following lemmas and theorems by [81] and [79] provide tools to explore the connections

between principal angles of subspaces and their corresponding orthogonal projections.

In the following discussions, we will assume the notations given above and the usual

notations in matrix analysis to let σ(A) denote the set of singular values of a matrix A,

σ+(A) the set of non-zero singular values of A, A† the Moore-Penrose generalized inverse

of A, and PA = AA† the orthogonal projection onto the column space of A (or R(A)).

Definition 3.2.5. Let A ∈ Rm×n. The range of A, denoted R(A), is the set of all

vectors v such that v = Ax, i.e.,

R(A) = {v ∈ R
m | v = Ax for some x ∈ R

n} .

Lemma 3.2.1. [81] Suppose that σ(UH
X UY) = {ck}q

k=1, ck = cos θk,
π
2 ≥ θ1 ≥ . . . ≥ θq ≥

0. If (UX ,WX ) forms an n×n unitary matrix and σ(WH
X UY) = {sk}q

k=1, s1 ≥ . . . ≥ sq,

then

sk = sin θk, k = 1, . . . , q.

Proof. See Appendix A.2.

Lemma 3.2.2. [81] Assume the notations above for X , Y, UX , UY , and WX , we have

σ+(UH
X UY) = σ+ (PXPY) (3.5)

and

σ+(WH
X UY) = σ+ ((I − PX )PY) . (3.6)

Proof. See Appendix A.3.

Clearly, the lemmas above cast the problem of finding principal angles between

subspaces in terms of singular values of projection matrices. This generalization is useful

in showing the gap function ρg,2 is in fact a metric. We will review this fact that is based

on a characterization of ρg,2(X ,Y) in terms of the principal angles between X and Y.
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Theorem 3.2.2. [79] Let X ,Y ∈ G(m,n), and let Θ = diag(θ1, . . . , θm), where θ1 ≤

. . . ≤ θm are the principal angles between X and Y. Then

ρg,2(X ,Y) = sin θm = || sinΘ||2 (3.7)

One can further show with CS decomposition that the singular values of PX − PY

are exactly sines of the principal angles between X and Y. Thus, the following Corollary

is an immediate consequence of Theorem 3.2.2.

Corollary 3.2.3. [79] In the 2-norm,

ρg,2(X ,Y) = ||PX − PY ||2. (3.8)

Triangle inequality for ρg,2 follows immediately from Corollary 3.2.3 and conse-

quently it is easy to see that ρg,2 indeed defines a metric on G(m,n). To sum up, ρg,2

being a metric on G(m,n) induces a topology on G(m,n). Moreover, because all gap

functions are equivalent (proof available in [79]), all gap functions induce the same topol-

ogy, which we will call the gap topology. It is not hard to see that Equation (3.8) does

not hold in general. Namely, if we replace the norm function in the definition of the gap

function by some arbitrary ν, then the ν-gap between two subspaces is not necessarily ν

of their orthogonal projectors. However, the right hand side of Equation (3.8) remains

a metric on G(m,n). Thus, the following theorem:

Theorem 3.2.4. [79] Let ν be a matrix norm on Cn×n. Then the function

ρp,ν(X ,Y) := ν(PX − PY) (3.9)

is a metric on G(m,n), which generates the gap topology.

It is also natural to ask if we can find new unitarily invariant metrics of the form

|| sin Θ(X ,Y)||, where || · || is an unitarily invariant norm. Unfortunately, these metrics

are just the ρp,ν metrics in disguise.

Theorem 3.2.5. [79] Let ν be a unitarily invariant matrix norm on Cm×m. Then there

is a unitarily invariant matrix norm ν
′

such that

ν[sin Θ(X ,Y)] = ρp,ν′(X ,Y) (3.10)

for all X , Y ∈ G(m,n).
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As it seems like we have found a nice way to quantify distance between subspaces,

one may start to ponder over the question whether or not there are other metrics that

generate the gap topology as well. A natural place to look for such a metric is in the set

of unitarily invariant norm.

Definition 3.2.6. A norm || · || on the set of m×n matrices, Mm,n, is unitarily invariant

if for any A ∈ Mm,n, U ∈ Om, and V ∈ On, ||UAV || = ||A||.

A nice property of unitary spaces is that angles and distances between subspaces

are preserved under rotations. Thus, an unitarily invariant norm is not sensitive to the

choice of the bases used to represent a subspace. Consequently, it is used in a wide

variety of applications. We are particularly interested in unitarily invariant metrics that

generate the gap topology. For example, ρg,2 is one of the few unitarily invariant norms

that generate the gap topology. However, this metric exhausts the class of unitarily

invariant metrics that can be generated by gap functions, since up to a constant multiple

the 2-norm is the only unitarily invariant vector norm on Cn. Fortunately, there are

many unitarily invariant matrix norms (e.g., spectral and Frobenius norm) that can be

used in Equation (3.9) to give unitarily invariant metrics on G(m,n) generating the gap

topology. It is clear from the following theorem:

Theorem 3.2.6. [79] If ν is a unitarily invariant matrix norm, then ρp,ν defined in

(3.9) is a unitarily invariant metric on G(m,n).

Theorem 3.2.6 gives a nice way to generate unitarily invariant metrics on G(m,n).

Moreover, because of the connections between singular values and the principal angles

of a pair of subspaces, all of the norms arise in such a way can be expressed in terms

of principal angles. It is stated and proved in [67] that any symmetric gauge function

of the principal angles is a metric, where a symmetric gauge function Φ : Rr → R is a

norm function that is symmetric and absolute. i.e., for any x ∈ Rr and any permutation

matrix P ,

Φ(Px) = Φ(x) (symmetric)

Φ(|x|) = Φ(x) (absolute).
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A particularly useful class of symmetric gauge functions, called Ky Fan k-function [26]

is defined as the following,

Φk(x1, x2, . . . , xr) = max
1≤i1<...<ik≤r

{|xi1 | + |xi2 | + . . . |xik
|}.

For example, if σi’s are the singular values of a matrix A ∈ Mm,n listed in descending

order, then Ky Fan k function simplifies to the sum of the k largest singular values, i.e.,

Φk(σ1, σ2, . . . , σr) =

k∑

i=1

σi.

Equipped with both the notions of symmetric gauge functions and Ky Fan functions, we

are able to explicitly construct unitarily invariant norms.

Theorem 3.2.7. [67] Let Φ : Rm → R be a symmetric gauge function. Define ρ :

G(m,n) ×G(m,n) → R by

ρ(X ,Y) = Φ(θ(X ,Y)), (3.11)

where θ(X ,Y) denotes the principal angle vector between X and Y. Then ρ is an unitarily

invariant metric and is called the angular metric.

In particular, if Φ is the Ky Fan k function, then Theorem 3.2.7 implies that sum

of the k largest principal angles between two subspaces is an unitarily invariant metric.

More generally, a theorem by Von Neumann states that any unitarily invariant norm of

a matrix A ∈ Mm,n comes from some symmetric gauge function of the singular values

of A.

Theorem 3.2.8. [62] There is a one-to-one correspondence between unitarily invariant

norms || · || on Mm,n and symmetric gauge function Φ : Rr → R, where r = min{m,n},

given by

||A||Φ = Φ(σ1, . . . , σr).

As Theorem 3.2.7 provides an useful tool to generate unitarily invariant norms in

terms of principal angles between subspaces, we will focus on the ones that arise naturally

from realizing the Grassmann manifold as subsets of various spaces.

The (differential) topology on G(k, n) can be described in several ways [13]: First,

as a quotient (homogeneous space) of the orthogonal group,

G(k, n) = On/ (Ok ×On−k) . (3.12)
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The standard invariant Riemannian metric on orthogonal matricesOn descends via (3.12)

to a Riemannian metric on the homogeneous space G(k, n). The resulting geodesic

distance function dg (also known as arc length) on the Grassmannian in terms of

principal angles θ1, . . . , θk between X , Y ∈ G(k, n), is [91]

dg(X ,Y) =

(
k∑

i=1

θ2i

)1/2

= ||θ||2. (3.13)

Next, G(k, n) can be realized as a submanifold of projective space,

G(k, n) ⊂ P(Λk
R

n) = P(n
k)−1(R) (3.14)

via the Plücker embedding. Then the Grassmannian inherits a Riemannian metric from

the Fubini-Study metric on projective space [38], and the resulting Fubini-Study dis-

tance dFS is given in terms of the principal angles by

dFS(X ,Y) = cos−1

(
k∏

i=1

cos θi

)

. (3.15)

Finally, as a submanifold of Euclidean space,

G(k, n) ⊂ R
(n2+n−2)/2 (3.16)

via a projection embedding described recently in [20]. In this case, one can restrict the

usual Euclidean distance function on R(n2+n−2)/2 to the Grassmannian via (3.16) to

obtain the projection F or chordal distance dc (so called because the image of the

Grassmannian under (3.16) lies in a sphere, so that the restricted distance is simply

the distance along a straight-line chord connecting one point of that sphere to another;

see [20]) which, in terms of the principal angles, has the expression

dc(X ,Y) =

(
q
∑

i=1

(sin θi)
2

)1/2

= ‖ sin θ‖2.

This projection F distance dc has recently been used in the context of sphere-packing/coding

theory in the Grassmannian, where it has been reported to be significantly more efficient

than the “standard” geodesic distance dg [20], [3].

Let X and Y be two unitary matrices that span the range of the subspaces X and

Y ∈ G(k, n), respectively, and let Ok denote the set of k × k unitary matrices. The

chordal 2-norm and chordal Frobenius-norm are derived by embedding the Grass-

mann manifold in the vector space R
kn, then using the operator 2-norm and Frobenius
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norm, respectively [3]. In the context of linear algebra, the chordal Frobenius-norm is

given by the minimization problem with Frobenius norm [24]

dcF (X ,Y) := min
U,V ∈Ok

||XU − Y V ||F .

It can be shown that

dcF (X ,Y) = ||2 sin
1

2
θ||2. (3.17)

To prove this equality, one can first apply the CS-decomposition to the matrices X and

Y to put them into standard form, then consider the Frobenius norm of the minimization

problem [79]. See a detailed proof in Appendix A.4.

Similarly, the chordal 2-norm is also given by the same minimization problem but

with the matrix 2-norm [24]

dc2(X ,Y) := min
U,V ∈Ok

||XU − Y V ||2.

It can be shown that

dc2(X ,Y) = ||2 sin
1

2
θ||F . (3.18)

To prove this equality, one can first apply the CS-decomposition to the matrices X and

Y to put them into standard form, then consider the spectral norm of the minimization

problem [79]. See a detailed proof in Appendix A.5.

In terms of a generalization from the symmetric gauge functions, chordal 2-norm

and chordal Frobenius-norm are special cases of the general gap metric [67]

Φ(sin θ1(X ,Y), . . . , sin θk(X ,Y)) = inf
{
||UX − UYQ|| : Q ∈ R

k
}
,

where UX and UY are orthonormal basis matrices for X and Y, respectively, and when

Φ is the Ky Fan m-function with m = 1 and m = k, respectively.

The Projection 2-norm [24] is defined by taking the spectral norm of the difference

between projection matrices of X and Y. With this definition, it is identical to the gap

functions ρg,2(X ,Y) and ρp,2(X ,Y). It is straight-forward to see that it is equal to

sin θmax. Wedin gave a geometric interpretation of the metric in [88]. This metric is also

called the subspace distance in [36] and so widely adapted in the engineering and image
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processing literature that it is now treated as the Euclidean distance between subspaces.

Namely,

dp2(X ,Y) := ||PX − PY ||2 = || sin θ||∞. (3.19)

In [24], some strict inequalities between these metrics are given, which gives us a

clue about their equivalence relationships. For small principal angles, dg, dFS , dcF , and

dc are all asymptotically equivalent and all but dc are approaching ||Θ||F with dc ap-

proaching
√

2||Θ||F . On the other hand, dp2 and dc2 are asymptotically approaching

||Θ||2. Despite the difference in their asymptotic behaviors, all of these norms are uni-

tarily invariant metrics that generate the gap topology. The moral of the story is that

any reasonable attempt to construct a unitarily invariant metric will yield something

that can be expressed in terms of principal angles. See Table 3.1 for a quick reference to

the metrics discussed above.

Metric Name Mathematical Expression

Fubini-Study dFS (X ,Y) = cos−1

(
k∏

i=1

cos θi

)

Chordal 2-norm dc2 (X ,Y) =

∥
∥
∥
∥
2 sin

1

2
θ

∥
∥
∥
∥

F

Chordal F-norm dcF (X ,Y) =

∥
∥
∥
∥
2 sin

1

2
θ

∥
∥
∥
∥

2
Geodesic (Arc Length) dg (X ,Y) = ‖θ‖2

Chordal (Projection F-norm) dc (X ,Y) = ‖sin θ‖2

Projection 2-norm dp2 (X ,Y) = ‖sin θ‖∞

Table 3.1: Table of Grassmannian distances.

3.3 Grassmann Separation Criterion

In the case of pattern recognition, most of the time the data set is compact and

fixed. For example, in face recognition, it is a common practice to project face data

down to a low-dimensional feature space first via KL-transform before classification. It

is because the shape of the face of different people looks alike, so we only need a few

vectors to represent the different features of the faces. Thus, if we form a subspace

from thousand of images of a single person and form another subspace from a bunch of

images of a different person, then the first few principal angles are enough to provide

discriminatory information about the neighboring relationship between these two people.

29



Besides, well-established numerical algorithms for finding the smallest eigenvalues can

be utilized to enhance efficiency and reduce cost in the computation of the principal

angles. Thus, it is natural to consider nested subspaces of X , Y ∈ G(k, n) by defining

the ℓ-truncated principal angle vector θℓ := (θ1, . . . θℓ) where θ1 ≤ · · · ≤ θk are the

principal angles between X and Y and 1 ≤ ℓ ≤ k. Note if k > dim(X ∩ Y) ≥ ℓ, then

all of the ℓ-truncated distances between X and Y are zero, even though X 6= Y. Thus,

strictly speaking, these are semi-distances at best. However, in practice, dim(X ∩Y) = 0

whenever X and Y are distinct, so the ℓ-truncated distances are true distances on the

discrete set of the experimental data. We then have ℓ-truncated semi-metrics.

Definition 3.3.1. Let ℓ-truncated principal angle vector be θℓ := (θ1, . . . , θℓ) where

θ1 ≤ · · · ≤ θk are the principal angles between X and Y and 1 ≤ ℓ ≤ k, then, e.g.,

ℓ-truncated Grassmannian semi-distances between X and Y are defined as follows:

dℓ
g(X ,Y) := ‖θℓ‖2, dℓ

FS(X ,Y) := cos−1
ℓ∏

i=1

cos θi,

dℓ
c(X ,Y) := ‖ sin θℓ‖2 dℓ

cF (X ,Y) := ‖2 sin 1
2θ

ℓ‖2.

We are now equipped with all the necessary tools to analyze the separability of a data

set with these Grassmannian distances and semi-distances that are based on calculations

of principal angles. Before we proceed, we will introduce a separation measure that arises

from the context of classification that will serve as the basis of the separation criterion

on the Grassmannians.

Definition 3.3.2. The distance between different realizations of subspaces for the same

class are called match distances while for different classes they are called non-match

distances.

Definition 3.3.3. False accept rate (FAR) is the ratio of the number of false acceptances

divided by the number of identification attempts. This is also referred to as a type II

error in statistics.

Definition 3.3.4. False reject rate (FRR) is the ratio of the number of false rejections

divided by the number of identification attempts. This is also referred to as a type I

error in statistics.
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Given match and non-match distances for a set of classes, the false accept rate

(FAR) at a zero false reject rate (FRR)2 (defined, e.g., in [56]) indicates how well

a metric separates classes. This score is the ratio of the number of non-match distances

that are smaller than the maximum of the match distances divided by the number of

non-match distances. A zero FAR for a data set indicates that the classes are perfectly

separable without ambiguity. As we establish the framework for classifying subjects in

a data set, we will make use of the concept of FAR in building separability conditions.

3.4 Algorithms And Operation Counts

In this section, we will present the essential algorithms for calculating a Grassman-

nian distance between a pair of subspaces along with complexity analysis of the given

algorithms. The corresponding MATLAB implementations will be given in Appendix B.

As mentioned in Chapter 3.2, any reasonable attempt to construct an unitarily

invariant metric on subspaces will yield something that can be expressed in terms of

principal angles. Thus, the fundamental building block on any Grassmannian distance

will rely on the notion of principal angles. We will review two algorithms here that

compute large and small principal angles between a pair of subspaces. See [9] (cosine of

large principal angles) and [52] (sine of small principal angles) for detailed derivations.

Algorithm 3.4.1 computes the large principal angles and cosine of the principal angles

between two subspaces R(A) and R(B) based on the recursive algorithm given by Björck

and Golub [9].

algorithm 3.4.1 [9] Large Principal Angles

Input: matrices A (n-by-p) and B (n-by-q).
Output: cosine of the principal angles between subspaces R(A) and R(B), C.

1. Find orthonormal bases Qa and Qb for A and B such that

QT
aQa = QT

b Qb = I and R(Qa) = R(A),R(Qb) = R(B).

2. Compute the SVD of QT
aQb: Q

T
aQb = UCV T , so that diag(C) = cos θ.

2For the sake of brevity we refer to the false accept rate (FAR) at a zero false reject rate (FAR)
simply as FAR in the following discussions.
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When using the standard double-precision arithmetic, this algorithm is only accurate

up to angles greater than or equal to 10−8. This problem is pointed out and treated

in the classical paper [9]. In short, in order to avoid the round-off error occurred when

using a SVD-based algorithm for calculating cosine of the principal angles, a sine-based

algorithm for calculating the principal angles that is motivated by the notion of gap (see

Chapter 3.2) is considered. The idea of the algorithm is based on a theorem from [9],

which is essentially the same as that of Lemma 3.2.2. An algorithm for computing all

the principal angles is given in Algorithm 3.4.2 and taken from [52]. Notice that this

algorithm provides accurate result for small angles and the cosine-based algorithm for

computing large angles is kept.

algorithm 3.4.2 [52] Small and Large Principal Angles

Input: matrices A (n-by-p) and B (n-by-q).
Output: principal angles θ between subspaces R(A) and R(B).

1. Find orthonormal bases Qa and Qb for A and B such that

QT
aQa = QT

b Qb = I and R(Qa) = R(A),R(Qb) = R(B).

2. Compute SVD for cosine: QT
aQb = YΣZT , Σ = diag(σ1, . . . , σq).

3. Compute matrix B =

{

Qb −Qa(Q
T
aQb) if rank(Qa) ≥ rank(Qb);

Qa −Qb(Q
T
b Qa) otherwise.

4. Compute SVD for sine: [Y, diag(µ1, . . . , µq), Z] = svd(B).

5. Compute the principal angles, for k = 1, . . . , q:

θk =

{

arccos(σk) if σ2
k <

1
2 ;

arcsin(µk) if µ2
k ≤ 1

2 .

The MATLAB qr and orth commands use the LINPACK routine zqrdc, which is

based on householder reflections. For a general m-by-n matrix, QR-decomposition using

househoulder reflections costs 2n2m− 2
3n

3 flops. And the MATLAB svd command uses

the LINPACK routine zsvdc. The zsvdc routine calculates the singular values of an

m-by-n complex matrix X in two steps. First, it reduces X to a bidiagonal matrix B

by finding orthogonal matrices U1 and V1 such that A = U1BV
T
1 based on householder

reflections. In general, if X is n-by-n, the cost of bidiagonal reduction is 8
3n

3 + O(n2)

flops. Then QR-iteration with deflation and shifting is applied to the covariance matrix
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C = BTB to find its eigenvalues, which then give the squared singular values of B, thus

X . Since C is symmetric and tridiagonal, the total costs to find just the eigenvalues of

C is less than 4
3n

3 + O(n2) flops. Therefore, it costs less than 4n3 + O(n2) to get the

singular values of X . In general, for a m-by-n matrix, it costs 4n2(m − 1
3n) flops to

reduce it to a bidiagonal form using Householder reflections and if only singular values

are required, it costs just O(n2) for the rest of the operations. Therefore, a MATLAB

svd routine costs 4n2(m− 1
3n) +O(n2) flops to compute the singular values of a m-by-n

matrix. Overall, Algorithm 3.4.1 makes two calls to economy version of qr and one call

to economy version of svd for which it costs 2
3p

2n+ 2
3q

2n+ 4p3 flops. When p = q = k,

the cost becomes 4
3k

2n + 4k3. Now, calculating the chordal distance between a pair of

subspaces based on principal angles is straightforward and given in Algorithm 3.4.3.

algorithm 3.4.3 Computation of Geodesic (Arc Length) Between Two Subspaces

Input: X ∈ Rn×p and Y ∈ Rn×q.
Output: chordal distance, dc, between X = R(X) and Y = R(Y ).

1. Calculate cosine of the principal angles, Ci, i = 1, 2, . . . , q, between X and Y using
either Algorithm 3.4.1 or 3.4.2.

2. Calculate dc(X ,Y) = || sin θ||F =

√
√
√
√

q
∑

i=1

(1 − C2
i ).

In terms of speed of the algorithms, we perform a single chordal distance calculation

between two subspaces with data from the CMU-PIE database [74]. The images are of

size 160-by-138 for which eye coordinates are registered and geometric normalization is

performed. A single pair of chordal distance calculation on a probe point of cardinality

(see Definition 4.1.8) ten and a gallery point of cardinality ten with aforementioned

MATLAB routines takes 4.266 seconds on a Pentium M, 1.60 GHz processor while it

takes 0.05 seconds to run a single pair of chordal distance calculation on a probe point

of cardinality one and a gallery point of cardinality ten.
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Chapter 4

CLASSIFICATION ON THE GRASSMANNIANS

Grassmann framework can be implemented in a variety of applications. In partic-

ular, if a data set is linear and can be captured with low-dimensional linear subspaces,

then it is natural to transform the classification problem to one on the Grassmannians.

Linearity is certainly advantageous, but should not be considered as a necessity. Even

when a data set is not intrinsically linear, often times we are able to find a linear sub-

space of relatively low dimension that encapsulates the data set. Classification on the

Grassmannians can be extended to any data set that has multiple examples per subject.

For example, in the two class problem of gender, where we are interested in determining

whether a set of images is drawn from the male or female population, we can generate

a set of points on the Grassmann manifold associated with the male population and an-

other set of points associated with the female population for the gallery subspaces. When

a new set of images comes in, we can tell if it comes from a female or male population

by comparing its Grassmannian distance with the gallery subspaces. As illustrated in

Figure 4.1, we encode each set of images as a point on G(k, n) by considering their span,

where k is the number of distinct images associated to a single subject and n is the pixel

resolution of the images.

Under this framework, improved classification outcomes are often observed since

families of patterns with a common characterization often possesses discriminatory vari-

ations that are useful for classification. By collecting multiple images per subject, the

state of this intrinsic variation is captured by a subspace, therefore less sensitive to other

unwanted variations, such as noise. We will introduce in Chapter 4.1 the necessary ma-

chineries that lead to the notion of Grassmann separability of a data set and briefly

describe a classification result using the paradigm on two two-class classification prob-

lems in Chapters 4.2 and 4.3. Readers who are interested in the details of the experiments

results are referred to [14].
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Grassmann Manifold

Image Set 1

Image Set 2

p
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Figure 4.1: Each set of images (represented as a single stack) may be viewed as a point
on the Grassmann manifold by computing the span of elements in the set.

4.1 Framework

To classify a collection of sets, we first realize them as points on G(k, n), where n

is the resolution of the data and k is the minimum number of data available across all

identities. Then pairwise distances are calculated among the realizations of the identities.

Classification can then be done based on simple comparison of these distances. See

Figure 4.2 for an illustration of this classification flow. Notice that the distance between

sets of distinct identities should always be larger than the distance between sets of the

same subject to ensure a perfect classification.

We propose to look at the classification problem of linear subspaces with the frame-

work for many-to-many comparisons using the metrics derived in Chapter 3.2. We will

establish the notion of separability when sets of vectors are realized as points on the

Grassmannian, hence the notion of Grassmann Separability. Namely, identities are dis-

tinct from each other if their respective subspaces are Grassmann separable.

Definition 4.1.1. Two classes are linearly separable in n-dimensional space if they can

be separated by an (n− 1)-dimensional hyperplane.
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Figure 4.2: Illustration of the Grassmann method, where each set of images may be
viewed as a point on the Grassmann manifold by computing an orthonormal basis as-
sociated with the set. Pairwise distances are found using the principal angles θi,j ’s.
Distance between sets of distinct identities (largest arc) should always be larger than the
distance between sets of the same subject (smaller arcs) to ensure a perfect classification.

In particular, in a one-dimensional space (such as a line), two classes are linearly

separable if there exist a single point that divides the line into two rays. In general, it

is not easy to find a (n− 1)-dimensional hyperplane that linearly separates classes in n-

dimensional space. Therefore, we cast the problem of separating subspaces to separation

of subspaces with their associated Grassmannian distances, which form a 1-dimensional

space that can be separated by a single point.

In general applications, data sets often consist of a collection of images {x1, x2, . . . , xm}

with each xi ∈ Rn and belongs to one of the subject classes. One subject might have one

image associated with it, while another subject might have multiple images associated

with it. We would like to talk about the Grassmann separability of a data set using the

available data for each subject without ambiguity. Thus, the following definition gives a

way to discuss ways of partition on the available data for all subjects.

Definition 4.1.2. Given a collection of data x1, x2, . . . , xN with each xi ∈ Rn belonging

to the same class, C, that can be grouped into partitions, {P1, P2, . . . , Pr+1}, where for

each i, xi ∈ Pj for some 1 ≤ j ≤ r+1 and 1 ≤ |Pj | ≤ N . If |Pj | = k for all j but one and

the span of the elements in Pj forms a k-dimensional subspace of Rn, then we say that
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the set {P1, P2, . . . , Pr} is a dimension-k subspace configuration of C. In the case where

Pi ∩ Pj = ∅ for all 1 ≤ i, j ≤ r, then we say the set {P1, P2, . . . , Pr} is a dimension-k

complete subspace configuration of C.

Example 4.1.1. Given C = {a, b, c, d, e, f, g, h, i, j, k} where each element is in Rn. The

set {{a, b}, {c, d}, {e, f}, {g, h}, {i, j}} is a dimension-2 complete subspace configuration

of C. The set {{a, b, c}, {c, e, f}, {d, h, i}, {g, h, a}} is a dimension-3 subspace configura-

tion of C but NOT a complete subspace configuration. Notice that we do not need to

consider all of the elements in C in forming the subspaces.

Definition 4.1.3. (2-class Grassmann separability) Let C(1) and C(2) be two classes

with dimension-k complete subspace configurations C(1) = {S(1)
1 , S

(1)
2 , . . . , S

(1)
k1

} and

C(2) = {S(2)
1 , S

(2)
2 , . . . , S

(2)
k2

}, where S
(i)
ki

’s are points on G(k, n) and do not intersect

trivially in any dimension, i.e., if θ1, θ2, . . . , θk are principal angles between any pair of

subspaces in C(1) or C(2), then θi is not equal to 0 identically for all i. We then say that

C(1) and C(2) are Grassmann d-separable in k if there exists a ℓ-truncated Grassmannian

semi-distance d and a real number ǫ ≥ 0 (tolerance value) such that for each subject i,

max
1≤m,n≤ki

d(S(i)
m , S(i)

n ) ≤ ǫ and min
1≤m≤k1

1≤n≤k2

d
(

S(1)
m , S(2)

n

)

> ǫ.

In other words, between-class distances are always greater than within-class dis-

tances. Therefore, we define the separation gap gs = m−M , where M is the maximum

of the match distances and m is the minimum of the non-match distances, to quan-

tify Grassmann separability, since gs > 0 implies that the two classes are Grassmann

separable.

In some of the cases of geometric object recognition, we are interested in the case

where ki = 2 for all i. Namely, split the available data in each class into two disjoint sets

from which the subspaces S
(i)
ki

’s are formed. This is because gallery models are better

learned from more images than fewer. Now, it follows naturally from the definition that

if the two associated classes of Grassmannian distance is linearly separable, then the two

classes C(1) and C(2) are Grassmann d-separable. To simplify the notion of Grassmann

separability between classes, we then define the following.
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Definition 4.1.4. (2-class Grassmann separability) We say that two classes are

Grassmann separable if there exists a ℓ-truncated Grassmannian semi-distance d such

that they are Grassmann d-separable in some k.

It is worth mentioning that in the extreme case when d(S
(i)
m , S

(i)
n ) = 0, there exist

two subspaces that perfectly estimate the class C(i). In other words, S
(i)
m is a unitary

transformation of S
(i)
n , since the metric being a nonnegative function implies that all

principal angles between S
(i)
m and S

(i)
n are identically zero whenever their distance is

0. Ideally, in the absence of noise and given enough samples, any two subspaces esti-

mated from vectors of the same class should be identical. Moreover, any two subspaces

estimated from vectors of different classes should be non-intersecting. However, in a

practical setting, vectors are noisy in their high-dimensional ambient space. As a result,

two subspaces estimated from points of a single class are not only not identical; they

rarely even intersect nontrivially in practice. The following example illustrates the fact

that two subspaces estimated from the same class are closer in their Grassmannian dis-

tances than any other subspace estimated from a different class. We construct the sets

in a way to further demonstrate the robustness of the notion of Grassmann separabil-

ity. Notice that the four matrices in the following example give natural representations

of four linear subspaces that are elements of G(2, 4). For convenience, instead of writ-

ing formally that a class is a collection of subspaces, we will in general write a class’s

subspace configuration as a collection of matrices that give natural correspondences to

equivalence classes in G(2, 4).

Example 4.1.2. Let

C(1) =

{

S
(1)
1 =

[
1 1 0 1
0 0 1 1

]T

, S
(1)
2 =

[
1.1 1 0.1 1
0 0 1 1.1

]T
}

C(2) =

{

S
(2)
1 =

[
10 1 1 0
0 1 0 1

]T

, S
(2)
2 =

[
10.01 1 0 0

0 1 0.01 1.01

]T
}

.

With this notation, C(1) and C(2) are Grassmann d-separable, where d, for example, is

the chordal distance. S
(1)
2 can be seen as a noisy version of S

(1)
1 and similarly for S

(2)
2 and

S
(2)
1 . See Table 4.1 for the pairwise chordal distances. Clearly the within-class distances

are always smaller than the between-class distances. Moreover, this notion of distance is

less sensitive to perturbation, i.e., noisy subspaces of an identity are not confused with

subspaces of other identities.
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within-class between-class

d
(1,1)
1,2 d

(2,2)
1,2 d

(1,2)
1,1 d

(1,2)
2,2 d

(1,2)
1,2 d

(1,2)
2,1

0.1013 0.0086 0.9613 0.9416 0.9598 0.9435

Table 4.1: d
(m,n)
i,j = chordal distance between the ith and jth subspaces of m and n.

So far, we have built the notions of separability upon subspaces. We will now

introduce the notion of separability on a collection of classes where elements in those

classes form the basis vectors of the subspaces whose separability conditions give rise to

the separability conditions of the entire collection.

Definition 4.1.5. (multi-class Grassmann separability)

A set P =
{
C(1), C(2), . . . , C(N)

}
of N distinct classes with dimension-k subspace con-

figurations C(i) =
{

S
(i)
1 , S

(i)
2 , . . . , S

(i)
ki

}

for each i is Grassmann d-separable in k if

C(i) and C(j) are pairwise Grassmann d-separable in k for all 1 ≤ i, j ≤ N .

Similarly, we can drop the metric and define Grassmann separability for a collection

of classes and derive a useful theorem concerning the subspace configurations.

Definition 4.1.6. (multi-class Grassmann separability)

A set P =
{
C(1), C(2), . . . , C(N)

}
of N distinct classes having subspace configurations

C(i) =
{

S
(i)
1 , S

(i)
2 , . . . , S

(i)
ki

}

for each i is Grassmann separable if there exists a ℓ-

truncated Grassmannian semi-metric d such that P is Grassmann d-separable in some

k.

Theorem 4.1.1. If P =
{
C(1), C(2), . . . , C(N)

}
is Grassmann separable with a dimension-

k complete subspace configuration, then it is Grassmann separable with any dimension-k

subspace configuration.

Proof. Assume that P having dimension-k complete subspace configurations for each

distinct class is Grassmann separable, then the within-class distances are always less

than the between-class distances. Now, if P has dimension-k subspace configuration for

each distinct class, then for some class i there exists a pair of subspaces S
(i)
mi and S

(i)
ni

such that θmin(S
(i)
mi , S

(i)
ni ) = 0. This makes the within-class distances smaller than or

equal to the ones from before. Hence P with a dimension-k subspace configuration is

Grassmann separable.
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Converse is not necessarily true. Thus, for simplicity, we will adapt the notion of

complete subspace configuration without loss of generality in our examples and applica-

tions. In terms of the distance matrix D = (dij) given in Figure 4.3(a), P is Grassmann

separable if max
i=j

dij < min
i6=j

dij . Equivalently, P is Grassmann separable if D has zero

percent FAR at zero FRR as defined earlier in Chapter 3.3. Now, Grassmann separability

can be recast in this new language.

Definition 4.1.7. (Separation Gap) Let P be a set ofN distinct classes with dimension-

k (complete) subspace configurations for each i. Further let M be the maximum of the

match distances and m be the minimum of the non-match distances for some ℓ-truncated

Grassmannian semi-distance d. Then define separation gap to be gs = m−M .

It follows immediately from Definition 4.1.7 that gs > 0 implies P is Grassmann

separable. Figure 4.3(b) is obtained using the arc length on a Grassmann separable data

set with dimension-2 subspace configurations. It can be seen clearly that the diagonal

entries (match distances) have much lower intensity than the off-diagonal entries (non-

match distances). Figure 4.4 shows the box-whisker plot of Grassmann separable and

a non-Grassmann separable data sets. For a non-zero separation gap, the amount of

overlap between the maximum of the matching distances and the minimum of the non-

matching distances is measured by the FAR score.

( a ) ( b )V i s u a l i z a t i o n
Figure 4.3: Visualization of the distance matrix for a Grassmann separable data set
where distances of matching subspaces (diagonal entries) are smaller than the distances
of non-matching subspaces (off-diagonal entries).

Finally, since the central idea of this thesis is about classifying a set of images, the

common terms gallery and probe sets used in objection recognition are altered here to
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Figure 4.4: Illustrations of Grassmann and non-Grassmann separable data sets.

describe sets of sets of images. Thus, we consider the gallery and probe data to consist

of a set of points on a Grassmann manifold where each point is generated by computing

a basis from a set of images associated with a given class. For simplicity, let cardinality

of a point on the Grassmann manifold be the number of images used to construct such

a point on the manifold.

Definition 4.1.8. (Cardinality) Let cardinality of a point on the Grassmann manifold

be the number of distinct images used to construct such a point on the manifold. In

matrix notation, denote cardinality of a data matrix by the rank of that matrix.

4.2 Classification of Gender

We now illustrate the concept of Grassmann separability with two examples starting

with the classification problem of gender. It has been established that gender classifi-

cation of digital images of faces is a tractable problem [19]. Here we explore a slightly

different question: Is a set of images drawn from the male or female population? To

this end we use frontal images with neutral expressions and a single illumination setting

taken from the CMU-PIE database [74]. The complete image as supplied by CMU is

used, and no cropping or re-sampling is performed. There are 50 men and 17 women

in the CMU-PIE database. Therefore, 50 and 17 images are available for training and

testing the male class C+ and female class C−, respectively. The images of men are

partitioned into 40 training and 10 testing images. The images of women are partitioned

into 10 training and 7 testing images. For men, training points on the Grassmann mani-

fold are generated by randomly sampling 8 out of 40 images. Thus, there are 76, 904, 685

41



Figure 4.5: Example images used to construct the training and testing points for the
male and female classes.

ways to construct labeled points associated with C+. Testing points are generated by

randomly sampling 5 out of 10 images: there are 252 possible points associated with C−.

For women, training points are generated by randomly sampling 8 out of 10 images and

test points are generated by randomly sampling 5 out of 7 images. Clearly, the particu-

lars of sampling could vary. Example images used to construct points on the Grassmann

manifold are shown in Figure 4.5.

As described above, many-to-many set comparisons were carried out for the male-

female classification problem where male and female classes are represented by sets of

images. We present results for a training set consisting of 3 labeled points associated

with each class. The resulting misclassification rates are presented in Table 4.2 where we

vary the cardinality of the training points for the male and female classes. We found that

the number of labeled points belonging to each class used on the Grassmann manifold

impacts the classification outcome. Therefore ten trials were carried out to give a broader

idea of how this set-to-set comparison behaves. A total of 40 testing points were used,

where 20 are of male class and 20 are of female class. Admittedly the cardinality of

the testing and training points are ad hoc and additional exploration is warranted. This

example is illustrative of a non-Grassmann separable data set when using the 1-truncated

semi-distance and not intended to be a detailed study of the gender recognition problem.

The data set might become Grassmann separable if different parameters are used, such

as the value of ℓ in the (semi-)distance measures.
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Trial number
ℓ 1 2 3 4 5 6 7 8 9 10 µ± σ
1 0 0 0 0 0 0 22.5 0 10 0 3.25±7.46
2 35 0 0 5 12.5 27.5 22.5 5 10 7.5 12.5±11.96
3 30 0 0 0 0 27.5 27.5 5 22.5 0 11.25±13.66

Table 4.2: Error rates out of 40 testing points where 20 are of male class and 20 are of
female class. ℓ-truncated semi-chordal metric is used. The experiment is repeated ten
times where the mean and standard deviation is reported in the last column of the table.

4.3 Classification of Glasses

The data set used here is a subset of the “lights” portion of the CMU-PIE database,

where images were captured in neutral expression under a single illumination condition

with ambient lights on. Among the 67 subjects in this portion of the CMU-PIE database,

39 subjects were seen without glasses and 28 subjects were seen with glasses. Geometric

normalization is performed with this data set. A total of 39 images are available for

training and testing for the without-glasses class while 28 images were available for

training and testing for the with-glasses class. For the with-glasses class, we divide the

28 images into mutually disjoint sets of 20 and 8 for training and testing, respectively.

We further construct training points by randomly selecting 10 images in the list of 20

so that there are 184, 756 ways to construct a point for the training set. Similarly, we

construct testing points by randomly choosing 5 images in the list of 8 so that there are

56 ways to construct this testing point. For the without-glasses class, we divide the 39

images into mutually disjoint sets of 30 and 9 for training and testing, respectively. We

then have 30, 045, 015 and 126 possibilities for the training points and testing points,

respectively. See Figure 4.6 for the example images from the data set that are used to

construct the training and testing points for the with-glasses and without-glasses classes.

We observed that the average classification errors are less than two percent for training

points of cardinality 3 in each class and it is zero when training points of cardinality

10 are used for each class. See Table 4.3 for more details of the classification outcome.

Thus, when the 1-truncated semi-distance is used, this data set is Grassmann separable.
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(a) with-glasses class.

(b) without-glasses class.

Figure 4.6: (a) Example images used to construct training and testing points for the
with-glasses class. (b) Example images used to construct training and testing points for
the without-glasses class.

Trial number
ℓ 1 2 3 4 5 6 7 8 9 10 µ± σ
1 0 0 0 0 0 0 0 0 0 0 0
2 50 37.5 12.5 45 35 47.5 27.5 37.5 35 40 36.8±10.8
3 52.5 55 52.5 62.5 47.5 47.5 47.5 52.5 70 45 53.3±7.7

Table 4.3: Error rates out of 40 testing points where 20 are of with-glasses class and 20
are of without-glasses class. ℓ-truncated semi-chordal metric is used. The experiment is
repeated ten times with the mean and standard deviation shown in the last column.

44



Chapter 5

FACE RECOGNITION UNDER VARYING

ILLUMINATION

A popular multi-class problem that fits into the Grassmann framework is the face

recognition problem under varying illumination conditions. This is due to the fact that

the set of images of a general object illuminated by an arbitrary number of distinct point

light sources forms a convex polyhedral cone that lies near a low-dimensional linear

subspace [7, 4]. We will first review the theoretical and empirical evidence that lead

the these facts and present a few state-of-the-art techniques in solving the illumination

problem in Chapter 5.1. This Chapter is concluded with two successful classification

results on CMU-PIE and YDB with the Grassmann method in Chapters 5.2 and 5.3,

respectively. Readers who are interested in the experimental details and results are

referred to [14] and [13].

5.1 Background

Belhumeur and Kriegman have shown that the set of n-pixel monochrome images of

a convex, Lambertian object illuminated by an arbitrary number of distinct point light

sources forms a convex polyhedral cone in Rn, which they refer to as the illumination

cone [7]. They also established that the statement remains true for non-convex objects

under relaxed lighting conditions. Unfortunately, for most objects the exact illumination

cone is difficult to obtain, especially for non-convex human faces. However, experimental

work by Belhumeur et al. [34], and Kriegman et al. [54] show that this cone lies near a

low-dimensional linear subspace in the space of all possible images.

Further, Basri and Jacobs have demonstrated both theoretically and empirically

that the set of images of a convex, Lambertian object seen under arbitrary distant light
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sources can be well approximated by a 9-dimensional linear subspace [4]. In this context,

“well approximated” means that over 99% of the statistical variance is captured in the

subspace. Basri and Jabobs prove their result by representing reflectance functions

as linear combinations of spherical harmonics and further relating the representation

of images to the reflectance functions. Their theory shows that the first 9 harmonics

capture over 99% of the energy and that the high frequency components of the lighting

function have little effect on the reflectance function. Therefore, one can confidently

approximate the representation of the high-dimensional illumination face images with as

few as 9 harmonics.

In addition, Ramamoorthi transforms the problem of linear approximation with

spherical harmonics into linear approximation with principal components which can be

shown to be identical to the spherical harmonic basis functions evaluated at the surface

normal vectors under the same assumptions of Basri and Jacobs [70]. This prior work is

ample evidence for the utility of modeling illumination variation with low-dimensional

linear subspaces. Ramamoorthi provides an analytic construction of the principal com-

ponents which he uses to address the reason behind the variation in combinations of the

principal components when the distribution of the surface normals is given by a face.

The total energies captured by the first 9 principal components for images of a face as

well as images of a sphere under varying illumination condition are both over 99%.

In terms of building a classifier, Belhumeur et al. [34] developed a generative pro-

cedure that ultimately gives rise to a representation based on pose-specific illumination

cones for each face class, where single-to-many comparison is performed at the classi-

fication stage. In short, a single face representation consists of multiple pose-specific

illumination cones that are approximated linearly to capture over 99% of the variability,

i.e., Rf =
⋃many

p=1 Ip, where Ip is a linear approximation of the sub-sampled illumination

cone, Cp, for each pose p. This face representation is then projected down to Df to

further reduce the dimension. Recognition of a test image, x, is performed by first nor-

malizing it to unit length and then computing its distance to Df , for each f . Namely, x

is assigned to the identity of the closest face representation based on Euclidean distance

within the image space, i.e., x is assigned to the face identity f∗ for which f∗ satisfies

(f∗, p∗) = argmin
f,p

√

||x −Df ||2 + min
Ip∈Rf

||x− Ip||2.
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This way, the pose and identity information of the test image x can be revealed.

A similar but slightly different approach by Gross et al. is given in [39]. A set of

“ideal” eigen light-fields can be learned from a collection of training images from which

the identities are not necessarily found in the testing images. Images in the gallery

and probe are then written as linear combinations of the known eigen light-fields with

appropriate weights. A probe identity x is then assigned to the identity in the gallery

whose eigen light-field representation is the closest to that of x in the Euclidean sense.

The classification is based on many-to-many image comparisons where any number of

gallery and probe images captured at arbitrary poses per subject can be used. Better

classification outcomes are achieved as the number of images used in both gallery and

probe increases.

As powerful as both of these methods appear to be in terms of dealing with both

pose and illumination variations [7] or just pose variations [39], one major drawback lies

in the notion of training. For both of these classification schemes to work, a significant

amount of training has to be done a priori, thus making it harder to apply in real-time

face recognition. We will present in this section successful examples using the Grassmann

method without requiring any form of training. Namely, we will show that a subset of

the CMU-PIE data set and the Yale Face Database B are both Grassmann separable as

described in Chapter 4.1.

Two face data sets, Yale Face Database B (YDB) [34] and CMU-PIE [74], are

frequently used by researchers to explore how changing illumination alters the appearance

of human subjects; they are the largest publicly available data sets of face imagery to offer

many (64 and 21, respectively) illumination of each subject (10 and 67, respectively).

We will focus our attention on a subset of these two data sets where images are acquired

with frontal pose and neutral facial expression, so named the illumination data sets. As

mentioned in the previous section, such an illumination data set is lose to lying on a

low-dimensional linear subspace. Therefore, classification on such data sets satisfies the

framework for classification on the Grassmannians.

5.2 The Grassmann Separability of CMU-PIE

The PIE database includes imagery of 68 people under different pose, illumination

conditions, and expressions. Our focus here concerns illumination variations rather than
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(a) “lights” subset

(b) “illum” subset

Figure 5.1: (a) 7 example images of the “lights” subset of CMU-PIE database where
ambient lights are on. (b) 7 examples images of the “illum” subset of CMU-PIE database
where ambient lights are off.

pose, so only frontal (c27) images are used. For these frontal images, there are 21 dis-

tinct sources of lights used to illuminate the face. Preprocessing of the images include

geometric normalization based on known eye-coordinates and clipping prior to the clas-

sification. In addition, these 21 sources are sampled both with the background room

lights on (see Figure 5.1(a)) and the background room lights off (see Figure 5.1(b)).

For each of the two types of imagery, room lights on and room lights off, we have

randomly selected two disjoint sets of images Xi and Xj for 1 ≤ i, j ≤ 67 people in

the PIE Database 1. This sampling is “balanced” in so much as it is randomized rel-

ative to the specific illumination settings. The use of only 10 images to estimate the

illumination space is probably approaching a lower bound on the necessary number of

samples. To augment the sample, the mirror reflection of each image is also included in

the image set when estimating illumination subspaces. See Figure 5.2 for an example

mirror image created by reflecting through the midline. Augmentation of the data set

via inclusion of the mirror images effectively increases the available data [51]. Further-

more, this symmetrization of the data set imposes even and odd symmetry on the basis

functions analogous to sinusoidal expansions. For sets of facial images under varying

illumination conditions, reflection augmentation drastically improves the estimated lin-

ear representation by both increasing the effective sample set size and introducing novel

illumination conditions. As a consequence, the approximation of illumination spaces can

be improved without acquiring more data.

1One subject was not used because 3 images of subject 39 were missing due to hardware problems
during the process of image acquisition.

48



O r i g i n a l M i r r o r i m a g e
Figure 5.2: A mirror image is created by reflecting column pixels with respect to the
vertical midline of the face.

Figure 5.3 summarizes the results for the room lights off and room lights on. Each

plot shows the FAR at zero FRR using four ℓ-truncated Grassmannian semi-distance

measures, for 1 ≤ ℓ ≤ 20. The values shown are averages taken over ten trials, therefore

creating 670 match pairs and 10(672 − 67) non-match pairs. In each trial, random pairs

of disjoint sets are created for each of the 67 people in the PIE database. Notice that,

for instance, the chordal semi-distance perfectly separates all subjects in the PIE data

set for all values of ℓ in both cases of lighting conditions. Therefore, this subset of the

CMU-PIE data set is Grassmann separable. See [13] for different sampling and lighting

conditions where Grassmann separability is observed.

5.3 The Grassmann Separability of YDB

The YDB [34] has far fewer subjects than PIE. Nonetheless, it is worth studying

because it is the oldest and most studied illumination database, and because it has a

large number of images per subject. See Figure 5.4 for example variations of illumination

of a single subject. For each of the ten subjects, two disjoint sets have been created by

randomly sampling from the 64 images per person. Then, these sets have been compared

using four (ℓ-truncated) Grassmannian semi-distance measures applied to the estimated

illumination subspaces. The results when image sets contain only 8 and 16 images are

summarized in Figure 5.5. Notice that none of the Grassmannian semi-distances perfectly

separate all subjects in YDB when only using 8 images plus their mirrors to estimate

subspaces. However, the chordal semi-distance perfectly separates all subjects in YDB

for all values of ℓ when using 32-dimensional (16 plus mirrors) subspace representations.
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Figure 5.3: Plots of False Accept Rate (FAR) at a zero False Reject Rate (FRR) for
the PIE database divided into frontal images with room lights on and room lights off.
Between 1 and 20 principal angles are included in the Grassmannian semi-distance com-
putation as shown along the horizontal axis.

Figure 5.4: 14 example images of the Yale Face Database B.

The YDB experiment was also carried out for 21 and 32 samples and the results are

summarized in Table 5.1.

It is important to notice that although YDB is not Grassmann separable when using

8 samples and their mirrors to create subspace representation, it is Grassmann separable

when using 16 and more. Grassmann separability greatly depends on ways of partition

on the available data, i.e., subspace configuration and dimension k. Also note that

Fubini-Study tends to decrease its performance as we increase the number of principal

angles in the construction of the metric. We suspect that this is due to the nature of the

cosine function and the fact that two random vectors in a high-dimensional space are

most likely to be orthogonal. While the later angles tend to be close to orthogonal, cosine

of these angles tend to be close to zero. These small numbers erase any discriminatory

ability offered by the smaller angles in the expression of Fubini-Study, hence causing
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Figure 5.5: Plots of False Accept Rate (FAR) at a zero False Reject Rate (FRR) for YDB.
Left: 8 samples and their mirrors are used in creating subspaces. Right: 16 samples and
their mirrors are used in creating subspaces. The horizontal axis shows various various
values of ℓ.

n mirror dg dcF dc dFS

8 no 20.19 18.00 10.97 38.44
8 yes 1.07 1.04 1.02 1.06
16 no 0.07 0.06 0.02 0.13
16 yes 0.00 0.00 0.00 0.00
21 no 0.00 0.00 0.00 0.00
21 yes 0.00 0.00 0.00 0.00
32 no 0.00 0.00 0.00 0.00
32 yes 0.00 0.00 0.00 0.00

Table 5.1: Symmetric comparison. FAR at zero FRR for various ℓ-truncated Grassman-
nian semi-distance measures averaged over 5 ≤ ℓ ≤ 10, applied to illumination spaces
estimated from n disjoint samples from YDB. dg: geodesic; dcF : chordal Frobenius; dc:
chordal (projection F); dFS : Fubini-Study.
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the metric to be ineffective. To understand the optimal number of angles needed in

construction of each metric in order to ensure successful classification performance is

itself an interesting topic and warrants careful examination in the future. In particular,

methods which consider only the first principal angle or all the principal angles will fail

to discover the Grassmann separability discovered by the ℓ-truncated measures, see the

left plot of Figure 5.5. Furthermore, metric selection in achieving optimal classification

outcome also plays an important role in geometric data analysis and is an open question

in the community.
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Chapter 6

FACE RECOGNITION UNDER VARYING

ILLUMINATION AND POSE

Face recognition under variations in illumination and pose has long been recognized

as a difficult problem with pose appearing somewhat more challenging to handle than

variations in illumination [96]. A direct approach to deal with such images has been to

develop algorithms that normalize for variations in illumination and then to focus on a

solution for pose [71], [39]. In contrast, as is shown in [4] and [13], it is an appealing and

plausible idea that sets of images acquired under varying or non-uniform illumination

conditions possess valuable discriminatory information. Furthermore, both theoretical

and empirical evidence have demonstrated that there exist low-dimensional representa-

tions for a set of images of a fixed object under variations in illumination conditions [7, 4].

This suggests that a wider range of discriminatory information can be captured in a low

dimensional model as opposed to discarding a portion of the data as noise. This obser-

vation is not new and examples of algorithms that attempt to solve the face recognition

problem under variations of illumination and pose without factoring out the illumination

variations are [97, 40, 34, 10]. Readers who are interested in the details of the following

discussions are referred to [16].

Algorithms that are successful in recognizing subjects in uncontrolled environments

rely on good models for both illumination and pose variations. In the typical repre-

sentation of image data, variation in illumination is inherently linear. More precisely,

images collected under a convex set of illumination conditions themselves form a convex

set [34] and a vast majority of the energy of such data can be captured with a relatively

low-dimensional linear space [4]. In contrast, the collection of images captured under

variations in pose is not inherently linear. As a consequence, linear methods such as
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those based on the SVD perform poorly when pose variations are included. One natu-

ral nonlinear approach for addressing pose variations is with a 3D Morphable Model as

described in [10]. Such non-linear approaches often come with the expense of a training

phase and manual feature extraction at the recognition stage.

When a collection of images are available for a subject, we view the data as sampling

(with noise) an underlying manifold. In this context, the underlying data manifold, M ,

captures pose and illumination variations of a fixed subject. If we fix an illumination

condition, then the underlying data manifold, X , captures pose variation. There is a

natural map φ : M → X (under the fixed illumination condition). The fibers of the map

(i.e. the inverse images of points on X) capture variations in illumination for a fixed

pose. For each pose we can capture, with a low-dimensional linear space, the variations

in illumination. Fixing the dimension of the linear space used to capture the illumination

data to be k, we obtain a map of X into the parameter space of k-dimensional linear

spaces inside the ambient space used to represent the images. We proceed with this

model in the background. As we shall see, the Grassmann method works well in this face

recognition problem without training. Literature review for this problem is presented in

Chapter 6.1 and we present a suite of experiments that illustrate the effectiveness of the

Grassmann method in Chapter 6.2. Note that we attempt to demonstrate the robustness

of the Grassmann method by purposely omitting the preprocessing stage: we employ the

Extended Yale Face Database B (E-YDB) [34] and CMU-PIE [74] Database with none

of the images geometrically normalized and with registration essentially ignored.

6.1 Background

We review a few start-of-the-art models here to compare and contrast with the ex-

perimental results shown in Chapter 6.2. Works of [29, 50, 64] also used the set-to-set

framework to solve a general object recognition problem under varying illumination and

viewpoints. However, variations in illumination are normalized away before identifica-

tion. We will focus on algorithms that model both the illumination and pose variations

in the following discussions since we have established in the previous Chapter that illu-

mination variations are potentially discriminatory.

A work which utilizes joint information given by variations in both illumination and

pose and that is related to our work is given by Belhumeur et al. [34]. They devel-

oped a generative procedure that gives rise to a representation based on pose-specific
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illumination cones for each face class. A single face representation consists of multiple

pose-specific illumination cones that are approximated linearly to capture over 99% of

the variability. Recognition of a test image is performed by first normalizing its vector

representative to unit length and then computing its distance to each face representation.

This way, the pose and identity information of the test image can be revealed. When

tested on the Yale Face Database B [34], the average error rate reported in [34] is about

2.9% out of 4050 (45 illuminations × 9 poses × 10 subjects) images tested. The algorithm

performs the worst on extreme illumination and pose conditions with 12.6% error rate

out of 420 (14 illuminations × 3 poses × 10 subjects) images tested. Note that the most

extreme illumination conditions were not even considered and it is reported in [72] that

this is the best result obtained on YDB. Further note that the illumination cone method

uses a single-to-many classification scheme, which is fundamentally different from the

one afforded by the set-to-set method proposed in this thesis.

Another example by Gross et al. [40] uses the concept of light field [39] to handle pose

variations and Fisher Discriminant Analysis (FDA) to handle the illumination variations,

as described in Chapter 5.1.

The average error rate when using testing images from CMU-PIE Database (see

Figure 6.1) that are comparable to those of the Extended YDB is about 10.5% (c07, c09,

c11, c37), while the average error rate is about 14.5% on FaceIt, the commercial face

recognition system from Visionics, using the same images from CMU-PIE Database [39].

When tested on the CMU-PIE Database, the average error rate for the Fisher light-field

method is about 53%, while it is 59% for the eigen light-field method when the gallery

set consists of simply the frontal pose and frontal illumination. The pose variations in

CMU-PIE are significantly more difficult to recognize compared to those in the Extended

YDB. The error rate is improved slightly when the variation of illumination is handled

by a Lambertian reflectance model [97] with 47% in the most difficult case. In all the

cases above, pose and illumination conditions for the probes are different than the ones

from the gallery. Moreover, in all of the methods reported above, a significant amount

of training is required.

It is reported in a recent survey paper [72] that the best recognition result on the

“lights” subset of PIE is achieved by a 3D Morphable Model [10] when using only front,

side, and profile views in both gallery and probe set. In particular, when the gallery and
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 ! "#$%!& Figure 6.1: Illustration of pose variations in CMU-PIE Database.

probe sets both contain images of profile views, the recognition error rate is 10.6% across

all illuminations. However, there are two limitations to the practical version of the 3D

morphable model. Training of the faces are required in order to build a 3D model and

it is necessary to manually select 7 landmark points on probe images to provide a good

estimate of 3D pose. This hinders the algorithm from being automatic.

6.2 Empirical Results

The data sets we used to empirically test our algorithm are the Extended Yale Face

Database B (E-YDB) [34] and the “illum” subset of the CMU-PIE Database [74]. For the

E-YDB, there are 28 different subjects each recorded under 9 poses and 65 illumination

conditions. For the CMU-PIE Database, there are 67 subjects each recorded under 13

poses and 21 illumination conditions. We denote the image corresponding to subject s,

pose p and illumination condition i by Js,p,i. See Figure 6.2 for an illustration of images

with variations in pose and illumination from the E-YDB. As you can see, the images in

these databases are coarsely centered and coarsely controlled. The rough nature of the

data makes the experiments applicable to a wider variety of real-life applications. We

consider three experiments to test the proposed algorithm.

In Experiment I, the poses are treated separately. In Experiments II and III, the

poses are pooled for each subject. In Experiments I and II, we include the probe pose

in the gallery and the probe and gallery images each use a distinct set of k illuminations

taken from each pose. These two experiments are merely a sanity check. Any recognition

algorithm that claims to be successful in dealing with variations of illumination and pose

should perform very well in these two experiments. In Experiment III, we remove the
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Figure 6.2: Example images in the E-YDB that are used in the experiments.

probe pose from the gallery in addition to using a distinct set of k illuminations. To this

end, we test the algorithm’s ability to recognize novel viewpoints.

We describe the experiments below for a single probe set. Let the number of distinct

subjects in either the E-YDB or the CMU-PIE Database be s0, the number of distinct

poses be p0, and the number of distinct illuminations be i0. The distance measure used

will be d = dℓ
c in the following experiment descriptions. We will describe how the set

of probe and gallery images are selected, indicate how error statistics are compiled and

analyze the results.

Experiment I

In Experiment I we view each pose as an additional subject in the database while re-

taining the information that each of the p0 poses are associated with a given subject.

The probe set (resp. gallery set) associated with subject α and pose β is written as Pα,β

(resp. Gα,β). We have

Pα,β =
⋃

i∈IP

Jα,β,i and Gα,β =
⋃

i∈IG

Jα,β,i,

where IP denotes the set of illuminations associated with the probe and IG denotes the

set of illuminations associated with the gallery. The set of indices defining IP and IG is
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chosen randomly with the restriction that IP ∩ IG = ∅. In Experiments I, II, and III,

we let the cardinality of IG and IP be k and let them be denoted by |IG| and |IP |, with

k = 16 for E-YDB and k = 10 for CMU-PIE. For a fixed α and β,

Ps∗,p∗ = arg min
s,p

d(Pα,β , Gs,p).

If s∗ = α and p∗ = β, then we have achieved the correct classification. Thus a single

pose of a single subject is compared individually to each pose set of each subject. In

essence this requires the algorithm to recognize both pose and identity. See Figure 6.3

for an illustration of the experiment.

Figure 6.3: Illustration of Experiment I.

Experiment II

We now consider the case where, for the gallery, we pool the different poses and illumi-

nations into a single set associated with each subject, i.e.,

Gs =

p0⋃

p=1

⋃

i∈IG

{Js,p,i}.

Now the gallery set consists of s0 sets of images where each set has p0 different poses

and |IG| illuminations. Again, a single probe set Pα,β is associated with one subject α

and one pose β over a set of |IP | illuminations. For a fixed α and β, we solve

Ps∗ = arg min
s

d(Gs, Pα,β).
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If s∗ = α, then the classification is correct. See Figure 6.4 for an illustration of the

experiment.

Figure 6.4: Illustration of Experiment II

Experiment III

In this experiment we remove the pose associated with the probe from all of the sets in

the gallery. Hence, for each α = 1, . . . , s0 and β = 1, . . . , p0 we seek to solve the equation

Ps∗ = arg min
s

d(G′
s, Pα,β),

where

G′
s =

p0⋃

p=1
p6=β

⋃

i∈IG

{Js,p,i}.

If s∗ = α, then classification is correct. See Figure 6.5 for an illustration of the experi-

ment.

For each experiment we compute the errors using each pose and each subject, there-

fore a total of 28 × 9 = 252 probe points for E-YDB and 67 × 13 = 871 for CMU-PIE.

In addition, we randomly partition i0 illumination conditions into two disjoint sets of k,
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Figure 6.5: Illustration of Experiment III

Database Experiment
I II III

Extended YDB 0 0 6.7
CMU-PIE 0 0 43.2

Table 6.1: Average recognition error rate for Experiments I – III with d1
c on both Ex-

tended YDB and CMU-PIE.

one for the gallery and the other for the probe. Table 6.1 shows the recognition rates in

the nearest neighbor sense for experiments I – III on both databases when using the 1-

truncated chordal distance d1
c .

To visualize the contrast in performance of the algorithm for Experiments I and II

versus Experiment III, we examine the first principal vector for a set of probe and gallery

points using images in CMU-PIE in each Experiment in Figures 6.6 and 6.7. When the

probe pose for each subject is present in the gallery, the algorithm is able to come up

with a good representation in the gallery that models the pose in the probe. However,

when the probe pose is not found in the gallery, the algorithm can only use the variations

in the gallery to try and come up with a representation that matches the probe pose as

60



closely as possible. This observation is built upon the fact that a subject’s pose manifold

is nonlinear in its standard representation and we are using methods that are linear in

nature.

Figure 6.6: Top: first principal vector for a sample probe. Bottom: first principal vector
for the correct gallery set that the algorithm identifies for experiments I, II , and III
from left to right. The first principal angle between the top and bottom vector is 0.066,
0.069, and 0.269 radians, from left to right.

To further understand which viewpoints are difficult to handle, we look specifically

at the individual error rates for each viewpoint in CMU-PIE in Table 6.2. We note that

recognition results for probe poses c07, c09, c25, and c31 are not reported in studies [10,

97] and we observed the highest error rates on these poses in our experiments. Without

consideration of those 4 poses, our error rate is approximately 26.9% for CMU-PIE in

Experiment III. We suspect the reason for the degradation of the algorithm’s performance

for these 4 poses is due to the variation in depth of field on top of the actual pose variation.

We also conducted experiments where the only variations in the gallery and probe

is the viewpoint. For each probe and gallery set in E-YDB and CMU-PIE, we randomly

chose 4 and 6 non-overlapping poses and calculated their mirror images to create sets

of 8 and 12 distinct pose images, respectively. Then for each α = 1, . . . , s0, we solve

61



(a) (b) (c)

(d) (e) (f)

Figure 6.7: (c) The first principal vector for a sample probe. (f) The first principal
vector for the incorrect gallery set that the algorithm identifies for experiments III.
(a),(b) First principal vector for a sample probe point. (d),(e) First principal vector
of a sample gallery point of a different subject from the ones in (a) and (b). The first
principal angle between the top and bottom vector is 0.731, 0.275, and 0.369 radians,
from left to right.

Ps∗ = arg mins d(Gs, Pα), where

Gs =
⋃

p∈PG

i=frontal

{Js,p,i}

and PG denotes the set of poses associated with this gallery set. We repeat this ex-

periment 10 times to create a total of 10 × s0 probe sets. The average error rate is

32.1% and 19.4% for E-YDB and CMU-PIE, respectively. We suspect the reason why

the error rate for CMU-PIE is smaller than it is for E-YDB is because there are more

pose variations in CMU-PIE, hence creating a better sampled characterization for the

subjects. This observation supports the claim that the proposed algorithm captures the

characteristics within a family of patterns and can be extended to handle other general

object recognition problems.

As mentioned in Chapter 3.4, the Grassmann method comprises of two major steps:

QR-decomposition of the representation matrices and SVD of the inner product of the
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pose c02 c05 c07 c09 c11 c14 c22
error (%) 13.4 31.3 83.6 73.1 0 1.5 23.9

pose c25 c27 c29 c31 c34 c37
error (%) 82.1 22.4 16.4 80.6 76.1 56.7

Table 6.2: Average break-down recognition error rate for each pose in Experiment III
using d1

c on CMU-PIE. We observe that some pose subsets perform much better than
others.

3DMM Illum. Cone Grassmann method
Data set used “lights” of PIE YDB “illum” of PIE

Image resolution 200 × 200 42 × 36 367 × 401
2.5 min. 2.5 sec./gal. ind. 0.65 sec./gal. ind.

Id time/probe Pentium IV Pentium II AMD Opteron
2.0GHz 300MHz 2.8 GHz

Table 6.3: Computational speed of two state-of-the-art face recognition algorithms and
the Grassmann method. Given the disparity in processors and in image resolution, care
must be exercised in interpreting CPU time.

Q matrices. On a 2.8GHz AMD Opteron processor, it takes approximately 0.4 seconds

to do a qr on a single probe set of size 147167× 10 and 0.25 seconds to do an economy

size SVD of a matrix of size 120× 10. Therefore, it costs about 0.65 seconds to compare

a single pair of probe and gallery point with the Grassmann method (in Experiment

III on CMU-PIE). Table 6.3 shows the computational speed for a few state-of-the-art

algorithms along with the Grassmann method. Note that our algorithm is significantly

faster if the image resolution is smaller. Recall, we purposely omit the preprocessing

stage in order to reflect the robustness of the algorithm, therefore the computational

speed can be improved once low resolution images are used. On the other hand, we

suspect that classification rates can be improved if images are geometrically registered.

Moreover, novel probe pose can be better approximated from a larger pool of gallery

poses. Thus, we envision a more successful classification result if a larger data set is

used.
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Chapter 7

FACE RECOGNITION WITH PATCH

COLLAPSING

We concluded from Chapter 5 that digital images of a human face, collected under

various illumination conditions, contain discriminatory information that can be used in

classification. In this chapter, we will demonstrate that sufficient discriminatory infor-

mation persists at ultra-low resolution to enable a computer to recognize specific human

faces in settings beyond human capabilities. To obtain this result, we will introduce the

notion of patch collapsing as a form of linear projection and review a well-known class

of such projections in Chapter 7.2 after setting up the background work in Chapter 7.1.

We will then utilize the Haar wavelet, which is a class of the patch collapsing, to modify

a collection of images to emulate pictures from a 25-pixel camera and show that perfect

classification results can be obtained on the CMU-PIE database with the Grassmann

method in Chapter 7.3. Since facial imagery at ultra-low resolution is typically not

recognizable or classifiable by human operators, we can envision saving large private

databases of facial imagery at a resolution that is sufficiently low to prevent recognition

by a human operator yet sufficiently high to enable machine recognition. Some discus-

sions on why the method works well in this setting are given in Chapter 7.4. Readers

who are interested in the details of the following discussions are referred to [15].

7.1 Background

A variety of studies consider the roles of data resolution and face recognition, in-

cluding [53, 27, 60, 59, 86]. A common feature of these studies is the practice of using

single-to-single image comparison in the recognition stage (with the exception of [86]).

Among the techniques used to train the algorithms are PCA, LDA, ICA, Neural Net-

work, and Radial Basis Functions. Some of the classifiers used are correlation, similarity
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score, nearest neighbor, neural network, tangent distance, and multiresolution tangent

distance. If variation in illumination is present in the data set, it is removed by either

histogram equalization [25] or morphological nonlinear filtering [30]. Except in [86], the

variation of illumination was treated as noise and eliminated in the preprocessing stage

before the classification takes place.

In a more related study, Vasconcelos and Lippman proposed the use of transforma-

tion invariant tangent distance embedded in the multiresolution framework [86]. Their

method, based on the (2-sided) tangent distance between manifolds, is referred to as

the multiresolution tangent distance (MRTD) and is similar to our approach in that

it requires a set-to-set image comparison. It is also postulated that the use of a mul-

tiresolution framework preserves the global minima that are needed in the minimization

problems associated with computing tangent distances. The results of [86], however, are

that when the only variation in the data is illumination, the performance of MRTD is

inferior to that of the normal tangent distance and Euclidean distance. Hence, it ap-

pears that the framework of [86] does not sufficiently detect the idiosyncratic nature of

illumination at low resolutions.

In summary, we use an algorithm for classification of image sets that requires no

training and retains its high performance rates even at extremely low resolution. To our

knowledge, no other algorithm has claimed to have achieved perfect separability of the

CMU-PIE database at ultra low resolution.

7.2 Mathematics of Patch Collapsing

There are several families of linear transformations which are natural and useful

to consider in the context of face recognition. Patch Collapsing is generally known as a

technique to reduce resolution of images while maintaining global neighboring structures.

Definition 7.2.1. (Patch Collapsing) Consider a partition of the components of a

vector, V , into disjoint sets P1∪P2∪· · ·∪Pd. Patch collapsing is the operation of replacing,

for each i between 1 and d, the components in Pi with a fixed weighted average of these

components. This operation can be expressed as a linear map L : Rn → Rd ⊂ Rn.

Example 7.2.1. An example of the patch collapsing is the partitioning of a digital

image into regions as provided by the scaling spaces in the Haar wavelet decomposition.

See Figure 7.1 for illustrations of this type.
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Figure 7.1: Illustration of patch collapsing using Haar wavelet.

Since we use a two-dimensional Discrete Wavelet Transform to emulate low resolu-

tion images, we will briefly review the general concept of multiresolution analysis (MRA)

and its connection to the nested Grassmannians here.

MRA works by projecting data in a space V onto a sequence of nested subspaces

· · · ⊂ Vj+1 ⊂ Vj ⊂ Vj−1 ⊂ · · · ⊂ V0 = V.

The subspaces Vj represent the data at decreasing resolutions and are called scaling

subspaces or approximation subspaces. The orthogonal complements Wj to Vj in Vj−1

are the wavelet subspaces and encapsulate the error of approximation at each level of

decreased resolution. For any natural number j, we have an isomorphism

φj : Vj−1
∼−→ Vj ⊕Wj .

Let πj : Vj ⊕Wj → Vj denote projection onto the first factor and let ψj = πj ◦ φj . This

single level of subspace decomposition is represented by the commutative diagram in

Figure 7.2(a).

LetG(k, V ) denote the Grassmannian of k-dimensional subspaces of a vector space V .

Suppose that V, V ′ are vector spaces, and that f : V → V ′ is a linear map. Let ker(f)

be its kernel and let

G(k, V )◦ = {A ⊂ V | dim(A) = k and A ∩ ker(f) = 0}.

If k + dimker(f) ≤ dimV , then G(k, V )◦ is a dense open subset of G(k, V ), so almost

all points in G(k, V ) are in G(k, V )◦. Now if A ∩ ker(f) = 0, then dim f(A) = dimA, so

f induces a map

f◦
k : G(k, V )◦ → G(k, V ′).
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Figure 7.2: (a) Projection maps between scaling and wavelet subspaces for a single level
of wavelet decomposition. (b) Projection maps between nested Grassmannians for a
single level of decomposition.

Furthermore, if f is surjective then so is f◦. The linear maps of the MRA shown in (a)

of Figure 7.2 thus induce the maps between Grassmannians shown in (b) of the same

figure.

Finally, we observe that if A,B are vector subspaces of V , then dim(A ∩ B) =

dim(f(A)∩f(B)) if and only if (A+B)∩ker(f) = 0. In particular, when (A+B)∩ker(f) =

0 and ℓ ≤ min{dimA, dimB}, then dℓ(A,B) = 0 if and only if dℓ(f(A), f(B)) = 0 for

some Grassmannian distance d.

From this vantage point, we consider the space spanned by a linearly independent

set of k images in their original space on the one hand, and the space spanned in their

reduced resolution projections on the other hand, as points on corresponding Grassmann

manifolds. Distances between pairs of sets of k distinct images or their low-resolution

versions can then be computed using the truncated semi-distances dℓ on these Grassmann

manifolds. The preceding observation insures that for sufficiently general resolution-

reducing projections, spaces which were separable by dℓ remain separable after resolution

reduction. Of course, taken to an extreme, this statement can no longer hold true. It is

therefore of interest to understand the point at which the separability fails.

What we meant by sufficiently general resolution-reducing projections is really rank-

preserving projections in the sense that after projection, the minimal principal angle

does not become zero. In that case, the first principal angle between two elements on

the Grassmannians decreases as the resolution decreases. Thus, as long as the wavelet

transform preserves the rank of the subspaces at each level of decomposition, we are

guaranteed to have decreasing minimal principal angles as the resolution decreases. The

orthogonal Haar Wavelet is a sufficiently general resolution-reducing projection.

Now, we look at the result of applying MRA to digital face images. In a 2-

dimensional Discrete Wavelet Transform (DWT), columns and rows of an image I each

67



(a) Original (b) LL (c) HL (d) LH (e) HH

Figure 7.3: An illustration of the sub-images from a single level of Haar wavelet analysis
on an image in CMU-PIE. From left to right: original image, approximation, horizontal,
vertical, and diagonal detail.

undergo a 1-dimensional wavelet transform. After a single level of a 2-dimensional DWT

on an image I of size m-by-n, one obtains four sub-images of dimension ⌈m
2 ⌉-by-⌈n

2 ⌉. If

we consider each row and column of I as a 1-dimensional signal, then the approximation

component of I is obtained by a low-pass filter on the columns then a low-pass filter

on the rows and sampled on a dyadic grid. The other 3 sub-images are obtained in a

similar fashion and collectively, they are called the detail component of I. The approx-

imation component of an image after a single level of wavelet decomposition with the

Haar wavelet is equivalent to averaging the columns, then the rows. See Figure 7.3 for

an illustration of the sub-images obtained from a single level of Haar wavelet analysis.

To use wavelets to compress a signal, we sample the approximation and detail com-

ponents on a dyadic grid. That is, keeping only one out of two wavelet coefficients at

each step of the analysis. The approximation component of the signal, Aj , after j it-

erations of decomposition and down-sampling, will serve as the same image in level j

with resolution ⌈m
2j ⌉-by-⌈ n

2j ⌉. In the subsequent discussions, we present results obtained

by using the approximation subspaces. However, similar results obtained by using the

wavelet subspaces are also observed.

7.3 Empirical Results

The experiment presented here follows the protocols set out in [13], where it was

established that CMU-PIE is Grassmann separable. This means that using one of the

distances dℓ on the Grassmannian, the distance between an estimated illumination space

of a subject and another estimated illumination space of the same subject is always

less than the distance to an estimated illumination space of any different subject. In

this new experiment we address the question of whether this idiosyncratic nature of the

illumination spaces persists at significantly reduced resolutions. As described below,
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we empirically test this hypothesis by calculating distances between pairs of scaling

subspaces. The results of the experiments performed on the “illum” subset of the CMU-

PIE database is summarized in Figure 7.5. The results obtained by running the same

experiment on the “lights” subset were not significantly different.

For each of the 67 subjects, we randomly select two disjoint sets of 10 images to

produce two 10-dimensional estimates of the illumination space for the subject. Two

estimated spaces for the same subject are called matching subspaces, while estimated

subspaces for two distinct subjects are called non-matching subspaces. The process of

random selection is repeated 10 times to generate a total of 670 matching subspaces and

44,220 non-matching subspaces. We mathematically reduce the resolution of the images

using the Haar wavelet, effectively emulating a camera with a reduced number of pixels

at each step. As seen in Figure 7.4, variations in illumination appear to be retained

at each level of resolution, suggesting that the idiosyncratic nature of the illumination

subspaces might be preserved. At the fifth level of the MRA the data corresponds to

that which would have been captured by a camera with 5 × 5 pixels. We observe that

at this resolution the human eye can no longer match an image with its subject.

The separability of CMU-PIE at ultra low resolution is verified by comparing the

distances between the matching to the non-matching subspaces as points on a Grassmann

manifold. When the largest distance between any two matching subspaces is less than the

smallest distance between any two non-matching subspaces, the data is called Grassmann

separable. This phenomenon can be observed in Figure 7.5. The three lines of the box

in the box whisker plot shown in Figure 7.5 represent the lowest quartile, median, and

upper quartile values. The whiskers are lines extending from each end of the box to show

the extent of the rest of the data and outliers are data with values beyond the ends of

the whiskers.

Using d1, i.e., a distance based on only one principal angle, we observe a signif-

icant separation gap between the largest and smallest distance of the matching and

non-matching subspaces throughout all levels of MRA. Specifically, the separation gap

between matching and non-matching subspaces is approximately 16◦, 18◦, 17◦, 14◦, 8◦,

and 0.17◦ when subspaces are realized as points inG(10, 22080),G(10, 5520),G(10, 1400),

G(10, 360), G(10, 90), and G(10, 25), respectively. Note that the non-decreasing trend of

the separation gap is due to the random selection of the illumination subspaces.
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As expected, the separation gap given by the minimal principal angle between the

matching and non-matching subspaces decreases as we reduce resolution. But never to

the level where points on the Grassmann manifold are misclassified. In other words,

individuals can be recognized at ultra-low resolutions provided they are represented by

multiple image sets taken under a variety of illumination conditions.

It is curious to see if similar outcomes can be observed when using unstructured pro-

jections, e.g., random projections, to embed subject illumination subspaces into spaces

of significantly reduced dimensions. To test this, we repeated the experiments described

above in this new setting. Subject illumination subspaces in their original level of resolu-

tion were projected onto low dimensional spaces via randomly determined linear transfor-

mations. Error statistics were collected by repeating the experiment 100 times. Perfect

separation between matching and non-matching subspaces occurred when subject illumi-

nation subspaces were projected onto random 35-dimensional subspaces. This validates

the use of digital images at ultra low resolution and emphasizes the importance of illu-

mination variations in the problem of face recognition. Furthermore, while unstructured

projections perform surprisingly well in the retention of idiosyncratic information, struc-

tured projections that exploit similarities of neighboring pixels allow perfect recognition

results at even lower resolutions.

We remark that the idiosyncratic nature of the illumination subspaces can be found

not only in the scaling subspaces, but also in the wavelet subspaces. Indeed, we observed

perfect separation using the minimal principal angle in almost all scales of the wavelet

subspaces.

7.4 Discussions

We have shown that a mathematically emulated ultra low-resolution illumination

space is sufficient to classify the CMU-PIE database when a data point is a set of images

under varying illuminations, represented by a point on a Grassmann manifold. We assert

that this is only possible because the idiosyncratic nature of the response of a face to

varying illumination, as captured in digital images, persists at ultra low resolutions.

This is perhaps not so surprising given that the configuration space of a 25-pixel camera

consists of 25625 different images and we are comparing only 67 subjects using some 20

total instances of illumination. The representation space is very large compared to the
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(a) (b)

Figure 7.4: Left to right: four distinct illumination images of subjects 04006 (a) and
04007 (b) in CMU-PIE. To to bottom: level one to level five approximation obtained
from applying 2D discrete Haar wavelet transform to the top row.

1 202 04 06 08 01 0 01 2 0d egrees m a t c h n o n m a t c h
O r i g i n a l

1 25 01 0 0d egrees m a t c h n o n m a t c h
L L 1

1 202 04 06 08 01 0 01 2 0d egrees m a t c h n o n m a t c h
L L 2

1 202 04 06 08 01 0 01 2 0d egrees m a t c h n o n m a t c h
L L 3

1 202 04 06 08 01 0 01 2 0d egrees m a t c h n o n m a t c h
L L 4

1 202 04 06 08 01 0 01 2 0d egrees m a t c h n o n m a t c h
L L 5

Figure 7.5: Box whisker plot of the minimal principal angles of the matching and non-
matching subspaces. Left to right: original (resolution 160×138), level one Haar wavelet
approximation (80×69), level two (40×35), level three (20×18), level four (10×9), level
five (5×5). Perfect separation of the matching and non-matching subspaces is observed
throughout all levels of MRA.
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amount of data being stored. Furthermore, the reduction of resolution that was utilized

takes advantage of similarities of neighboring pixels. The algorithm introduced here is

computationally fast and can be implemented efficiently. In fact, on a 2.8GHz AMD

Opteron processor, it takes approximately 0.000218 seconds to compute the distance

between a pair of 25-pixel 10-dimensional illumination subspaces.
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Chapter 8

FACE RECOGNITION WITH PATCH

PROJECTION

Experience suggests that whenever identification of an individual is made by a hu-

man operator, a computer, or some combination of the two, both the holistic character-

istics and the local characteristics of the individual can aid in a successful classification.

The role, suggested by experience, of both local and global data has been confirmed by

psychophysicists, neuroscientists and data analysts [18]. One can imagine a situation

where only local features of an individual are available (perhaps due to an occlusion

or some other modification). In this setting, it is useful to be able to extract as much

information as possible from the data on hand.

We concluded from Chapter 5 that digital images of a human face, collected under

various illumination conditions, contain discriminatory information that can be used in

classification. Other work has focussed on the ability to classify using feature patches

of the human face (i.e. sub-images of an image of a human face such as nose, eyes, lips,

etc.). In this chapter, we will first set up the background works in Chapter 8.1 and define

a mathematical notion of feature patches in Chapter 8.2. We combine the use of feature

patches and subject illumination spaces to demonstrate that sufficient discriminatory

information persists in feature patch illumination spaces to enable a computer to recog-

nize specific human faces in settings far beyond human capabilities. Not unexpectedly,

the amount of discriminatory information contained in a feature patch varies depending

on the size and location of the patch. It is shown in Chapter 8.3 that for some feature

patches, perfect classification rates were achieved for the 67 individuals in the CMU-

PIE database using well under one percent of the image. In particular, it is shown that

when the images are geometrically normalized based on known eye locations and coupled

73



with variations of illumination, characteristics given by the rough locations of mouth,

nose, eyes, and even cheeks offer discriminatory information and can be used to classify

identities without error when applied to the 67 individuals in the CMU-PIE database.

Discussions on future use of these feature patches in classification problems are given in

Chapter 8.4. Readers who are interested in the details of the following discussions are

referred to [17].

8.1 Background

The most prominent and known techniques among an appearance-based holistic ap-

proach in face recognition are via eigenfaces [76, 84] and Fisherfaces [6]. In a more general

object recognition scheme, Multiresolution Analysis (MRA) and Fourier Analysis (FA)

are best known for extracting global features, where frequency information of the images

can be seen as a global characteristic. A wide variety of face recognition algorithms are

driven, at some level, by the usage of MRA and FA.

The conventional sense of geometric feature-based matching for face recognition is

based on relative position and other parameters of distinctive features such as eyes,

mouth, nose, and eyebrows. It started in the early 1970’s with Kanade [45]. This way

of performing face recognition is far from automatic. Feature points need to be labeled

manually for every single image in the gallery as well as every probe image. An ex-

ample of a feature-based face recognition method with a relatively high success rate is

Elastic Bunch Graph Matching [89]. Coldstein [35] and Kaya [47] showed that a face

recognition algorithm using features extracted manually enjoys a relatively successful

performance. In general, feature-based methods are less sensitive to variations in illu-

mination and viewpoint [96]. Nevertheless, automatic feature extraction techniques do

not have sufficient reliability to justify the accuracy of feature-based face recognition

approaches.

A related but philosophically different technique to feature-based matching is tem-

plate matching, which uses specific local template(s) of the face to represent the whole

face. Brunelli and Poggio showed in [11] that template matching is superior in recog-

nition performance than feature-based matching. Moreover, templates of eyes are more
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Figure 8.1: Illustration of patch projections. Patches do not have to be selected from a
connected nor a rectangular region.

discriminating than templates of noses, which are then more discriminating than tem-

plates of the mouth in a correlation-based algorithm. They also suggested increasing the

number of images used per template to boost recognition performance.

As it may seem that the use of global (MRA) and local (template matching) features

in face recognition are completely different from each other, it turns out that they are

fundamentally the same. Both manners of selecting features correspond to mapping the

data, consisting of the original digital image of the whole face, into a representation

space of smaller size that preserves discriminatory structure.

8.2 Mathematics of Patch Projection

Definition 8.2.1. (Patch Projection) Given a partition of the components of a vector,

V , into disjoint sets P1 ∪ P2 ∪ · · · ∪ Pd. A family of patch projections is given by the

natural projection maps Li : Rn → R|Pi |.

Example 8.2.1. An example of the patch projection is the restriction of a digital image

to a region of the image. For instance, the restriction of a digital image of a face to the

region surrounding the lips. See Figure 8.1 for illustrations of this type.

When the notion of patch projection is applied to images, a feature patch of an image

is simply a sub-image and is naturally amenable to the mathematics of moduli of linear

spaces. A few comments on the relationship between projections and Grassmannians are

in order:
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Let K be the kernel of a linear map L : R
n → R

m. Let Ω̄(K) ⊆ G(k, n) denote the

Schubert variety defined by

Ω̄(K) = {E ∈ G(k, n) | dim(E ∩K) ≥ 1}.

L induces a natural map LG : G(k, n) − Ω̄(K) → G(k,m) since the image of any k-

dimensional subspace V ⊂ Rn under L remains k-dimensional precisely if the point

p ∈ G(k, n) corresponding to V lies outside of Ω̄(K). Suppose dim(K) + k ≤ n, then

Ω̄(K) is a proper subset of G(k, n) and the dimension of Ω̄(K) is strictly less than the

dimension of G(k, n) at a generic point. Thus, with probability one, a point chosen

at random from G(k, n) will lie in G(k, n) − Ω̄(K). Due to the method we use to

determine points on G(k, n) and the special nature of patch projections, it is possible for

the corresponding linear spaces to have a non-trivial intersection with the kernel of the

projection map. However, as one would expect, never have we observed a point chosen

within Ω̄(K).

8.3 Empirical Results

For the empirical analysis that follows, we consider two types of classification schemes

— FAR and the nearest neighbor (NN) classifiers. A pair of points on a Grassmannian

is correctly classified in the FAR sense if the largest distance between a point in the

gallery and a point in the probe for a matched pair is smaller than the smallest distance

between any non-match pairs. On the other hand, for a data set that attains a zero in

the nearest-neighbor sense, it means that all points in the probe are mapped correctly

to the identities among the gallery.

To compare performance associated with direct image comparison using the same

data, we employ a baseline similarity S(X,Y ) algorithm for comparing sets of images X

and Y .

Definition 8.3.1. Let X ∈ Rn×kx , Y ∈ Rn×ky . Set

s(x(j), Y ) = max
1≤i≤ky

{Cor(x(j), y(i))},

where x(j) and y(j) is a column vector inX and Y , respectively. Then a baseline similarity

is defined as

S(X,Y ) =
1

2

kx∑

i=1

ky∑

j=1

(

s(x(i), Y ) + s(y(j), X)
)

,
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where Cor(x, y) stands for the standard Pearson’s correlation between signals x and y.

Notice that S(X,Y ) is nothing more than a straight across comparison between

images, and therefore serves as an excellent baseline in evaluating the performance of

our method.

The data sets we used here are the “illum” and “lights” subsets of the CMU-PIE

Database1. The images are geometrically normalized according to known eye coordi-

nates. The viewpoint is fixed to be frontal and subsets of 21 distinct illumination con-

ditions are used to form the probe and gallery. We perform two experiments on the

lip, nose, left eye, right eye, left cheek, and right cheek patches, see Figure 8.2, to show

their effectiveness as illumination feature classifiers. Error rates for both classification

schemes are reported in this section.

(a) Left eye (b) Right eye (c) Nose

(d) Left cheek (e) Right cheek (f) Lip

Figure 8.2: Example feature patches that are used for the algorithm.

Experiment I: Connected Patches

For each of the 67 people in CMU-PIE data set, we randomly select two sets of images

of equal size with disjoint illumination conditions. Since illumination spaces can be well-

approximated by 9- or 10-dimensional linear subspaces [4, 7], we randomly select two

1Note that results achieved on the “illum” subset are comparable to those done on the “lights” subset
and are not reported here.
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disjoint sets of size 10 for the points in the probe and gallery. This process is repeated

10 times, thus making a total of 670 probe points. Now, instead of the whole face image,

selected feature patches are used. The result of this experiment is given in Table 8.1

along with the patch resolutions and the computational time it takes to calculate the

distance between a single pair of probe and gallery points. Results for the baseline

algorithm are also shown. Notice that while the Grassmann method performs without

error on this task, the baseline algorithm performs poorly and is computationally more

expensive than classification on Grassmannians.

It is apparent from the results of Experiment I that when the cardinality of points

in the gallery and probe is ten, the algorithm is able to separate all people in the data set

using each of the selected patches without error. To further speed up the classification

time and to see how sensitive the proposed algorithm is to the location of the feature

patches, we repeat the experiment while reducing the patch resolution until the perfect

recognition rates cease to exist. Table 8.2 gives the conditions for perfect recognition

results in the FAR sense while Table 8.3 gives the same thing but in the NN sense.

Notice that the baseline algorithm is extremely sensitive to patch resolutions and less

efficient. For example, while using 30-pixel nose patches with NN classifier, the baseline

algorithm attains an error rate of 97.46% and it takes 74 times longer to compute the

similarity between a single pair of probe and gallery points than it takes with the proposed

algorithm. The time it takes to identify a single probe point in a database of 67 persons

with 30-pixel nose patches using the proposed algorithm is only 0.014627 seconds. The

results here suggest that locally correlated feature patches consisting of an extremely

small number of pixels provide sufficient information for recognition.

Experiment II: Imbalanced Cardinality

In this experiment, we examine the effect of varying the cardinality of the probe and

gallery. Often times, it is unrealistic to collect equal number of images at enrollment

and during operation. Therefore, it is hard to avoid comparisons of sets of images of

asymmetric sizes. In such cases, we would like to know the minimal number of images

needed to represent a person while still achieving perfect separation. Figure 8.3 shows the

classification error rates for each of the six selected patches. The cardinality of the probe

points increase from 1 to 20 while the cardinality of the gallery points decreases from 20

to 1 simultaneously. The illumination conditions for the probe are always different from
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lip nose left eye right eye left cheek right cheek

Exp. img.
Resolution 41 × 59 59 × 39 21 × 41 21 × 41 31 × 37 31 × 37
CPU time 0.0037 0.0034 0.0011 0.0011 0.0014 0.0014

GS method FAR 0 0 0 0 0 0
NN 0 0 0 0 0 0

CPU time 0.0254 0.0249 0.0187 0.0187 0.0198 0.0198
Baseline FAR 0.3008 1.2234 2.5690 4.8937 2.2388 4.8937

NN 11.7910 0 6.4179 1.7910 0.5970 4.4776

Table 8.1: Error rates (in %) for individual feature patches where 10 images are used
to compute each point in the probe and gallery. On a 2.8GHz AMD Opteron processor,
the CPU time is how long it takes to calculate the distance/similarity between a probe
and a gallery point in seconds.

lip nose left eye right eye left cheek right cheek

Exp. img.
Resolution 3 × 29 35 × 13 21 × 41 21 × 41 31 × 37 31 × 37
CPU time 2.7 × 10−4 6.3 × 10−4 0.0011 0.0011 0.0014 0.0014

Bsl. FAR 6.8204 1.2121 3.1592 6.5762 4.1995 0.5812
CPU time 0.0158 0.0171 0.0187 0.0186 0.0199 0.0196

Table 8.2: Conditions for perfect separation in the FAR sense for individual feature
patches where 10 images are used to compute each point in the probe and the gallery.

lip nose left eye right eye left cheek right cheek

Exp. img.
Resolution 1 × 33 30 × 1 4 × 22 4 × 23 19 × 6 23 × 27
CPU time 2.2 × 10−4 2.2 × 10−4 2.8 × 10−4 2.8 × 10−4 3.0 × 10−4 8.1 × 10−4

Bsl NN 28.0597 97.4627 14.1791 17.9104 44.4776 7.9104
CPU time 0.0151 0.0151 0.0157 0.0157 0.0159 0.0178

Table 8.3: Conditions for perfect separation in the NN sense for individual feature patches
where 10 images are used to compute each point in the probe and the gallery.
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the ones in the gallery. The plot suggests the performance of the algorithm is optimal

when the cardinality of the probe and gallery points approaches each other in the FAR

sense. For example, when using only 1 image per person in the probe and 20 images per

person in the gallery, the error rate is about 2.2% in the FAR sense, while the error rate

is diminished to zero when using 3 images per person in the probe and 18 images per

person in the gallery.

In the worse case scenario, if it is only possible to collect a single image for each

probe, then we would like to know the minimal number of images required for each

person in the gallery in order to obtain perfect separation. For this set of experiments,

we use a single image for each probe and let the cardinality of the gallery points vary

from 1 to 20. The classification error rates for each of the selected patches are given in

Figure 8.4. For example, when the lip feature is used, the algorithm performs perfectly

using only 9 images and 16 images per person in the gallery in the NN sense and FAR

sense, respectively. However, when the cheek features are used, even the use of 20

images per person in the gallery could not force a perfect recognition in both classifiers.

Suggestively, certain features (e.g., nose, lip) provide more discriminatory information

than others (e.g., cheeks) when classification is done on the Grassmannians.

Experiment III: Random Patches

Here we explore whether or not patches that consist of small number of disconnected

pixels will contain enough discriminatory information to accomplish the task of face

recognition on a Grassmannian. Specifically, we employ feature patches consisting of a

random (but the same for each image) selection of 36 pixels. See Figure 8.5(a) for an

example image of such patch. A set of 10 different illuminations is used for both the

gallery and probe. Hence, the data is represented as points onG(10, 36). It turns out that

the idiosyncratic nature of the patches persists in this case. We perform Experiment I

again, but now using randomly projected low-dimensional patches and still observe error-

free identification for all people in the PIE Database. Perhaps surprisingly, a similar

result is observed even when we use a thin horizontal strip of 33 pixels across the left

eye. See Figure 8.5(b) for an example image of such a patch.

Experiment IV: Robustness to Registration

To further understand the effect of inconsistent registration, we repeat Experiment I with

varying registration. All images are randomly shifted either horizontally or vertically

80



0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

lights, lip

cardinality

e
rr

o
r 

ra
te

 (
%

)

 

 

FAR

NN

0 5 10 15 20
0

1

2

3

4

5

6

lights, nose

cardinality

e
rr

o
r 

ra
te

 (
%

)

 

 

FAR 

NN

0 5 10 15 20
0

5

10

15

20

25

lights, left eye

cardinality

e
rr

o
r 

ra
te

 (
%

)

 

 

FAR

NN

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

lights, right eye

cardinality

e
rr

o
r 

ra
te

 (
%

)

 

 

FAR

NN

0 5 10 15 20
0

10

20

30

40

50

60

70

lights, left cheek

cardinality

e
rr

o
r 

ra
te

 (
%

)

 

 

FAR 

NN

0 5 10 15 20
0

10

20

30

40

50

60

lights, right cheek

cardinality

e
rr

o
r 

ra
te

 (
%

)

 

 

FAR 

NN

Figure 8.3: Error rates (in %) on the nose patch. The cardinality of points in the
probe increases from 1 to 20 while the cardinality of points in the gallery simultaneously
decreases from 20 to 1.
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Figure 8.4: Classification error rates (in %) for each selected feature patch. The cardi-
nality of the probe points is one while the cardinality of the gallery points ranges from
1 to 20.
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(a) (b)

Figure 8.5: (a) A patch of 36 pixels are randomly selected from a face. (b) A patch of
33 pixels across the left eye.

one pixel at a time. Classification is repeated for every pixel shift up to 10 pixels using

the new registered images to obtain error statistics in both classifiers. The lip and nose

patches are least sensitive to perturbation of registration, see, e.g., the error rates given in

Figure 8.6. The result here implies that if a human operator registers the gallery patches

in a certain way, then another human operator can have about 2 pixels of freedom in

registering the probe patches. Of course, expanding the data sets to include data that

is poorly registered might improve this tolerance further.

8.4 Discussions

The work in this chapter and Chapter 7 build on the notion that variations in the

state of an object can provide discriminatory information. Further, that the nature of

this information may arise from global features of the pattern or, alternatively, from

local features that possess their own special characteristics under a variation of state.

We see that the notion of a feature, or image patch generally defined, provides

enhanced opportunities for pattern classification. The fact that certain local feature

patches are more discriminatory than others suggests that weakly discriminating features

can combine to form stronger ones. While this idea of course is itself not new, it is

presented in the geometric context of Grassmann manifolds where large quantities of
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Figure 8.6: Error rates (in %) for the lip patch where probe and gallery points have
cardinality 10. The raw images are randomly shifted either horizontally or vertically by
one pixel at a time.

illumination data associated with a person may be effectively encoded and compared as

a generalized point on a Grassmannian.

Both Chapter 7 and the present chapter provide a way to compress data and ac-

celerate the computations without sacrificing performance. This type of compression

yields new collections of points on the Grassmann manifolds, since compression of this

sort reduces n that corresponds to reducing the number of pixels representing a digital

image. An alternative way of compressing data will be presented in Chapter 11.5 where

the dimension of the subspace representing a set of digital images is reduced.
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Chapter 9

MATRIX PERTURBATION THEORY

We want to further understand the robustness to the Grassmann framework de-

scribed in the previous Chapters. For example, if data is corrupted during acquisition

or has noise (e.g., missing pixels), will this impact the distances we compute and the

classification results? If possible, it would be beneficial to diminish this problem by

transforming the data into a space where the intrinsic characteristics of the data are

enhanced. To this end, we appeal to idea from the perturbation theory of matrices, see

e.g., [79]. It was shown in Chapter 3.2 that all unitarily invariant metrics for subspaces

are functions of principal angles between subspaces. Hence, we are able to focus on

the theoretical perturbation results of principal angles between linear subspaces. In this

chapter, we review perturbation theorems that will help to explore the robustness of

the Grassmann method with an emphasis on results from Sun [81]. In particular, Theo-

rem 9.2.3 provides a simple framework to discuss the robustness of canonical correlations

between a pair of subspaces using only their matrix representations. Other perturbation

theorems are presented as a reference for future exploration of the topic.

General results derived for the perturbation of principal angles can be separated

into two main categories as described in Sections 9.1 and 9.2, respectively. First, the

quantitative change in principal angles between a matrix A and its perturbed version

Ã = A + ∆A is given in terms of several unitarily invariant norms for normal, Her-

mitian, diagonal, and general matrices. Secondly, changes in the set of principal an-

gles between a pair of subspaces are also given in terms of several unitarily invariant

norms. Namely, if θ(R(A),R(B)) and θ(R(Ã),R(B̃)) are the principal angle vectors

between R(A) and R(B) and R(Ã) and R(B̃), respectively, then lower and upper

bounds on △θ = θ(R(A),R(B)) − θ(R(Ã),R(B̃)) are available. Often we will let

θ(A,B) = θ(R(A),R(B)) for convenience.

85



9.1 Perturbation Analysis of a Linear Subspace

Wedin described in [87] the connection between singular value decomposition and

perturbation bounds when a matrix A is perturbed. In particular, he gave an upper

bound for sine of the invariant subspaces of AAH and AHA (left and right singular

subspaces) in terms of the magnitude of the perturbation and the singular values of the

appropriate matrices. We will first develop notation and then state Wedin’s main result

— The Generalized sin θ Theorem.

Definition 9.1.1. The subspace X is an invariant subspace of A if AX ⊂ X .

Let A ∈ Cm×n and its singular value decomposition be given by

A = UΣV H = U1Σ1V
H
1 + U0Σ0V

H
0 , (9.1)

where

V1 = [v1, . . . , vr], V0 = [vr+1, . . . , vp], V = [V1, V0],

U1 = [u1, . . . , ur], U0 = [ur+1, . . . , up], U = [U1, U0],

and

Σ1 = diag(σ1, . . . , σr),Σ0 = diag(σr+1, . . . , σp),Σ = diag(σ1, . . . , σp).

V1, V0, V and U1, U0, U are assumed to be partial isometries satisfying

V HV = UHU = Ip, V
H
1 V1 = UH

1 U1 = Ir, V
H
0 V0 = UH

0 U0 = Ip−r.

The rank of A is p and r ≤ p is arbitrary.

Now, for the perturbation of A, B = A+ T , a corresponding singular value decom-

position can be made similarly. Take

Aj = Uj(A)Σj(A)V H
j (A), Bj = Uj(B)Σj(B)V H

j (B), j = 0, 1. (9.2)

It is easy to see that R(A1) and R(A0) are invariant subspaces of the Hermitian matrix

AAH as are R(AH
1 ) and R(AH

0 ) of AHA. Phrased differently, R(A1) and R(A0) are the

left singular subspaces of A while R(AH
1 ) and R(AH

0 ) are the right singular subspaces

of A. The goal of the following discussion will be to estimate the angles between the

subspaces R(A1) and R(B1) as well as the subspaces R(AH
1 ) and R(BH

1 ).
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If we let the distance between the subspaces R(A1) and R(B1) be ρp,ν(R(A1),

R(B1)), then by Theorem 3.2.5,

ρp,ν(R(A1),R(B1)) = ||(I − PR(B1))PR(A1)||ν = || sin Θ(R(A1),R(B1))||ν′

for some arbitrary unitarily invariant norms ν and ν′. Thus, it is then equivalent to get

good upper bounds for the expressions

|| sin Θ(R(A1),R(B1))|| and || sin Θ(R(AH
1 ),R(BH

1 ))||

when we have estimates of ||T || and the gap between the least singular value of B1 and

the largest singular value of A0.

We will now define residuals which can be used instead of T . The reason for the

definition of these residuals become apparent in the proof of the generalized sin θ theorem.

Let y1, . . . , yr and x1, . . . , xr be orthonormal vectors spanning the subspaces R(B1)

and R(BH
1 ), respectively, then with Y1 = [y1, . . . , yr] and X1 = [x1, . . . , xr],

Y H
1 Y1 = XH

1 X1 = Ir and Y1Y
H
1 = PR(B1), X1X

H
1 = PR(BH

1 ).

Now, take D1 = Y H
1 BX1. A convenient choice from the SVD of B1 is to let X1 = V1

and Y1 = U1. With this choice, D1 = Σ1(B). Now define the residuals

{

R11 = AX1 − Y1D1

R21 = AHY1 −X1D
H
1 .

(9.3)

Then R11 = −TX1 and R21 = −THY1. Up to this point, we have been developing the

necessary notations for stating the generalized sin θ theorem. We will now recall the

sin θ theorem about the perturbation of Hermitian operators by Davis and Kahan [21].

The generalized sin θ theorem will follow rather nicely as a generalization of Davis and

Kahan’s theorem in terms of singular values instead of the spectrum.

Theorem 9.1.1. [21] (The sin θ theorem) Assume there is an interval [β, α] and a δ > 0

such that the spectrum of A0 lies entirely in [β, α] while that of B1 lies entirely outside of

(β−δ, α+δ) (or vice versa). Then for every unitarily invariant norm, δ|| sin θ(A1, B1)|| ≤

||R1|| where R1 = R11 = R21 is a direct consequence of A and B being Hermitian.

A formulation of the sin θ theorem in terms of singular values instead of the spectrum

is provided in [87].
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Theorem 9.1.2. [87],[21] Let A and B be Hermitian matrices. Assume there exists an

α ≥ 0 and a δ > 0 such that

σmin(B1) ≥ α+ δ and σmax(A0) ≤ α,

then for every unitary invariant norm,

δ|| sin θ(A1, B1)|| ≤ ||R1||.

We are now ready to formulate a generalization of the sin θ theorem to generalm×n
matrices.

Theorem 9.1.3. [87] (The generalized sin θ theorem) Assume there exists an α ≥ 0 and

a δ > 0 such that

σmin(B1) ≥ α+ δ and σmax(A0) < α.

Take ǫ = max{||R11||, ||R21||} where R11 and R21 are defined by (9.3). Then for every

unitarily invariant norm,
{

|| sin θ(A1, B1)|| ≤ ǫ/δ

|| sin θ(AH
1 , B

H
1 )|| ≤ ǫ/δ.

(9.4)

The estimates can be sharpened to be

|| sin θ(A1, B1)|| ≤
||R11||
δ

|| sin θ(AH
1 , B

H
1 )|| ≤ ||R21||

δ
,

if
α

α+ δ
is small.

Namely, the generalized sin θ theorem gives an upper bound on how much change

can be induced on the sine of the principal angles between the left singular subspace of

A and the left singular subspace of a perturbation of A. The change in the magnitude

of the principal angles is not large as long as the perturbation is kept relatively small.

9.2 Perturbation Analysis of a Pair of Linear Subspaces

The generalized sin θ theorem only provides perturbation analysis for a single sub-

space with its perturbation. In this section, we will present a few general perturbation

theorems that discuss perturbation analysis for a pair of subspaces with their perturba-

tions. Perturbation theory of this type will be more related to the perturbation analysis

of canonical correlations and principal angles of a pair of subspaces. First, we present

two theorems that are needed for the main result:
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Theorem 9.2.1. [58] Let σ1 ≥ σ2 ≥ . . . ≥ σq and σ̃1 ≥ σ̃2 ≥ . . . ≥ σ̃q be the singular

values of A and Ã ∈ Cp×q, respectively, p ≥ q. Then for every unitarily invariant norm,

|| diag(σ1 − σ̃1, . . . , σq − σ̃q)||∗ ≤ ||A− Ã||∗. (9.5)

Theorem 9.2.2. [80] Let Z, W ∈ Cn×m. If rank(W ) = rank(Z), then

||PW − PZ ||∗ ≤ µmin{||Z†||2, ||W †||2}||W − Z||∗, (9.6)

where µ is given in the following table:

|| ||∗ arbitrary u.i.n. Frobenius spectral

µ 2
√

2 1

Now, the main result by Sun [81] that provides perturbation analysis for the canon-

ical correlations of a pair of matrices:

Theorem 9.2.3. [81] Let A, Ã ∈ C
n×p, B, B̃ ∈ C

n×q, p ≥ q. Suppose that σ(A,B) =

{cos θk}q
k=1 = {ck}q

k=1, 0 ≤ θ1 ≤ . . . ≤ θq ≤ π
2 , σ(Ã, B̃) = {cos θ̃k}q

k=1 = {c̃k}q
k=1,

0 ≤ θ̃1 ≤ . . . ≤ θ̃q ≤ π
2 . Let

C = diag(c1, . . . , cq), C̃ = diag(c̃1, . . . , c̃q),

and

S = diag(s1, . . . , sq), S̃ = diag(s̃1, . . . , s̃q),

where sk = sin θk and s̃k = sin θ̃k, k = 1, . . . , q. Then for every unitarily invariant norm

|| · ||∗,

||C − C̃||∗, ||S − S̃||∗ ≤ δ∗(A, Ã) + δ∗(B, B̃), (9.7)

where

δ∗(X, X̃) = µ||X ||∗||X†||2 ·
||X − X̃||∗

||X ||∗
and µ is the same as what was given in Theorem 9.2.2.

Proof. First assume that the columns of UA, UÃ, UB and UB̃ form unitary bases for

R(A), R(Ã), R(B) and R(B̃), respectively. By the hypotheses, we have

σ(UH
A UB) = {ck}q

k=1, σ(UH
Ã
UB̃) = {c̃k}q

k=1.
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Let WA and WÃ be such that (UA,WA) and (UÃ,WÃ) are n×n unitary matrices. Then

from Lemma 3.2.1

σ(WH
A UB) = {sk}q

k=1, σ(WH
Ã
UB̃) = {s̃k}q

k=1.

By Lemma 3.2.2 and Theorem 9.2.1 we get

||C − C̃|| ≤ ||PAPB − PÃPB̃|| ≤ ||PA − PÃ|| + ||PB − PB̃ || (9.8)

and

||S − S̃|| ≤ ||(I − PA)PB − (I − PÃ)PB̃|| ≤ ||PA − PÃ|| + ||PB − PB̃ ||. (9.9)

We then apply Theorem 9.2.2 to Equations (9.8) and (9.9) to get the desired result.

Observe that if

| cos θ − cos θ̃| ≤ h, | sin θ − sin θ̃| ≤ h, θ, θ̃ ∈ [0,
π

2
],

then

|θ − θ̃| ≤ π

2
h.

Hence by Theorem 9.2.3, we can deduce the following result.

Corollary 9.2.4. [81] Assuming the hypotheses of Theorem 9.2.3, then we have

√
√
√
√

q
∑

k=1

(θk − θ̃k)2 ≤ π

2

(

δF (A, Ã) + δF (B, B̃)
)

(9.10)

and

|θk − θ̃k| ≤
π

2

(

δ2(A, Ã) + δ2(B, B̃)
)

, ∀k = 1, . . . , q. (9.11)

In the meanwhile, [37] offers improved bounds given in [81] without restricting the

dimension of the subspaces to be equal. However, the bounds are given on the canonical

correlations which are the cosine of the principal angles instead of the principal angles

themselves.

Theorem 9.2.5. [37] Let rank(A) = rank(Ã) = p, and rank(B) = rank(B̃) = q. For

any unitarily invariant norm, define the condition numbers of A and B to be

κ(A, || · ||) = ||A|| · ||A†||2, κ(B, || · ||) = ||B|| · ||B†||2.
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If △ cosΘ = cosΘ(A,B) − cosΘ(Ã, B̃) and △ sin Θ = sin Θ(A,B) − sin Θ(Ã, B̃), then

|| △ cosΘ|| ≤ µ

{

κ(A, || · ||) cos θ1
||A− Ã||
||A|| + κ(B, || · ||) cosφ1

||B − B̃||
||B||

}

and

|| △ sinΘ|| ≤ µ

{

κ(A, || · ||) cos θ2
||A− Ã||
||A|| + κ(B, || · ||) cosφ2

||B − B̃||
||B||

}

with

θ1 = θmin(C(A, Ã),R(B)), θ2 = θmin(C(A, Ã),R(B)⊥),

φ1 = θmin(C(B, B̃),R(Ã)), φ2 = θmin(C(B, B̃),R(Ã)⊥),

where C(A, Ã) is the orthogonal complement of R(A) ∩ R(Ã) in R(A) + R(Ã), and

C(B, B̃) is the orthogonal complement of R(B) ∩R(B̃) in R(B) + R(B̃). Moreover, for

the spectral norm µ = 1, while for any arbitrary invariant norm µ =
√

2.

An important thing to realize from Theorem 9.2.5 that is not found in Theorem 9.2.3

is that perturbations of the canonical correlations (cosine of the principal angles) depend

on the matrix pair (A,B) instead of A and B as two individual matrices. For example,

if we perturb A and B to the effect that R(Ã) and R(B̃) remain the same as R(A) and

R(B), respectively, then the canonical correlations are unchanged [37].

However, the perturbation bounds given in Theorem 9.2.5 are not invariant under

the column scaling of A and B, i.e., perturbation bounds for A and B are not necessarily

the same as the ones for AD1 and BD2 where D1 and D2 are some positive definite

diagonal matrices. A way to get around it is to consider the following theorem for the

spectral norm:

Theorem 9.2.6. [37] Let A ∈ Mm,p and B ∈ Mm,q be of full column rank, and let

Ã = A+△A and B̃ = B +△B with | △A| ≤ ǫGA|A| and | △B| ≤ ǫGB|B| be such that

Ã and B̃ are also of full column rank, where ǫ is small and GA and GB are matrices

with nonnegative elements. Then

|| △ cosΘ||2 ≤ ǫ
[√

p(m− p)||GA||2 cos θ1κs(A)

+
√

q(m− q)||GB ||2 cosφ1κs(B)
]

.
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and

|| △ sin Θ||2 ≤ ǫ
[√

p(m− p)||GA||2 cos θ2κs(A)

+
√

q(m− q)||GB ||2 cosφ2κs(B)
]

,

where θi, φi, i = 1, 2, are defined in Theorem 9.2.5. Moreover, κs(A) = ‖|R||R−1|‖2

if the QR decomposition of A is A = QR. Obviously, κs(A) is independent of column

scaling of A since κs(AD) = κs(A) for any positive definite diagonal matrix D.

When the matrices are ill-conditioned, the perturbation bounds are terrible. Since

column scaling does not change the canonical correlations, so in general, one would want

to adjust the condition number of a ill-conditioned matrix. All of these perturbation

theorems give “absolute” perturbation bounds. Relative perturbation bounds exist only

if no “cancelation” occurs (see [37]).

Certainly, there are more perturbation theorems available. For the applications we

are interested in, Theorem 9.2.3 will be used as an initial attempt to solve the optimiza-

tion problem formulated in Chapter 10.
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Chapter 10

PERTURBATION THEORY FOR GRASSMANN

SEPARABILITY

In this chapter, we adapt our normal notation to let an orthogonal matrix S ∈ Rn×k

represent a point on the Grassmannian, G(k, n). Furthermore, let S̃ = S+∆S be a per-

turbation of S. Given points on the Grassmann manifold that are Grassmann separable,

it is curious to see how much we can perturb those points before the separation ceases

to exist. We will illustrate with a simple example how perturbation theory discussed in

Chapter 9.2 can be used to derive bounds for ||∆S|| so that whenever a point on the

Grassmannian is perturbed by no more than such bounds, perfect Grassmann separation

is guaranteed. Once this is established in Chapter 10.1, it will be clear that a data set

is more likely to be Grassmann separable if its perturbation bound is large. To improve

the robustness of the separability condition, we formulate an optimization problem in

Chapter 10.2 with the objective function motivated by matrix perturbation theory. In

doing so, we are able to arrive at the objective function given in [50] that is motivated

by Linear Discriminant Analysis as a special case of our final objective function using

perturbation theory. And we formulated the problem from totally different framework

than the one given in [50]. In Chapter 10.3, numerical algorithms and solutions using the

Steepest Descent and Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization methods

are derived for the low resolution data set mentioned in Chapter 7.3. The separation gap

for this particular data set was improved after data points are transformed using numer-

ical solutions of the optimization problem. These results show initial promise although

the improvements might be modest. It will require further investigation to establish just

how effective the objective function might be.
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Target

d T (1) T (2) T (3)

Q̃(1) d̃11 d̃12 d̃13

Query Q(2) d21 d22 d23

Q(3) d31 d32 d33

Table 10.1: Distance matrix between the target points and the query points under a
one-sided perturbation.

10.1 Framework for Grassmann Separability

Here we replace the conventional terms probe and gallery by target and query since

the purpose of this section is not to classify unknown identities, but to examine a data

set’s Grassmann separability. We assume that we know the labels of the points in both

the target and query permitting us to examine the robustness of the Grassmann method.

Consider three subjects with dimension-2 complete subspace configurations: C(1) =
{
T (1), Q(1)

}
, C(2) =

{
T (2), Q(2)

}
, and C(3) =

{
T (3), Q(3)

}
, where T (i) and Q(i) denote

target and query points, respectively.

Suppose that the data set consisting of these three subjects is Grassmann separable

in dimension k with the ℓ-truncated Grassmannian semi-distance d. Let dij be the

distance matrix of the pairwise distances between each pair of target and query points.

The fact that this data set is Grassmann separable implies that the separation gap

gs = min
i6=j

{dij} − max
i=j

{dij} is greater than zero.

Now, we want to investigate the maximum amount of perturbation that can be

applied to points on the Grassmannian in some unitarily invariant norm || · ||∗ before

perfect Grassmann separability breaks. First, consider one-sided perturbation applied

only to the query points. To simplify the matter even more, imagine that we accidentally

acquired a noisy version of subject one, i.e., replace Q(1) by Q̃(1) = Q(1) + ∆Q(1). The

noise could come from the corruption of the image or operator error in collecting the

image. Then notice that the new distance matrix, if we were to compute one, will be

of the form in Table 10.1, where only the distances in the first row are effected. This

motivates us to examine the relationships between the perturbed query point and the

target points only.
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Proposition 10.1.1. (One-sided Perturbation Bound)

Suppose P =
{
C(1), C(2), . . . , C(N)

}
is a set of subjects with dimension-2 complete sub-

space configuration for each C(i), i.e., C(i) =
{
T (i), Q(i)

}
. Let Dij = d

(
Q(i), T (j)

)
be the

pairwise distance between each target and query point for some ℓ-truncated Grassmannian

semi-distance, d.

Set

M = max
1≤i≤N

d
(

T (i), Q(i)
)

, m = min
1≤i6=j≤N

d
(

Q(i), T (j)
)

, gs = m−M,

and let D̃ =
(

d̃ij

)N

i,j=1
be the distance matrix computed from replacing Q(k) with Q̃(k) =

Q(k) + ∆Q(k), for some k. Then the perturbed data set is Grassmann separable if

gs > 0, and
∣
∣
∣d̃kj − dkj

∣
∣
∣ <

gs

2
, for all j = 1, 2, . . . , N.

Proof. Notice that

D̃ =









D(1 : k − 1, :)

d̃k1 . . . d̃kN

D(k + 1 : N, :)









The only interesting case is when d̃kk > dkk and d̃kj < dkj for all j 6= k. By the

assumptions, we have for all k and j 6= k

d̃kk − dkk <
gs

2
⇒ d̃kk < dkk +

gs

2
< M +

gs

2
,

dkj − d̃kj <
gs

2
⇒ d̃kj > dkj −

gs

2
> m− gs

2
.

Therefore,

M̃ := max
i=j

d̃ij < M +
gs

2

and

m̃ := min
i6=j

d̃ij > m− gs

2
.

Now the new separation gap,

g̃s = m̃− M̃ >
(

m− gs

2

)

−
(

M +
gs

2

)

= m−M − gs = 0.

Hence the perturbed data set is Grassmann separable.
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Notice that less tight bounds than the one given in Proposition 10.1.1 can be found

to improve the approximation. Before utilizing Proposition 10.1.1, we consider Theo-

rem 9.2.3 by Sun [81] in a way illustrated in the following. For example, for the pair of

target and query points of subject one, we have

∥
∥
∥sin Θ

(

Q̃(1), T (1)
)

− sin Θ
(

Q(1), T (1)
)∥
∥
∥

F
≤

√
2
∥
∥
∥Q(1)

∥
∥
∥

F

∥
∥
∥
∥

(

Q(1)
)†
∥
∥
∥
∥

2

∥
∥
∥Q(1) − Q̃(1)

∥
∥
∥

F∥
∥Q(1)

∥
∥

F

+
√

2
∥
∥
∥T (1)

∥
∥
∥

F

∥
∥
∥
∥

(

T (1)
)†
∥
∥
∥
∥

2

∥
∥
∥T (1) − T̃ (1)

∥
∥
∥

F∥
∥T (1)

∥
∥

F

.

But in our problem T (1) = T̃ (1), so the second expression on the right vanishes. Observe

from this inequality, the expression on the right is similar for the target points T (1), T (2),

and T (3). Thus, if we let T denote one of those three target points, then

∥
∥
∥sin Θ

(

Q̃(1), T
)

− sin Θ
(

Q(1), T
)∥
∥
∥

F
≤

√
2

∥
∥
∥
∥

(

Q(1)
)†
∥
∥
∥
∥

2

∥
∥
∥∆Q(1)

∥
∥
∥

F
.

Now, let d be the Projection F-norm. In order to maintain Grassmann separability

we need the condition
∣
∣
∣d
(

Q̃(1), T
)

− d
(
Q(1), T

)
∣
∣
∣ < gs/2 to hold by Proposition 10.1.1.

Thus

∣
∣
∣d
(

Q̃(1), T
)

− d
(

Q(1), T
)∣
∣
∣ =

∣
∣
∣

∥
∥
∥sinΘ

(

Q̃(1), T
)∥
∥
∥

F
−
∥
∥
∥sinΘ

(

Q(1), T
)∥
∥
∥

F

∣
∣
∣

≤
∥
∥
∥sin Θ

(

Q̃(1), T
)

− sin Θ
(

Q(1), T
)∥
∥
∥

F

≤
√

2

∥
∥
∥
∥

(

Q(1)
)†
∥
∥
∥
∥

2

∥
∥
∥∆Q(1)

∥
∥
∥

F
<
gs

2
,

which leads to

∥
∥
∥∆Q(1)

∥
∥
∥

F
<

gs

2
√

2
∥
∥
∥

(
Q(1)

)†
∥
∥
∥

2

. (10.1)

Similar bounds can be derived for subjects two and three if their query points were

subject to perturbation:

∥
∥
∥∆Q(2)

∥
∥
∥

F
<

gs

2
√

2
∥
∥
∥

(
Q(2)

)†
∥
∥
∥

2

,
∥
∥
∥∆Q(3)

∥
∥
∥

F
<

gs

2
√

2
∥
∥
∥

(
Q(3)

)†
∥
∥
∥

2

.

It is clear that the perturbation bounds derived in such a way depends only on the

spectral norm of the pseudo-inverse of the query points Q(1), Q(2), or Q(3). To simplify

notations, we let Q denote some general query point and ∆Q its perturbation in the

following discussions.
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Proposition 10.1.2. Let d be the Projection F-norm (chordal), Q any query point, T

any target point, and ∆Q the amount of perturbation applied to Q, then

‖∆Q‖F <
gs

2
√

2 ‖Q†‖2

.

Proof. See discussions above.

Similarly,

Proposition 10.1.3. Let d be the arc length (geodesic), Q any query point, T any target

point, and ∆Q the amount of perturbation applied to Q, then

‖∆Q‖F <
gs

π ‖Q†‖2

.

Proof.

∣
∣
∣d
(

Q̃, T
)

− d (Q, T )
∣
∣
∣ =

∣
∣
∣

∥
∥
∥Θ
(

Q̃, T
)∥
∥
∥

F
− ‖Θ (Q, T )‖F

∣
∣
∣

≤
∥
∥
∥Θ
(

Q̃, T
)

− Θ (Q, T )
∥
∥
∥

F

≤ π

2

∥
∥Q†

∥
∥

2
‖∆Q‖F <

gs

2
.

Thus,

‖∆Q‖F <
gs

π ‖Q†‖2

. (10.2)

Notice that this is a tighter bound than the one given in Equation (10.1). Moreover,

Proposition 10.1.4. Let d be the Projection 2-norm, Q any query point, T any target

point, and ∆Q the amount of perturbation applied to Q, then

‖∆Q‖2 <
gs

2 ‖Q†‖2

.

Proof.

∣
∣
∣d
(

Q̃, T
)

− d (Q, T )
∣
∣
∣ =

∣
∣
∣

∥
∥
∥sin Θ

(

Q̃, T
)∥
∥
∥

2
− ‖sin Θ(Q, T )‖2

∣
∣
∣

≤
∥
∥
∥sin Θ

(

Q̃, T
)

− sin Θ (Q, T )
∥
∥
∥

2

≤
∥
∥Q†

∥
∥

2
‖∆Q‖2 <

gs

2
.

Thus,

‖∆Q‖2 <
gs

2 ‖Q†‖2

. (10.3)
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A summary of the perturbation bounds obtained from considering various Grass-

mannian metrics in the perturbation Theorem 9.2.3 is given in Table 10.2. In particular,

since the spectral norm of any orthogonal matrix is identically one, the perturbation

bounds simplifies for points on the Grassmannians.

P. Norm Matrix P. B. P. B. for Points on G(k, n)

Geodesic ‖∆Q‖F

gs

π ‖Q†‖2

gs

π

Chordal ‖∆Q‖F

gs

2
√

2 ‖Q†‖2

gs

2
√

2

Projection 2-norm ‖∆Q‖2

gs

2 ‖Q†‖2

gs

2

Table 10.2: A summary of various perturbation bounds obtained from considering various
Grassmannian metrics in the perturbation Theorem 9.2.3 where gs denote the separation
gap.

In general, when given a data set of N subjects with the usual notations for target

and query points, we have the following corollary:

Corollary 10.1.1. For any query point Q with Q̃ = Q+ ∆Q,

‖∆Q‖∗ ≤ c(d) · gs(d)

q
, (10.4)

where

q = min
1≤i≤N

∥
∥
∥
∥

(

Q(i)
)†
∥
∥
∥
∥

2

.

The values of c(d) are given in the following table:

d || · || c(d)

Geodesic || · ||F
1

π

Chordal || · ||F
1

2
√

2

Projection 2-norm || · ||2
1

2

For points on the Grassmannians, the perturbation bounds simplifies to:

‖∆Q‖∗ ≤ c · gs. (10.5)

On the other hand, if we consider two-sided perturbation where both target and

query points of a single subject are perturbed, then a similar result to that of Proposi-

tion 10.1.1 can be obtained.
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Proposition 10.1.5. (Two-sided Perturbation Bound)

Suppose P =
{
C(1), C(2), . . . , C(N)

}
is a set of subjects with dimension-2 complete sub-

space configuration for each C(i), i.e., C(i) =
{
T (i), Q(i)

}
. Let Dij = d

(
Q(i), T (j)

)
be the

pairwise distance between each target and query point for some ℓ-truncated Grassmannian

semi-distance, d.

Set

M = max
1≤i≤N

d
(

Q(i), T (i)
)

, m = min
1≤i6=j≤N

d
(

Q(i), T (j)
)

, gs = m−M,

and let D̃ =
(

d̃ij

)N

i,j=1
be the distance matrix computed from replacing T (k) with T̃ (k) =

T (k) + ∆T (k), for some k and Q(r) with Q̃(r) = Q(r) + ∆Q(r), for some r. Then the

perturbed data set is Grassmann separable if

gs > 0, and
∣
∣
∣d̃kj − dkj

∣
∣
∣ <

gs

2
, and

∣
∣
∣d̃ir − dir

∣
∣
∣ <

gs

2
for all i, j = 1, 2, . . . , N.

Proof. The proof is similar to the proof in Proposition 10.1.1, it is therefore omitted

here.

Now, suppose that the entire data set is subject to perturbation.

Proposition 10.1.6. Given a data set of N subjects with the usual notations for target

and query points and let d be the one of the ℓ-truncated Grassmannian semi-distances.

The perturbed data set having target and query points in the form T̃ = T + ∆T and

Q̃ = Q+ ∆Q satisfy the following:

‖∆S‖∗ <
c(d) · gs(d)

α
,

where

‖∆S‖∗ = max
1≤i≤N
1≤j≤N

{∥
∥
∥∆Q(i)

∥
∥
∥
∗
,
∥
∥
∥∆T (j)

∥
∥
∥
∗

}

and

α = min
1≤i≤N
1≤j≤N

{∥
∥
∥
∥

(

Q(i)
)†
∥
∥
∥
∥

2

+

∥
∥
∥
∥

(

T (j)
)†
∥
∥
∥
∥

2

}

.

The values of c(d) are given in the following table:
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d || · || c(d)

Geodesic || · ||F
2

π

Chordal || · ||F
1√
2

Projection 2-norm || · ||2 1

Proof. For any pair of target and query points T and Q,

∣
∣
∣d
(

Q̃, T̃
)

− d(Q, T )
∣
∣
∣ ≤ c1 ‖Q‖∗

∥
∥Q†

∥
∥

2

∥
∥
∥Q− Q̃

∥
∥
∥
∗

‖Q‖∗
+ c1 ‖T ‖∗

∥
∥T †

∥
∥

2

∥
∥
∥T − T̃

∥
∥
∥
∗

‖T ‖∗
= c1

(∥
∥Q†

∥
∥

2
‖∆Q‖∗ +

∥
∥T †

∥
∥

2
‖∆T ‖∗

)

≤ c1
(∥
∥Q†

∥
∥

2
‖∆S‖∗ +

∥
∥T †

∥
∥

2
‖∆S‖∗

)

By Proposition 10.1.5, we have

‖∆S‖∗ <
gs

2c1 (‖Q†‖2 + ‖T †‖2)
.

But
∥
∥Q†

∥
∥

2
+
∥
∥T †

∥
∥

2
≥ α,

hence the result with the appropriate value of c(d).

In particular, if T (i) and Q(i) are points on the Grassmannian, then

‖∆S‖∗ <
c(d) · gs(d)

2
.

That is, if we do not perturb any point by more than
c · gs

2
, then Grassmann separability

of the new data set is guaranteed.

In general, when subjects do not have consistent subspace configurations, we assume

that a total of m data points are given as
{
S(1), S(2), . . . , S(m)

}
. Each point belongs to

one of the subject class denoted by C(i). Define Wi =
{
j | S(j) ∈ C(i)

}
, the within-class

set of subject i, and Bi =
{
j | S(j) /∈ C(i)

}
, the between-class set of subject i. Then

Proposition 10.1.6 can be extended to the general case.

Corollary 10.1.2. Given a data set of m points given as
{
S(1), S(2), . . . , S(m)

}
with each

point belonging to one of the subject class C(i). Let S̃(i) = S(i) + ∆S(i) be a perturbation

of S(i) and d be one of the ℓ-truncated Grassmannian semi-distances. Further denote

Dij = d(S(i), S(j)). Then

‖∆S‖∗ <
c · gs

α
,
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where

gs = min
1≤i≤m

min
j∈Bi

Dij − max
1≤k≤m

max
l∈Wk

Dkl,

‖∆S‖∗ = max
1≤i≤m

{∥
∥
∥∆S(i)

∥
∥
∥
∗

}

,

and

α = min
1≤i≤m
1≤j≤m

{∥
∥
∥
∥

(

S(i)
)†
∥
∥
∥
∥

2

+

∥
∥
∥
∥

(

S(j)
)†
∥
∥
∥
∥

2

}

.

The values of c are given in the table above.

d || · || c(d)

Geodesic || · ||F
2

π

Chordal || · ||F
1√
2

Projection 2-norm || · ||2 1

In particular, if S(i)’s are points on the Grassmann manifold, then

‖∆S‖∗ <
c

2

(

min
1≤i≤m

min
j∈Wi

Dij − max
1≤k≤m

max
l∈Bk

Dkl

)

. (10.6)

In summary, we have found perturbation bounds based on a perturbation theorem given

by Sun [81] that characterize Grassmann separability of data sets. In the next section,

we will use these quantities (perturbation bounds) to motivate an optimization problem

so that the solutions of the optimization problem will improve Grassmann separability

of data sets.

10.2 Derivation of Grassmann Potential

The perturbation bounds derived in the previous section serve as indicators on how

likely data sets are to be Grassmann separable. In particular, the bigger the perturbation

bound is for a particular data set, the more likely the data set is Grassmann separable

and more tolerant to noise. Therefore, in an attempt to simultaneously increase the

robustness of the Grassmann method and improve data sets’ ability to be Grassmann

separable, we will search for maps that transform the data into a space where the Grass-

mann separability is optimized. Notice that it is sufficient to discuss distances between

points on G(k, n) by discussing distances between the n-by-k matrices used to repre-

sent these points on G(k, n). This is because if Pi, Pj are orthonormal basis matrices
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for the image sets Xi, Xj ∈ R
n×k, respectively, then for any Grassmannian distance (or

Grassmann semi-distance) D, D(R(Pi),R(Pj)) = D(R(Xi),R(Xj)). Since the measures

that we use here are the Grassmannian distances (or Grassmannian semi-distances), we

will refer to the perturbation bound derived in the previous chapter as the Grassmann

potential and use general image sets for the following discussions.

Assume that we are given a set of m matrices {X1, X2, . . . , Xm} each belonging

to Rn×k. Moreover, each set belongs to one of the subject classes denoted by Ci. Let

Dij = D(Xi, Xj) be the pairwise distance between the ith and jth subjects and define

gs = min
1≤i≤m

min
j∈Bi

Dij − max
1≤k≤m

max
l∈Wk

Dkl (separation gap).

Furthermore, define a transformation matrix L such that L ∈ Rn×d and L : Xi → Yi =

LTXi, where d ≤ n. The matrix L will behave like a feature extractor that transforms

general representations into a collection of optimal ones to ensure the distance between

any two matching points is smaller than the distance between any two non-matching

points using Grassmannian distances. Under this framework, the perturbation bound

obtained from Corollary 10.1.2 gives us an immediate candidate objective function for

optimizing the Grassmann potential. i.e., we search for a L∗ ∈ Rn×d such that

L∗ = arg max
L∈Rn×d

min
1≤i≤m

min
j∈Bi

D(LTXi, L
TXj) − max

1≤k≤m
max
l∈Wk

D(LTXi, L
TXj)

min
1≤i≤m
1≤j≤m

{∥
∥
∥LTX†

i

∥
∥
∥

2
+
∥
∥
∥LTX†

j

∥
∥
∥

2

} . (10.7)

This expression is sensitive to outliers and noise. For example, a pair of twins in a data

set will cause the minimum of the between-class distances to be very small thus making

the expression to be ineffective. Thus, we consider solving the optimization problem

using the ensemble distances instead:

L∗ = arg max
L∈Rn×d

m∑

i=1

∑

j∈Bi

D(LTXi, L
TXj) −

m∑

i=1

∑

k∈Wi

D(LTXi, L
TXk)

m∑

i=1

m∑

j=1

∥
∥
∥LTX†

i

∥
∥
∥

2
+
∥
∥
∥LTX†

j

∥
∥
∥

2

. (10.8)

It turns out that we can also obtain this objective function from Theorem 9.2.3 and

Proposition 10.1.5. Let Yi = LTXi. Specifically, by Theorem 9.2.3,

m∑

i=1

m∑

j=1

∣
∣
∣D(Ỹi, Ỹj) −D(Yi, Yj)

∣
∣
∣ ≤ c

m∑

i=1

m∑

j=1

(∥
∥
∥Y

†
i

∥
∥
∥

2
‖∆Yi‖∗ +

∥
∥
∥Y

†
j

∥
∥
∥

2
‖∆Yj‖∗

)

.
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Let ‖∆Y ‖∗ = max
1≤i≤m

‖∆Yi‖∗, then

m∑

i=1

m∑

j=1

∣
∣
∣D(Ỹi, Ỹj) −D(Yi, Yj)

∣
∣
∣ ≤ c ‖∆Y ‖∗





m∑

i=1

m∑

j=1

∥
∥
∥Y

†
i

∥
∥
∥

2
+
∥
∥
∥Y

†
j

∥
∥
∥

2



 . (10.9)

By Proposition 10.1.5, Expression (10.9) is bounded above by m2gs

2 . Thus,

2c · ‖∆Y ‖∗ <
m2gs

β

= m2 ·
min

1≤i≤m
min
j∈Bi

Dij − max
1≤i≤m

max
j∈Wi

Dij

m∑

i=1

m∑

j=1

∥
∥
∥Y

†
i

∥
∥
∥

2
+
∥
∥
∥Y

†
j

∥
∥
∥

2

.
(10.10)

Expression (10.10) is then less than

m∑

i=1

∑

j∈Bi

Dij −
m∑

i=1

∑

j∈Wi

Dij

m∑

i=1

m∑

j=1

∥
∥
∥Y

†
i

∥
∥
∥

2
+
∥
∥
∥Y

†
j

∥
∥
∥

2

:= P. (10.11)

Now, in order to optimize Grassmann potential (or separability), we would like the

numerator of P to be as bigger than zero as possible. But that is the same as to have

m∑

i=1

∑

j∈Bi

Dij

m∑

i=1

∑

j∈Wi

Dij

as bigger than one as possible, since

a− b > 0 ⇒ a

b
− b

b
> 0 ⇒ a

b
> 1

for any a, b ∈ R, b 6= 0. Further notice that in order to optimize Expression (10.11), we

want the denominator to be as small as possible. Thus, it is as effective to consider the

following objective function

E(L) =

m∑

i=1

∑

j∈Bi

D(Yi, Yj)

m∑

k=1

∑

l∈Wk

D(Yk, Yl) ·
(

m∑

i=1

m∑

j=1

∥
∥
∥(Yi)

†
∥
∥
∥

2
+
∥
∥
∥(Yj)

†
∥
∥
∥

2

) (10.12)

in the optimization problem

L∗ = arg max
L∈Rn×d

E(L). (10.13)
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We remark that solving this optimization problem depends on the choice of the met-

ric. A similar optimization problem was proposed in [50] where a linear transformation

L∗ ∈ GLn is sought such that

L∗ = arg max
L

m∑

i=1

∑

k∈Wi

Fik

m∑

i=1

∑

l∈Bi

Fil

, (10.14)

where Fij is the similarity between two transformed data sets Yi and Yj . It is given by

the sum of the canonical correlations between Yi and Yj . To distinguish the difference

between this objective function and our proposed objective function, notice that we let

D be a Grassmannian distance and have an extra term β in the objective function in this

context. Besides, the cost function in our optimization problem is motivated from the

study of matrix perturbation theory while the cost function used in [50] is inspired by

the classical Linear Discriminant Analysis. They refer to their method as Discriminant

Canonical Correlation (DCC).

10.3 Numerical Solutions to Solving Grassmann Potential

As an example and initial step towards solving the optimization problem given in

Expression (10.13), we consider the 1-truncated geodesic distance and two numerical op-

timization techniques, Steepest Descent and Broyden-Fletcher-Goldfarb-Shanno (BFGS)

methods. It is worth noting that in the special case where L is a rotation matrix and

image sets Xi’s are represented by their orthonormal basis vectors,
∥
∥
∥

(
LTXi

)†
∥
∥
∥

2
= 1 for

all i. If we also note that the similarity between two image sets is the inverse of the

distance between the sets, then Equation (10.12) is equivalent to Equation (10.14) up

to constant multiples and the choice of metric. However, depending on the actual met-

ric implemented, the result of the optimization problems will generally output different

expressions of L.

The optimization problem in Equation (10.14) involves three variables. As the

two other variables are not explicitly described by L, Kim et al. proposed an iterative

optimization algorithm that computes an optimal solution for one of the three variables

at a time by fixing the other two. The algorithm repeats for a certain number of iterations

and converges within the first few iterations. Their algorithm is given in Algorithm 10.3.1

and a detail description of the procedure can be found in [50].
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algorithm 10.3.1 [50] Discriminative Canonical Correlation (DCC)

This algorithm computes a linear transformation L ∈ GLn iteratively that optimizes
Equation (10.14).
Input: All Pi ∈ Rn×k (orthonormal basis for Xi).
Output: L ∈ Rn×n.

1. Initialize L to In.

2. Iterate the following:

(a) For all i, find QR-decomposition: LTPi = ΦiRi and let Ui = PiR
−1
i (or-

thonormal basis for transformed image sets).

(b) For every pair i, j, find SVD: UT
i LL

TUT
j = QijMijQ

T
ji and save the rotation

matrices Qij and Qji.

(c) Compute

Sb =

m∑

i=1

∑

l∈Bi

(UlQli − UiQil) (UlQli − UiQil)
T
,

Sw =

m∑

i=1

∑

k∈Wi

(UkQki − UiQik) (UkQki − UiQik)
T
.

(d) Compute eigenvectors {li}n
i=1 of (Sw)−1 Sb and let L = [l1, . . . , ln].

We propose to maximize the objective function in Equation (10.12) numerically

by the Steepest Descent and BFGS methods as an initial attempt towards solving this

optimization problem. We quickly set up the notations for the Steepest Descent and

BFGS methods and give the procedure in Algorithm 10.3.2 and 10.3.3, respectively. Let

F (L) = −E(L). We wish to minimize F over all L ∈ Rn×d. If L = (lij), we stack

columns of L so that

l =
[
l11 · · · ln1 l12 · · · ln2 · · · l1d · · · lnd

]T

=
[
l1 l2 · · · lN

]T
,

where N = nd. Then

∇F (l) =
[

∂ F
∂ l1

, ∂ F
∂ l2

, · · · , ∂ F
∂ lN

]T
,

with

∂ F

∂ li
= lim

∆i→0

F (l1, . . . , li−1, li + ∆i, li+1, . . . , lN) − F (l1, . . . , li, . . . , lN )

∆i
.
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The Steepest Descent method is based on the fact that F (L) decreases the fastest if one

goes in the direction of the negative gradient of F at a given point l. If follows that, if

t = l− γ∇F (l)

for an optimal choice γ > 0, then F (l) ≥ F (t). A line (linear) search is generally

performed to find the optimal step size γ. Thus, an iterative algorithm for finding a

local minimum of F using the direction of negative gradient gives a sequence of solutions

l(0), l(1), l(2), . . . , l(n), . . . such that

l(n+1) = l(n) − γn∇F (l(n)), n ≥ 0.

One major weakness of the Steepest Descent method is that the algorithm can take

many iterations to converge. On the other hand, Newton’s method provides a better

alternative for the search directions and does not get trapped into a local extreme as

easily. However, Hessian of the function and its inverse information need to be com-

putable, which is an expensive calculation in general cases. Thus, we consider a class of

the Quasi-Newton methods, the Broyden-Fletcher-Goldfard-Shanno (BFGS) method for

which an approximate Hessian is computed at each step.

algorithm 10.3.2 Steepest Descent Method

Input: Function to be minimized, F : RN → R.
Output: l ∈ RN .

1. Initialization: Let l(0) be a random vector, g0 = ∇F (l(0)), d0 = g0.

2. Iterate the following:

(a) Determine the step length γk by a line search method by solving the opti-
mization

min
γk>0

F (l(k) − γkdk).

(b) Update: l(k+1) = l(k) − γkdk.

(c) Calculate the new search direction:

dk+1 = gk+1 = ∇F (l(k+1)).

10.4 Experimental Results

The goal that we set out to accomplish in the beginning of this chapter is to derive

a quantity that characterizes a given data set’s Grassmann separability from which we
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algorithm 10.3.3 [55] (Memoryless) BFGS Method

Input: Function to be minimized, F : RN → R, start at any point l(0).
Output: l ∈ RN .
Start at k = 0 and denote gk = ∇F (l(k)).

1. Set Hessian Hk = I.

2. Obtain search direction dk = Hkgk.

3. Determine the optimal step length γk by a line search method by solving the
optimization

min
γk>0

F (l(k) − γkdk)

and obtain l(k+1) = l(k) − γkdk, pk = γkdk, and qk = gk+1 − gk. (Select γk

accurately enough to ensure pT
k qk > 0.)

4. If k is not an integer multiple of n, set

Hk+1 = I − qkp
T
k + pkq

T
k

pT

k
qk

+

(

1 +
qT

k qk

pT
k qk

)
pkp

T
k

pT
k qk

.

5. Update: Add 1 to k and return to step 2. If k is an integer multiple of n, return
to step 1.

can search for linear subspace representations that increase the separation gap between

matching and non-matching subspaces. In this section, we will show that numerical solu-

tions to Equation (10.13) obtained via the Steepest Descent and BFGS methods are able

to accomplish this task. In particular, we will start with a data set that is not originally

Grassmann separable but become Grassmann separable after applying data points with

the linear transformation obtained via numerical solutions of Equation (10.13). Fur-

thermore, recognition results can be improved on this data set when images are first

transformed using solutions of the optimization problem.

The data set used here is the “illum” subset of the CMU-PIE Database. The images

are first projected down to 25 pixels via the scaling component of Haar wavelet analysis

to speed up computational time. Two disjoint sets of ten illumination images are selected

for each of the 67 subjects. The MATLAB codes for calculating the Grassmann potential

objective function and the separation gap for this data set are given in Appendix B.7 and

Appendix B.9, respectively. We use the code in Appendix B.6 to get numerical gradient of

the objective function. The code in Appendix B.10, which is based on Algorithm 10.3.2,

and the code in Appendix B.11, which is based on Algorithm 10.3.3, are used to obtain
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numerical solutions to the Grassmann potential objective function for this particular

data set with Steepest Descent and BFGS methods, respectively.

The results of applying these numerical solutions are illustrated in Figure 10.1. The

separation gap is defined as the difference between the minimum between-class distances

and the maximum of the within-class distances. Figure 10.1 (a) depicts the behavior of

F (L) = −E(L) as it searches for a local minimum as a function of iterations through

the Steepest Descent method. A similar plot for BFGS is observed as well and therefore

not included here. Figure 10.1 (b) compares the effects of the linear transformations

applied to the data set via Steepest Descent and BFGS methods. Effects of random

projections are also plotted for comparison. BFGS converges extremely fast; however,

for a particular starting point, it might not converge to an ideal solution. On the other

hand, Steepest Descent takes a lot longer to converge; however, it gradually improves to

an optimal solution over time. While solutions of both methods turn a non-Grassmann

separable data set into one that is Grassmann separable, random projections is shown

to be inferior to the solutions of both methods on average. We have seen through this

simple example, as a proof of concept, that the optimization problem formulated from

studies of perturbation theory provides a useful search criterion for improving Grassmann

separability.

As for how meaningful the improvement is, we propose to look at Figure10.2 where

the distances between matching and non-matching pairs of subspaces on the 25-pixel data

set are tallied. The plot shows that, on average, the distance between a pair of matching

and non-matching subspaces is about 0.04 radian apart without transforming the data.

This means that the linear transformations obtained via these two methods might not

have a very strong ability to alter results of false positives. We suspect improvements of

these results can come from better usage of the perturbation theorems.

We further examine the effect of transforming data as a preprocessing step in a face

recognition problem. In order to speed up the classification process, PCA is applied to

the “illum” subset of CMU-PIE Database to obtain a 15-dimensional feature space, i.e.,

PCA dimension is 15. We name this data set the 15-pixel data set. Now, randomly

select two disjoint sets of 7 images for each person from which linear subspaces are

formed. We then performed two sets of experiments by varying the cardinality of the

test sets. In one experiment, we let the cardinality of the test sets be one and repeat
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Figure 10.1: (a) Descent of the objective function F (L) = −E(L) using Steepest Descent
method. (b) Separation gaps for the 25-pixel data set when images are transformed
using random projections and solutions of F (L) = −E(L) obtained via Steepest Descent
method and BFGS method. Solutions for random projections are averaged over 100
times with the average, maximum, and minimum values plotted.

Choice of L
Cardinality of test sets Identity Random Steepest Descent BFGS DCC [50]

1 38.8% 43.3% 33.4% 48.2% 41.5%
7 9.3% 38.1% 6.4% 17.7% 99.1%

Table 10.3: FAR with d1 using different linear transformations on the 15-pixel data set.
Result using the random projections is averaged over 100 times.

for a total of seven times. In another experiment, we let the cardinality of the test

sets be seven and repeat for a total of ten times. The average classification errors in

FAR for both experiments are shown in Table 10.3. As a comparison, FAR on data

under no transformation and random transformation are also given in the same table. In

addition, we compare the results obtained with the method described in [50]. Readers

should make a note that we make no attempt to optimize the parameters used in [50] and

do not claim that our results here are absolutely superior than the ones given in [50].

The bottom line is that by transforming the data using solutions of the optimization

problem described in Expression (10.13), we are able to improve classification results in

the FAR sense. We want to emphasize that the results described in the current section

offers an initial understanding of the optimization problem described in the previous

section and future research on ways to improve classification results and methods for

solving the optimization problem is anticipated.
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Figure 10.2: Frequency plot for the distance between matching and non-matching pairs
for the 25-pixel data set without any linear transformation.
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Chapter 11

KARCHER MEAN ON THE RIEMANNIAN

MANIFOLDS

In searching for a robust prototype subspace representation that is less prone to

perturbation, we conjecture that such a subspace coincides with the mean subspace on

the manifold, hence the concept of Karcher mean. This use of mean subspaces in set-

to-set object recognition problems will provide us a blueprint to contain discriminatory

information with spaces of reduced dimensions. Although the definition of Karcher mean

is well-established and mathematically easy to write down, calculating a Karcher mean

even on a small collection of sets can be tedious. We will further investigate ways to

speed up the convergence rate in search for a mean subspace on a collection of subspaces.

In the Euclidean space R, the definition of the mean is simply the arithmetic average

that is commonly known, i.e., for a set of P distinct objects
{
x(1), x(2), . . . , x(P )

}
, its

Euclidean mean is defined as

m =
1

P

P∑

i=1

x(i).

Similarly, for a set of objects {x(1), x(2), . . . , x(P )}, x(i) ∈ R
n, its Euclidean mean is

m = (mi)
n
i=1 such that each mi is defined as

mi =
1

P

P∑

j=1

x
(j)
i .

Furthermore, the distance between any two points x(i) and x(j) ∈ Rn satisfies

d2(x(i), x(j)) =

n∑

l=1

(

x
(i)
l − x

(j)
l

)2

.

This straight-line distance and arithmetic mean make sense in a space with no curvature,

which is the case of Euclidean spaces. We would like to extend the concepts of mean

and distance to a more general and curved space, such as a Riemannian manifold, and
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in particular, Grassmann manifold. We will briefly review the general definition of a ge-

ometric mean on Riemannian manifolds in Chapter 11.1 and a gradient descent method

for calculating such means on compact Lie groups in Chapter 11.2. We present a toy

example in 11.3 using the algorithm obtained in Chapter 11.2. The main results of the

chapter are presented in Chapters 11.4 and 11.5 with an established algorithm for calcu-

lating Karcher mean on the Grassmann manifold and a novel algorithm for computing

robust prototype representations for points on the Grassmann manifold, respectively.

11.1 Karcher Mean on the Riemannian Manifolds

A Riemannian manifold is a smooth differentiable manifold equipped with a sym-

metric positive definite metric known as the Riemannian metric. This metric arises from

inheriting a canonical metric on the tangent space. Well-known examples of Riemannian

manifolds include the Euclidean spaces with the standard inner product and the surface

of a sphere such that the shortest distance between any two points on it lies along a great

circle passing through the two points. In addition, the Grassmann manifold G(k, n) is

also a Riemannian manifold such that when endowed with different differential topology,

different Riemannian metric on the Grassmannian is obtained. See Chapter 3.2 for the

different geometries on the Grassmannian obtained in such ways.

Certainly the mean on a manifold minimizes the summed squared distance measured

along the geodesics. Fréchet [31] in 1948 generalizes the notion of mean to manifolds

that is defined globally as follows. If M is a Riemannian manifold, d(x, y) is the geodesic

distance between x, y ∈ M, and µ is a probability measure on M, then Fréchet mean

minimizes

F (x) =
1

2

∫

M

d2(x, y) dµ(y).

In the discrete sense, since the estimates of the Fréchet mean derived from random sam-

ples of a distribution tend toward the Fréchet mean of the distribution from which

the samples were drawn, one can define the Fréchet mean for a set of P samples

{x(1), . . . , x(P )} with respect to the distribution as the x that minimizes

F (x) =
1

2P

P∑

j=0

d2
(

x, x(j)
)

.

The constant 2 is used for convenience of notation later on. It is then straightforward

to see in the case of the sphere that the Fréchet mean between the north pole and south
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pole is not unique since any point on the equator qualifies to be considered as a Fréchet

mean. Therefore, Fréchet mean is not necessarily unique. However, a minor adjustment

can be made in the definition of Fréchet mean to obtain an unique local minimum. Such

means are known as the Karcher or Cartan means [46, 48]. Namely, for a set of P points

x(1), . . . , x(P ) ∈ M, the Karcher mean q∗ is defined as

q∗ = arg min
q∈M

1

2P

P∑

i=1

d2(x(i), q).

When distributions are limited to a sufficiently small region of a Riemannian manifold,

it can be shown that an unique Karcher mean must exist in the restricted region [46].

11.2 Karcher’s Local Test For Compact Lie Groups

An algorithm for calculating the Karcher mean on compact Lie groups that is moti-

vated by Karcher’s local test for a Karcher mean is given in [93, 57] and Appendix A.1.

Karcher’s local test for the Karcher mean gives rise to a Riemannian gradient descent

algorithm for calculating the Karcher mean of a set of points on a Riemannian manifold

that are sufficiently close to the identity. We will briefly review the algorithm in this

section.

The heart of the algorithm lies in the ability to work on the tangent space of points

on the manifold. In order to access points back and forth between the manifold and

the tangent space, we will need the notions of exponential and logarithm maps on the

Riemannian manifold.

Definition 11.2.1. Let M be a Riemannian manifold and for any point p ∈M , denote

the tangent space of M at p by TpM . The Riemannian Exponential map Expp0
: TpM →

M is defined as the solution of the geodesic equation, i.e., if γ(t) : [0, 1] →M is a geodesic

on M with γ(0) = p0 and γ(1) = p1, and

d

dt
γ

′

(t) = 0 (acceleration free), γ(0) = p0, γ′(0) = v0 ∈ Tp0M,

then Expp0
(αv0) = γ(α).

In particular, Expp0
(v0) = p1. This procedure of fixing a vector v0 ∈ Tp0M as

an initial velocity for a geodesic gives rise to a natural correspondence between Tp0M

and a small neighborhood of p in M . This association is unique in a small ball of
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radius ρ (injectivity radius) in Tp0M . Within an appropriate neighborhood Np0 of p0 ∈

M , the inverse process is also unique and defined to be the Riemannian Logarithm

map. With this notation, Logp0
: Np0 ⊂ M → Tp0M with Logp0

(p1) = v0. See a

graphical illustration for the correspondence between points in the tangent space and

the Riemannian manifold via Exp and Log maps in Figure 11.1 (analogous to the one

given in [69]). In the figure, θ(t) is a line in the tangent space through 0 and γ(t) is a

geodesic on M .

��
��

��
��

0

v0

θ(t1)

θ(t)

Tp0
M

p(t1)

M

p0 = p(0)

Expp0(θ(t1))
Logp0(p(t1))

γ(t) = Expp0(θ(t))
Np0

Figure 11.1: [69] Correspondence between points on a geodesic in a manifold M and
points on a line in the tangent space Tp0M .

For the clarity of the notations, let log and exp be the logarithm and exponential

maps for the Lie groups and let Logq and Expq be the logarithm and exponential maps

for the Riemannian manifolds at the point q. If we adapt the notations from before and

let d(·, ·) be a distance function on M and f(q) = 1
2P

∑P
i=1 d

2(x(i), q), then the following

lemma gives the gradient of the cost function f(q).

Lemma 11.2.1. [57]

grad f(q) = − 1

P
q

P∑

i=1

exp−1
(

q−1x(i)
)

= − 1

P
q

P∑

i=1

log(q−1x(i)), or

grad f(q) = − 1

P

P∑

i=1

Exp−1
q

(

x(i)
)

= − 1

P

P∑

i=1

Logq(x
(i)).
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Proof. Let Expx : TxM → M be the Riemannian exponential map, then its relation to

the Lie group exponential map is

Expx(xA) = x exp(A). (11.1)

Theorem 1.2 of [46] (theorem and proof are given in Appendix A.1) implies that

gradf(q) = − 1

P

P∑

i=1

Exp−1
q (x(i)) = − 1

P

P∑

i=1

Expq

(

q(q−1x(i))
)

= − 1

P

P∑

i=1

q exp−1(q−1x(i)) = − 1

P
q

P∑

i=1

log(q−1x(i)).

A necessary condition for q to be the Karcher mean is for gradf(q) to be zero. But

gradf(q) = 0 if and only if 1
P

∑P
i=1 log(q−1x(i)) = 0. This gives us a search direction in

the gradient descent algorithm. The following lemma gives us an update criterion.

Lemma 11.2.2. [57] Let M be a Riemannian manifold and f : M → R a function

whose Riemannian Hessian has all its eigenvalues in the interval [δ, 1] for δ > 0. Let

Expx denote the Riemannian exponential map about x ∈ M. Then, for any initial point

q0 ∈ M, the sequence

qk+1 = Expqk
(− gradf(qk))

converges to the unique global minimum of f . Moreover, the distance from q to the

minimum is bounded above by δ−1|| grad f(q)||.

Hence, we update the Karcher mean according to the following rule,

Exp qk (− gradf(qk)) = Expqk

(

1

P
qk

P∑

i=1

exp−1
(

q−1
k x(i)

)
)

= Expqk
(qkA) ,

where A = 1
P

∑P
i=1 exp−1

(
q−1
k x(i)

)
. That is, qk+1 = Expqk

(qkA) = qk exp(A).

Algorithm 11.2.1 gives a Riemannian gradient descent method for searching a local

Karcher mean on a compact Lie group. Its Riemannian counterpart version is given in

Algorithm 11.2.2. The algorithm is modeled after Newton’s method (hence, quadratic

convergence) and global convergence is guaranteed for points contained in an open ball

of a small size.
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algorithm 11.2.1 [57] Descent Method For Karcher Mean on Compact Lie Groups

This algorithm calculates the Karcher mean of a set of points on a compact Lie group,
G.
INPUT: Points x(1), x(2), . . . , x(P ) ∈ G, ǫ (machine zero).
OUTPUT: Karcher mean, q.

1. Set q = x(1).

2. Compute A =
1

P

P∑

i=1

exp−1
(

q−1x(i)
)

.

3. If ||A|| < ǫ, stop and return q, else go to step 4.

4. Update q := q exp(A), and go to step 2.

algorithm 11.2.2 [57] Descent Method for Karcher Mean on Riemannian Manifolds

This algorithm calculates the Karcher mean of a set of points on a Riemannian manifold,
M.
INPUT: Points x(1), x(2), . . . , x(P ) ∈ M, ǫ (machine zero).
OUTPUT: Karcher mean, q.

1. Set q = x(1).

2. Compute A =
1

P

P∑

i=1

Exp−1
q

(

x(i)
)

.

3. If ||A|| < ǫ, stop and return q, else go to step 4.

4. Update q := Expq(A), and go to step 2.

116



11.3 Visualization of Karcher Mean on S2

This is an example section where we try to visualize the convergence of the Karcher

mean Algorithm 11.2.2 on the unit sphere in R3. M = S2 is the collection of vectors

p ∈ R3 with ||p|| = 1. This space may be viewed as the quotient space SO(3)/SO(2) ≃M

and an element can be represented by taking an orthogonal matrix U and retaining only

the first column. The tangent space at p ∈ M is the collection of vectors orthogonal to

p, hence isomorphic to R2. The Riemannian metric is induced by the Euclidean metric

on R2. Fixing a tangent vector θ ∈ Tp0S
2, the Riemannian exponential on S2 at p0 is

Expp0
(θ) = cos(||θ||)p0 + sin θ

θ

||θ|| .

For any p1 that is not antipodal to p0, a unique expression for the Riemannian logarithm

is

Logp0
(p1) = cos−1 (〈p1, p0〉)

(
v

||v||2

)

,

where 〈·, ·〉 is the usual inner product on S2 and v = p1 − 〈p1, p0〉 p0.

An example of finding the Karcher mean on a random set of points in S2 using

Algorithm 11.2.2 and the Exp and Log maps given above is shown in Figure 11.2. The

convergence is achieved in 4 iterations with ǫ = 10−6.

11.4 Karcher Mean on the Grassmann Manifold

Karcher mean on the Grassmann manifold can be obtained via the algorithm de-

scribed above. This is because the Grassmann manifold can be realized as the quotient

group of the orthogonal group, which is a compact Lie group. A complete and detailed

algorithm for computing the Karcher mean on the Grassmann manifold based on the sin-

gular value decomposition is given in [5] and [22], which we will briefly review here. An

alternative approach for computing Riemannian centroid in naturally reductive homoge-

neous spaces based on intrinsic Newton method is given in [68]. As the name suggests,

the method requires knowledge of the first and second derivatives of the cost function

that gives rise to the optimization problem for the Karcher mean. Details on how to

find the gradient and Hessian vectors on the Grassmann manifold can be found in [24].

In addition, [24] also offers an algorithm for optimizing functions with Newton’s method

on the Grassmann manifold. A point p ∈ G(k, n) gives an equivalence class [p] such
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Figure 11.2: Progression of Karcher mean on S2. For a random set of 20 points (red
dots), the Karcher mean (black star) is updated using Algorithm 11.2.2. ||A|| is the value
in Algorithm 11.2.2 and d is the arc length (geodesic) on S2.

that p ∼ q if and only if q = QT p for some Q ∈ Ok. The tangent space TpG(k, n) to

p ∈ G(k, n) is given by

TpG(k, n) =
{

w | w = p⊥g, where g ∈ R
(n−k)×n and p⊥ = N(pT )

}

.

Notice that p⊥ is the orthogonal compliment of p. The Expp map that takes a point in

the tangent space TpG(k, n) to a point in G(k, n) is given by

Expp : TpG(k, n) −→ G(k, n)

w 7→ pV cosΘ + U sinΘ
(11.2)

where w ∈ TpG(k, n) has the SVD w = UΘV T . The Logp map that takes a point in a

neighborhood of p ∈ G(k, n) to a point in TpG(k, n) is given by

Logp : q ∈ Up ⊂ G(k, n) −→ TpG(k, n)

q 7→ UΘV T
(11.3)
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where p⊥p
T
⊥q(p

T q)−1 = UΣV T and Θ = arctan(Σ), when it is well-defined. A numerical

stable algorithm for finding the Log map is given in Algorithm 11.4.1 that can be found

in [22] and MATLAB codes for Algorithm 11.4.1 and all other relevant subroutines are

given in Appendix B.3 and B.5, respectively.

algorithm 11.4.1 [5, 22] Log Map on Grassmann Manifolds

This algorithm calculates the Logq(p) map on the Grassmann manifold.
INPUT: points p, q ∈ G(k, n).
OUTPUT: Logq(p).

1. Find the CS decomposition qT p = V CZT and qT
⊥p = WSZT , where V , W and Z

are orthogonal matrices and C and S are diagonal matrices such that CTC+STS =
I [36]. Note that C will always be a square, invertible matrix.

2. Delete(add) zero rows from(to) S so that it is square. Delete the corresponding
columns of W (or add zero columns to W ), so that it has a compatible size with
S.

3. Let U = q⊥W and Θ = arctan(SC−1).

Then U,Θ, and V are as in (11.3).

algorithm 11.4.2 [5, 22] Descent Method for Karcher Mean on Grassmann Manifolds

This algorithm calculates the Karcher mean for a set of points on the Grassmann mani-
fold.
Input: Points p1, p2, . . . , pm ∈ G(k, n), ǫ (machine zero).
Output: Karcher mean, q.

1. Set q = p1.

2. Find (using Algorithm 11.4.1)

A =
1

m

m∑

i=1

Logq(pi).

3. If ||A|| < ǫ, return q, else, go to step 4.

4. Find the SVD
UΣV T = A

and update
q → qV cos(Σ) + U sin(Σ).

Go to step 2.

If we equip the tangent space with a Frobenius norm, then the induced Riemannian

metric is simply the arc length or geodesic distance on G(k.n), i.e., the distance between
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p, q ∈ G(k, n) can be written in terms of the principal angles θ(p, q) = (θ1, θ2, . . . , θk)

(diagonal elements of Θ)as

dg(p, q) =

(
k∑

i=1

θ2i

)1/2

.

Given the points p1, . . . , pm ∈ G(k, n), the Karcher mean is the point q∗ that minimizes

the sum of the squares of all the principal angles between q∗ and pi’s, i.e.,

q∗ = arg min
q∈G(k,n)

m∑

j=1

k∑

i=1

(θj,i(q, pj))
2 . (11.4)

The algorithm for finding the Karcher mean on the Grassmann manifold with this defi-

nition of the Karcher mean can be found in Algorithm 11.4.2 [5, 22] while a MATLAB

code for Algorithm 11.4.2 is given in Appendix B.4. On the other hand, if we change

the distance function in the optimization problem (11.4) to the chordal distance, then

we obtain a new definition for the Karcher mean on the Grassmann manifold:

q∗ = argmin
q∈G(k,n)

m∑

j=1

k∑

i=1

(
sin2 θj,i(q, pj)

)2
. (11.5)

Both definitions are asymptotically equivalent for small principal angles since all the

Grassmannian distances generate the same topology. An algorithm for calculating the

Karcher mean on the Grassmann manifold using the definition (11.5) is given in [1].

We remark that it will be very interesting to examine the topology generated by the ℓ-

truncated Grassmannian semi-metrics and the Karcher mean obtained by replacing the

distance function used in Equation (11.5) with these ℓ-truncated Grassmannian semi-

metrics.

It is shown in [8] that points on a manifold that lie in a convex ball converge to a

point that minimizes its sum squared distance to the points. The convexity of a ball

depends on its radius (convexity radius, ρc), which satisfies the inequality

ρc ≥ min

{
1

2
ρ,

1

2
κ

}

,

where ρ is the injectivity radius and κ is an upper bound on the sectional curvature.

According to [91], any geodesic in G(k, n) with min {k, n− k} ≥ 2 that intersects itself

is closed, and the minimal length of a closed geodesic is π. Furthermore, the curva-

ture of G(k, n) is bounded by 4 [92]. Thus, as long as there is a q ∈ G(k, n) that

satisfies Karcher’s local test for Karcher mean, then q is the unique Karcher mean for

p1, p2, . . . , pm ∈ Bπ
4
(q) [5]. On the other hand, the maximum distance between any two

points in G(k, n) is equal to min
{√

k,
√
n− k

}
π
2 for k, n− k 6= 1 [91].
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11.5 Karcher Compression for Face Recognition

For points on G(k, n), reduction in the size of k corresponds to reducing the di-

mension of the subspace representing a set of digital images. We will accomplish this

through a Karcher mean computation. Images obtained via patch collapsing and patch

projection typically have a small enough dimension, e.g., 25–100, that the machinery of

the Karcher mean is now computationally tractable. We will present in the current sec-

tion how the calculation of Karcher mean may be used to perform robust classification

at reduced computational cost. The results here provide supporting evidence for the

potential of exploiting statistics on Grassmann manifolds.

We will follow the experimental protocols in Chapter 8.3 in this set of experiments.

We illustrate the use of k-dimensional Karcher representation of illumination feature

patches to compress data by comparing the recognition result when using k raw images.

A k-dimensional Karcher representation is computed via Algorithm 11.5.1. In short, we

randomly split the available data in the gallery into two disjoint sets of equal size. The

first k left principal vectors of the pair is computed and saved. This process is repeated t

times and the set of k-dimensional left principal vectors is used to compute the Karcher

mean.

As an example, using 16 images to generate gallery points and 3 images to generate

probe points yields an error-free classification result using the NN classifier on the lip

patch of the “lights” data set. For the same gallery we replaced the 16 images by a

k-dimensional Karcher representation, where k goes from 1 to 8. When tested on probes

of cardinality 3, this resulted in an error-free classification for all k in the NN sense

and k ≥ 4 in the FAR sense as shown in Figure 11.3. The compression of a raw point

on G(16, 41 · 59) to a Karcher representation on G(4, 41 · 59) and G(1, 41 · 59) without

diminished performance in the FAR and NN sense, respectively, indicates the promise of

what we are referring to as Karcher compression in the context of classification of points

on Grassmannians. On the contrary, when using k raw images for each gallery point,

the error rate is zero for k ≥ 7 in the NN sense and never reaches zero in the FAR sense.

The fact that using a 1-dimensional Karcher representation achieves a perfect recogni-

tion result in the NN sense while using 1 raw image in the gallery does not indicates

that Karcher representations are able to pack useful information more efficiently. This
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Figure 11.3: Error rate comparisons with k-dimensional Karcher representation and k
raw images for points in the gallery corresponding to lip patches. Three images are used
to compute points in the probe.

technique can potentially be used to store compact representations computed from video

sequences or large data sets where a large number of images is available for the gallery.

Also, it is of potentially substantial interest to exploit the additional information

provided by the distribution of distances from the Karcher representations in the gallery

generated by either match or non-match probes. As we see in Figure 11.4, 3 images

in the probe and a 2-dimensional Karcher representation in the gallery provide good

separation between matches and non-matches. The plot is generated by training the

Karcher representation 20 times and testing on 100 pairs of matching and 6600 pairs of

non-matching incidences. The fact that these distributions are separated suggests a test

for detecting false positives when a non-match is identified as a match. A footprint may

be left if the identification (incorrectly) of a match is for the wrong reason, i.e., a large

distance between the gallery principal vector(s) and the Karcher mean of true positive

gallery principal vectors.
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algorithm 11.5.1 K.M. Representation

This algorithm computes the Karcher mean for a set of principal vectors trained from a
set of images of a single person.
Input: k (Karcher dimension), t (training iteration), N (number of images given).
Output: Karcher mean, < l >K .

1. For each training iteration m = 1 : t, do the following:

(a) Let Tm and Qm be two matrices such that Tm, Qm ∈ Rn×N
2 and R(Tm) and

R(Qm) do not intersect trivially. Columns of Tm and Qm are selected from
the N input images.

(b) Find the first k left principal vectors of the pair of subspaces R(Tm) and
R(Qm):

Tm = QtRt, QT
t Qt = IN

2
, Rt ∈ R

N
2 ×N

2 .

Qm = QqRq, QT
q Qq = IN

2
, Rq ∈ R

N
2 ×N

2 .

M = QT
t Qq, compute the SVD:M = Y SZT .

The left p.v.’s are given by columns of U = QtY .
Let the first k left principal vectors be lm = U(:, 1 : k).

2. Since each lj ∈ G(k, n), find the Karcher mean of {lj}m
j=1, < l >K , using Algo-

rithm 11.4.2.
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Chapter 12

CONCLUSIONS

In this dissertation, a novel geometric framework for the general classification prob-

lem of image sets is proposed. The power of the method is due, in part, to the fact that

the geometry and statistics of the Grassmann manifold are well-understood and pro-

vide useful tools for quantifying the relationships between patterns. Moreover, improved

classification outcomes are often observed when multiple sets of data per subject are

available at both training and testing stages. This is perhaps not surprising since fami-

lies of patterns with a common characterization often possess discriminatory variations

that are useful for classification. As it was shown throughout the dissertation that the

nature of this information may arise from global features of the pattern, or alternatively,

from local features that possess their own special characteristics under a variation of

state. Under the right conditions, these families of patterns can be viewed as points on a

geometric parameter space called the Grassmannian where well-established distances are

available for identifying neighborhood relationships. We made precise this connection,

reviewed various ways these metrics on the Grassmannian arise, and how to efficiently

compute distances between points on this manifold.

Under this framework, we achieved excellent classification results for a variety of

applications in face recognition and offer new insights to the problem in general. As a

proof of concept, we first presented two simple two-class classification problems along

with state-of-the-art accuracies. We then tackled the well-known illumination problem

and obtained perfect recognition results on two largest publicly available databases cre-

ated for this purpose, CMU-PIE Database and Yale Face Database B. In an attempt to

break the method, we were motivated to consider both nonlinear data sets and images of

extremely low resolutions. Here the Grassmann framework is robust against resolution

124



reductions in the sense that the separation gap found in the original ambient space is

still observed in the compressed spaces. The benefits of performing classification on such

compressed data sets and potential applications were discussed and suggested.

In order to understand how robust the Grassmann framework is against perturba-

tion, we employed tools from matrix perturbation theory where we exploited the natural

correspondence between linear subspaces and points on the Grassmannians. Once we

defined a notion of data sensitivity, we were then led to formulate an optimization prob-

lem using these characteristics as an objective function. To this end, we connected

this optimization criterion on the Grassmannian to the idea of Fisher Linear Discrim-

inant Analysis on general image sets used in [50]. Numerical solutions obtained using

the Steepest Descent Method and a Quasi-Newton (BFGS) Method showed promising

improvements on the separability criterion. That is, data sets will be less sensitive to

perturbations (e.g., registration errors and noise in data collection) if points are trans-

formed into spaces where distances among subjects of the same class are minimized while

distances among subjects of different classes are maximized.

The thesis is concluded by suggesting a blueprint for extending the Grassmann

framework in the general object classification problem. As an initial step, we demon-

strated how the use of a geometric concept, Karcher mean, is able to provide robust

prototype representations in object classification problems. After briefly setting up the

definition of Karcher mean on the Grassmannian, we reviewed a SVD-based numerical

technique for obtaining the Karcher mean on this manifold. Finally, a novel algorithm

that computes subject prototypical points using the Karcher mean on the Grassmannian

was presented based on the success of the framework applied on images of extremely low

resolutions. It is worth noting that this calculation would not have been computationally

tractable if not for the development of the Grassmann framework on images of extremely

low resolutions (e.g., feature patches).

In this dissertation, a lot of new ideas for geometric data analysis are generated

through studies of old ideas. In particular, we set up a novel geometric framework for

understanding neighborhood relationships for large data sets. Whether a particular met-

ric suits better than other metrics for a particular data set as well as the optimal number

of principal angles are needed to construct a particular type of metric for a particular data

set are open questions. By studying matrix perturbation theory and Karcher mean, we
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found a way to improve robustness of the classifier and reduce computational complexity

by solving appropriate objective functions in two optimization problems. The objective

function obtained from the perturbation theory can potentially be more effective upon

the exploration of the perturbation bounds while the objective function obtained from

considering specific types of metric on the Grassmann manifold will provide new insights

to the compression technique if different metrics are used. These two topics should serve

as subjects of future research. Furthermore, does resolution of the data affect the ro-

bustness of the Grassmann framework? Namely, is high resolution data set less sensitive

to perturbation and noise than their low resolution counterparts? We envision other

parameter spaces such as Stiefel and flag manifolds also present opportunities for ex-

tension of these ideas. Additionally, although we focus on illumination as the source of

state variation, we remark that other variations in data state, such as those obtained by

multi-spectral cameras, also fit into this framework. It is our hope that the suite of these

frameworks and algorithms can collectively provide useful insights in studying geometric

aspects of large data sets.
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[49] T-K. Kim, O. Arandjelović, and R. Cipolla. Learning over sets using boosted mani-
fold principal angles (BoMPA). In IAPR British Machine Vision Conference, pages
779–788, 2005.

[50] T-K. Kim, J. Kittler, and R. Cipolla. Learning discriminative canonical correlations
for object recognition with image sets. In ECCV, pages 251–262, 2006.

129



[51] M. Kirby and L. Sirovich. Application of the Karhunen-Loève procedure for the
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[89] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg. Face recognition
by elastic bunch graph matching. In Gerald Sommer, Kostas Daniilidis, and Josef
Pauli, editors, Proc. 7th Intl. Conf. on Computer Analysis of Images and Patterns,
CAIP’97, Kiel, number 1296, pages 456–463, Heidelberg, 1997. Springer-Verlag.

[90] L. Wolf and A. Shashua. Learning over sets using kernel principal angles. JMLR,
4(10):913–931, 2003.

[91] Y.-C. Wong. Differential geometry of Grassmann manifolds. Proc. Natl. Acad. Sci.
USA, 57:589–594, 1967.

[92] Y.-C. Wong. Sectional geometry of grassmann manifolds. In Proceedings of the
National Academy of Sciences (U.S.A.), volume 60, pages 75–79, 1968.

[93] R. Woods. Characterizing volume and surface deformations in an atlas framework:
theory, applications and implementation. NeuroImage, 18:769–788, 2003.

[94] O. Yamaguchi, K. Fukui, and K. Maeda. Face recognition using temporal image
sequence. In AFGR, pages 318–323, 1998.

[95] M. Yang, N. Ahuja, and D. Kriegman. Face recognition using kernel eigenfaces. In
Proceeding of IEEE, ICIP, pages 37–40, 2000.

[96] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A
literature survey. ACM Comput. Surv., 35(4):399–458, 2003.

[97] S. Zhou and R. Chellappa. Image-based face recognition under illumination and
pose variations. J. Opt. Soc. Am. A, 22(2):217–229, Feb 2005.

132



Appendix A

PROOFS

A.1 Karcher’s Local Test

Let A be a measure space of volume 1. (Mostly A will be a compact Riemannian
manifold or a finite set of points.) Let M be a complete Riemannian manifold and
Bρ(m) a convex open ball of radium ρ around m in M (“Convex”: For any p, q ∈ B we
require that the shortest geodesic from p to q is unique in M and lies in B; sufficiently
small Riemannian balls are convex.) We call any measurable map f : A → Bρ a “mass
distribution” on Bρ and define, as in the Euclidean situation,

Pf : B̄ρ → R, Pf (m) =
1

2

∫

A

d(m, f(a))2 da, (A.1)

where d(·, ·) is the Riemannian distance of M and < , > will be the Riemannian scalar
product. We use now the Riemannian exponential map.

Theorem A.1.1. [46]

gradPf (m) = −
∫

A

exp−1
m f(a)da. (A.2)

Proof. [46] Let γ : I → Bρ be a geodesic and consider the family of geodesic from f(a)
to γ(t) : ca(s, t) = expf(a)(s · exp−1

f(a) γ(t)). (s parameterizes points f(a) in Bρ(m), t

parameterizes points in the geodesic, exp−1
f(a) γ(t) is a point in Tf(a)A). Denote c

′

a =
d
dsca(s, t), ċa = d

dtc(s, t). Since d is a Riemannian metric, d(m, f(a)) = |c′a(s, t)| and is
independent of s and that s→ ċa(s, t) is a family of Jacobi fields. Now,
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d

dt
Pf (γ(t)) =

1

2

d

dt

∫

A

d2 〈γ(t), f(a)〉 da =
1

2

d

dt

∫

A

〈

c
′

a(s, t), c
′

a(s, t)
〉

=
productrule

1

2

∫

A

[

(c
′

a(s, t))T D

dt
c
′

a(s, t) +
D

dt
(c

′

a(s, t))T c
′

a(s, t)

]

da

=
1

2

∫

A

2

(
D

dt
(c

′

a)T · c′a
)

da =

∫

A

〈
D

dt
c
′

a, c
′

a

〉

da

=

∫

A

〈
D

ds

D

dt
ca,

D

ds
ca

〉

da (by continuity)

=

∫

A

〈
D

ds
ċa, c

′

a

〉

da =

∫

A

(∫ 1

0

〈
D

ds
ċa, c

′

a

〉)

da

(since |c′a| is independent of s)

=

∫

A

∫ 1

0

D

ds

〈

ċa, c
′

a

〉

ds da








d

ds

〈

ċa, c
′

a

〉

=

(
d

ds
ċa

)

c
′

a +

=0
︷ ︸︸ ︷

ċa

(
d

ds
c
′

a

)

, property of geodesic








=

∫

A

D

ds

∫ 1

0

〈

ċa, c
′

a

〉

ds da

=
FTC

∫

A

〈

ċa(1, t), c
′

a(1, t)
〉

−
〈 =0
︷ ︸︸ ︷

ċa(0, t), c
′

a(0, t)

〉

da

=

∫

A

〈

ċa(1, t), c
′

a(1, t)
〉

da.

Now, ċa(1, t) = d
dtca(1, t) = γ̇(t) is independent of a, and c

′

a(1, t) = d
dsca(1, t) = tangent

vector of the geodesic from f(a) to γ(t) = − exp−1
γ(t) f(a). Thus,

gradPf (γ(t)) =
d

dt
Pf (γ(t)) =

∫

A

〈

γ̇(t),− exp−1
γ(t) f(a)

〉

da.

Replace γ(t) with m:

gradPf (m) =

∫

A

〈 =1
︷︸︸︷

γ̇(t),− exp−1
m f(a)

〉

da = −
∫

A

exp−1
m f(a)da.

A.2 Lemma 3.2.1

Lemma 3.2.1 Suppose that σ(UH
X UY) = {ck}q

k=1, ck = cos θk, π
2 ≥ θ1 ≥ . . . ≥ θq ≥ 0.

If (UX ,WX ) forms an n × n unitary matrix and σ(WH
X UY) = {sk}q

k=1, s1 ≥ . . . ≥ sq,
then

sk = sin θk, k = 1, . . . , q.
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Proof. [81] Consider the identity

(
UH
X UY

)H (
UH
X UY

)
+
(
WH

X UY

)H (
WH

X UY

)
= Iq. (A.3)

First notice that since (UX ,WX ) forms a n× n unitary matrix, thus

(UXWX ) (UXWX )
H

= In ⇒ (UXWX )

(
UH
X

WH
X

)

= UXU
H
X +WXW

H
X = In.

Now, to verify the identity, we see that

UH
Y UXU

H
X UY + UH

Y WXW
H
X UY = UH

Y

(
UXU

H
X +WXW

H
X

)
UY = UH

Y InUY = Iq.

On the other hand, from the singular value decomposition of UH
X UY , we get

(
UH
X UY

)H (
UH
X UY

)
= V CHUHUCV H = V CHCV H

= V diag(c21, . . . , c
2
q)V

H = diag(c21, . . . , c
2
q).

Similarly,

(
WH

X UY

)H (
WH

X UY

)
= diag(s21, . . . , s

2
q).

It follows from the identity (A.3) that

c2k + s2k = 1, k = 1, . . . , q.

Thus, the relations sk = sin θk, k = 1, . . . , q.

A.3 Lemma 3.2.2

Lemma 3.2.2 Assume the notations above for X , Y, UX , UY , and WX , we have

σ+(UH
X UY) = σ+ (PXPY) (A.4)

and

σ+(WH
X UY) = σ+ ((I − PX )PY) . (A.5)

Proof. [81] Suppose the SVD of UH
X UY is

UH
X UY = U1

(
C1 0
0 0

)

V H
1 , (A.6)

where UH
1 U1 = V H

1 V1 = V1V
H
1 = Iq, C1 = diag(c1, . . . , cr) contains the nonzero singular

values in descending order, r ≤ q. Clearly,

σ+(UH
X UY) = {ck}r

k=1. (A.7)

On the other hand, (A.6) implies

PXPY = UX (UH
X UY)UH

Y

= UXU1

(
C1 0
0 0

)

V H
1 UH

Y = U2

(
C1 0
0 0

)

V H
2 ,
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where U2 = UXU1 ∈ Cn×q and V2 = UYV1 ∈ Cn×q satisfying UH
2 U2 = V H

2 V2 = Iq. This
decomposition means that

σ+(PXPY) = {ck}r
k=1. (A.8)

Comparison of (A.7) and (A.8) gives (A.4).
For (A.5), observe that

WXW
H
X = In − UXU

H
X = I − PX .

If

WH
X UY = U3

(
S 0
0 0

)

V H
3 ,

where UH
3 U3 = V H

3 V3 = V3V
H
3 = Iq, then

σ+(WH
X UY) = {sk}r

k=1 (A.9)

and

(I − PX )PY = WX (WH
X UY)UH

Y

= WXU3

(
S 0
0 0

)

V H
3 UH

B = U4

(
S 0
0 0

)

V H
4 .

This implies that

σ+((I − PX )PY) = {sk}r
k=1. (A.10)

Comparison of (A.9) and (A.10) gives (A.5).

A.4 Derivation of chordal F-norm

Let X and Y be two unitary matrices that span the range of the subspaces X ,Y ∈
G(k, n), respectively. The the chordal F-norm between X and Y is given by

dcF (X ,Y) := min
U,V ∈Ok

||XU − Y V ||F = ||2 sin
1

2
θ||2.

Proof. [79] Assume 2k ≤ n. Without loss of generality, assumeX and Y are the generator
matrices for X and Y, respectively. i.e.,

X =





I
0
0



 , Y =





C
S
0





by CS-decomposition. One must find unitary matrices U and V that minimize
∥
∥
∥
∥
∥
∥





I
0
0



U −





C
S
0



V

∥
∥
∥
∥
∥
∥

2

F

= ‖U − CV ‖2
F + ‖SV ‖2

F = ‖U − CV ‖2
F + ‖S‖2

F .

The second term of the right hand side is independent of U and V . Thus, U and V must
minimize ‖U − CV ‖2

F . But

‖U − CV ‖2
F = trace

(

(U − CV )
H

(U − CV )
)

= trace
((
UH − CV H

)
(U − CV )

)

= trace
(
UHU − CUHV − CUHV − CV HU

)

= trace
(
I + C2 − CJHV − CV HU

)
.
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This quantity is minimized when the diagonals of U and V are one. But U and V are
unitary imply that U = V = I. So,

‖U − CV ‖2
F + ‖S‖2

F = trace
(
I + C2 − 2C + S2

)

= 2 trace (I − C) = 2

k∑

i=1

(1 − cos θi)

= 4
k∑

i=1

sin2 1

2
θi =

∥
∥
∥
∥
2 sin

1

2
θ

∥
∥
∥
∥

2

.

A.5 Derivation of chordal 2-norm

Let X and Y be two unitary matrices that span the range of the subspaces X ,Y ∈
G(k, n), respectively. The the chordal 2-norm between X and Y is given by

dc2(X ,Y) := min
U,V ∈Ok

||XU − Y V ||2 = ||2 sin
1

2
θ||F .

Proof. [79] Without loss of generality, assume X and Y are the generator matrices for
X and Y, respectively. i.e.,

X =





I
0
0



 , Y =





C
S
0





by CS-decomposition. Notice

min
U,V

‖XU − Y V ‖2 ⇒ min
U,V

σ(XU − Y V ) = min
U,V

λmax

(

(XU − Y V )H (XU − Y V )
)

,

where

(

(XU − Y V )
H

(XU − Y V )
)

=









I
0
0



U −





C
S
0



 V





H 







I
0
0



U −





C
S
0



V





=





U − CV
−SV

0





H 



U − CV
−SV

0





=
[
UH − CV H − SV H

]





U − CV
−SV

0





=
(
UH − CV H

)
(U − CV ) +

(
−SV H

)
(−SH)

= UHU − CUHV − CV HU + C2V HV + S2V HV

= I + C2 + S2 − CUHV − CV HU

= 2I − CUHV − CV HU
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The expression λmax

(
2I − CUHV − CV HU

)
is minimized when U = V = I, thus

min
U,V

‖XU − Y V ‖2 = λmax

(
2I − CUHV − CV HU

)

= λmax (2I − 2C) = 2λmax (I − C)

= λmax






2(1 − cos θ1)
. . .

2(1 − cos θk)






= λmax






4 sin2 1
2θ1

. . .

4 sin2 1
2θk






= λmax






2 sin 1
2θ1

. . .

2 sin 1
2θk






=

∥
∥
∥
∥
2 sin

1

2
θ

∥
∥
∥
∥

F

.
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Appendix B

MATLAB CODES

B.1 Code for Algorithm 3.4.1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% quick algorithm for calculating the principal angles %

% between the two subspaces spanned by the columns of %

% A and B when angles are larger than 10^(-6). %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [C,angles] = prinAngles(A,B)

[Qa,Ra] = qr(A,0);

[Qb,Rb] = qr(B,0);

C = svd(Qa’*Qb,0);

angles = acos(C);

B.2 Code for Algorithm 3.4.2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% a modified algorithm for calculating the principal angles %

% between the two subspaces spanned by the columns of %

% A and B. Good for small (<10^(-6)) and large angles. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [angles] = mPrinAngles(A,B)

[Qa,Ra] = qr(A,0);

[Qb,Rb] = qr(B,0);

C = svd((Qa’)*Qb,0);

rkA = rank(Qa);

rkB = rank(Qb);

if rkA >= rkB

B = Qb - Qa*(Qa’*Qb);

else

B = Qa - Qb*(Qb’*Qa);
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end

S = svd(B,0);

S = sort(S);

for i = 1:min(rkA,rkB)

if (C(i))^2 < 0.5

angles(i) = acos(C(i));

elseif (S(i))^2 <= 0.5

angles(i) = asin(S(i));

end

end

angles = angles’;

B.3 Code for Algorithm 11.4.1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% calculate the Log_p(q) map for Grassmann manifold, where%

% p = point of tangency. p,q in G(k,n) with p’p = q’q = I.%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [X] = logMap(p,q)

A = p’*q;

[n,k] = size(p);

B = null(p’)’*q;

[V,W,Z,C,S] = csdecomp(A,B);

if n > 2*k

S = S(1:k,:);

W = W(:,1:k);

elseif n < 2*k

S = [S ; zeros(2*k-n,k)];

W = [W zeros(n-k,2*k-n)];

end

C = diag(1./diag(C));

U = null(p’)*W;

T = atan(S*C);

X = U*T*V’;

B.4 Code for Algorithm 11.4.2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% P = set of points p1,p2,...,pm, %

% m = number of points, eps = machine 0 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function [pbar] = karcherMean(P,m,eps)

m = size(P,1);

k = size(P,2)/m;

% initialization: set pbar = p1;

pbar = P(:,1:k);

nw = Inf;

while nw >= eps

[U,S,V] = svd(w,0);

pbar = pbar*V*funm(S,@cos)+ U*funm(S,@sin); % Exp map

w = zeros(n,k);

for i = 1:m

w = w + Logmap(pbar,P(:,k*(i-1)+1:k*i));

end

w = w/m;

nw = norm(w,’fro’);

end

pbar = orth(pbar); %to make pbar orthonormal

B.5 Subroutines for B.3

B.5.1 csdecomp.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Given Q_1 and Q_2 such that Q_1^T Q_1 + Q_2^T Q_2 = I, %

% the CS decomposition is a joint factorization of the %

% form Q_1 = UCZ^T and Q_2=VSZ^T where U, V, and Z are %

% orthogonal matrices and C and S are diagonal matrices %

% (not necessarily square) satisfying C^TC + S^TS = I. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [U,V,Z,C,S] = csdecomp(Q1,Q2)

[m,p] = size(Q1);

[n,pb] = size(Q2);

if pb ~= p

error(’MATLAB:gsvd:MatrixColMismatch’,

’Matrices must have the same number of columns.’)

end

if m < n

[V,U,Z,S,C] = csdecomp(Q2,Q1);

j = p:-1:1; C = C(:,j); S = S(:,j); Z = Z(:,j);

m = min(m,p);

i = m:-1:1;

C(1:m,:) = C(i,:); U(:,1:m) = U(:,i);

n = min(n,p); i = n:-1:1;

S(1:n,:) = S(i,:); V(:,1:n) = V(:,i);
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return

end

% Henceforth, n <= m.

[U,C,Z] = svd(Q1);

q = min(m,p);

i = 1:q;

j = q:-1:1;

C(i,i) = C(j,j);

U(:,i) = U(:,j);

Z(:,i) = Z(:,j);

S = Q2*Z;

if q == 1

k = 0;

elseif m < p

k = n;

else

k = max([0; find(diag(C) <= 1/sqrt(2))]);

end

[V,R] = qr(S(:,1:k));

S = V’*S;

r = min(k,m);

S(:,1:r) = diagf(S(:,1:r));

if m == 1 && p > 1, S(1,1) = 0; end

if k < min(n,p)

r = min(n,p);

i = k+1:n;

j = k+1:r;

[UT,ST,VT] = svd(S(i,j));

if k > 0,

S(1:k,j) = 0;

end

S(i,j) = ST;

C(:,j) = C(:,j)*VT;

V(:,i) = V(:,i)*UT;

Z(:,j) = Z(:,j)*VT;

i = k+1:q;

[Q,R] = qr(C(i,j));

C(i,j) = diagf(R);

U(:,i) = U(:,i)*Q;

end

if m < p

% Diagonalize final block of S and permute blocks.

q = min(nnz(abs(diagk(C,0))>10*m*eps(class(C))), ...

nnz(abs(diagk(S,0))>10*n*eps(class(C))));

i = q+1:n;

j = m+1:p;
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% At this point, S(i,j) should have orthogonal columns

% and the elements of S(:,q+1:p) outside of S(i,j)

% should be negligible.

[Q,R] = qr(S(i,j));

S(:,q+1:p) = 0;

S(i,j) = diagf(R);

V(:,i) = V(:,i)*Q;

if n > 1

i = [q+1:q+p-m 1:q q+p-m+1:n];

else

i = 1;

end

j = [m+1:p 1:m];

C = C(:,j);

S = S(i,j);

Z = Z(:,j);

V = V(:,i);

end

if n < p

% Final block of S is negligible.

S(:,n+1:p) = 0;

end

% Make sure C and S are real and positive.

[U,C] = diagp(U,C,max(0,p-m));

C = real(C);

[V,S] = diagp(V,S,0);

S = real(S);

B.5.2 diagk.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% diagk(X,k) gives the k-th diagonal of X, %

% even if X is a vector. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function D = diagk(X,k)

if min(size(X)) > 1

D = diag(X,k);

elseif 0 <= k && 1+k <= size(X,2)

D = X(1+k);

elseif k < 0 && 1-k <= size(X,1)

D = X(1-k);

else

D = [];

end

B.5.3 diagf.m
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% diagf(X) zeros all the elements off the %

% main diagonal of X %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function X = diagf(X)

X = triu(tril(X));

B.5.4 diagp.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%diagp(Y,X,k) scales the columns of Y and the rows %

% of X by unimodular factors to make the k-th %

% diagonal of X real and positive. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Y,X] = diagp(Y,X,k)

D = diagk(X,k);

j = find(real(D) < 0 | imag(D) ~= 0);

D = diag(conj(D(j))./abs(D(j)));

Y(:,j) = Y(:,j)*D’;

X(j,:) = D*X(j,:);

B.6 Numerical Gradient

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code calculates the gradient of the objective function %

% E(L) in Grassmann potential optimization problem at a given L %

% with three-point approximation that uses secant line through %

% the points (x-h1,f(x-h1)) and (x+h2,f(x+h2)). %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [gradF] = gradDesGPObjFn(Z,k,T)

%% Z = data set

%% k = subspace dimension

%% T = current linear transformation

[r,c] = size(T);

h1 = 0.0001;

h2 = 0.0001;

E1 = T; E2 = T;

for i = 1:r

for j = 1:c

E1(i,j) = T(i,j) - h1;

E2(i,j) = T(i,j) + h2;

m = calGPObjFn(Z,k,E2) - calGPObjFn(Z,k,E1);

gradF(i,j) = m/(h1+h2);
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end

end

B.7 Calculation of Objective Function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code calculates the function value of the Grassmann %

% potential objective function for a given transformation L. %

% distance = minimum principal angle. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function f = calGPObjFn(Z,k,L)

Nsubj = size(Z,3);

for i = 1:Nsubj

TT(:,:,i) = L’*Z(:,1:k,i);

TQ(:,:,i) = L’*Z(:,k+1:2*k,i);

end

Dw = []; Db = []; Dbeta = [];

for i = 1:Nsubj

a = norm(pinv(TT(:,:,i)),2);

for j = 1:Nsubj

theta = prin_angles(TT(:,:,i),TQ(:,:,j));

b = norm(pinv(TQ(:,:,j)),2);

Dbeta = [Dbeta (a + b)];

d = min(theta);

if j == i %% within-class distances

Dw = [Dw d];

else %% between-class distances

Db = [Db d];

end

end

end

Sw = sum(Dw);

Sb = sum(Db);

beta = sum(Dbeta);

f = -1*Sb/(Sw*beta);

B.8 Update of Objective Function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code updates the Grassmann potential objective function %

% using linear transformation obtained from either the %

% descent method of BFGS method. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function f = funUpdate(Z,k,Lold,d,x)

%% Lold = linear transformation obtained in the kth step

%% L = linear transformation obtained in the (k+1)th step

%% f = objective function at the (k+1)th step

%% d = search direction

Nsubj = size(Z,3);

L = Lold - x*d;

f = calGPObjFn(Z,k,L);

B.9 Calculation of Separation Gap

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code calculates the separation gap of a given data %

% set Z and a given linear transformation L. %

% distance = minimum principal angle. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function sg = calSepGap(Z,k,L)

Nsubj = size(Z,3);

for i = 1:Nsubj

TT(:,:,i) = L’*Z(:,1:k,i);

TQ(:,:,i) = L’*Z(:,k+1:2*k,i);

end

for i = 1:Nsubj

for j = 1:Nsubj

theta(i,j,:) = mprin_angles(TT(:,:,i),TQ(:,:,j));

end

end

D = theta(:,:,1);

N = max(diag(D));

for q = 1:Nsubj

if q == 1

off_diag(q,:) = D(q,q+1:Nsubj);

elseif q == Nsubj

off_diag(q,:) = D(q,1:Nsubj-1);

else

off_diag(q,:) = [D(q,1:(q-1)) D(q,(q+1):Nsubj)];

end

end

M = min(min(off_diag));

sg = M - N;

B.10 Optimizing Grassmann Potential with Algorithm 10.3.2
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code uses steepest descent method to calculate a %

% local min of the Grassmann potential objective function %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% preamble %%

load LL5_illum %% images of 25 pixels

X = LL5_illum; clear LL5_illum5

n = length(X(:,1));

k = 10;

Nsubj = 67; Nvar = 21;

epsilon = 10^(-1); % threshold for stopping

max_count = 100; x1 = 0; x2 = 100;

set(0,’RecursionLimit’,100)

for i = 1:Nsubj

Z(:,:,i) = X(:,(i-1)*Nvar+1:i*Nvar);

end

%% step 1: initialize L and find step size

Lold = rand(n,n);

d = gradDesGPObjFn(Z,k,Lold);

[x,objfval(1),exitflag,output] = ...

fminbnd(@(x) funUpdate(Z,k,Lold,d,x), x1, x2)

sep_gap(1) = calSepGap(Z,k,Lold)

Lold = Lold - x*d;

%% iterate the following %%

w = inf;

counter = 2;

while (w > epsilon) & (counter < max_count)

%% step 2: get gradident of F at current L

d = gradDesGPObjFn(Z,k,Lold);

%% step 3: optimize step size

[x,objfval(counter),exitflag,output] = ...

fminbnd(@(x) funUpdate(Z,k,Lold,d,x),x1,x2)

%% step 4: update L using the new gamma (= x)

sep_gap(counter) = calSepGap(Z,k,Lold)

L = Lold - x.*d;

w = norm(L-Lold,’fro’)

Lold = L;

cd results/transformed_results/

save OptTranSteepest_k10_x100 L sep_gap objfval

cd ../../

counter = counter + 1

end

B.11 Optimizing Grassmann Potential with Algorithm 10.3.3
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this code uses BFGS method to calculate a %

% local min of the Grassmann potential objective function %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% preamble %%

load LL5_illum

X = LL5_illum; clear LL5_illum

n = length(X(:,1));

m = n^2; k = 10;

Nsubj = 67; Nvar = 21;

epsilon = 10^(-2);

max_count = 20; x1 = 0; x2 = 100;

set(0,’RecursionLimit’,100)

for i = 1:Nsubj

Z(:,:,i) = X(:,(i-1)*Nvar+1:i*Nvar);

end

%% step 1: initialize L and H

cd results/transformed_results/

load OptTranSteepest_k10_x100_good

cd ../../

Lold = L;

clear objfval sep_gap

l = reshape(Lold,m,1);

I = eye(m); H = eye(m);

Gold = gradDesGPObjFn(Z,k,Lold);

gold = reshape(Gold,m,1);

dold = H*gold;

Dold = reshape(dold,n,n);

[x,objfval(1),exitflag,output] = ...

fminbnd(@(x) funUpdate(Z,k,Lold,Dold,x), x1, x2)

sep_gap(1) = calSepGap(Z,k,Lold)

L = Lold + x*Dold;

%% iterate the following %%

w = inf;

counter = 2;

while (w > epsilon) & (counter <= max_count)

G = gradDesGPObjFn(Z,k,L);

g = reshape(G,m,1);

Q = G - Gold;

q = reshape(Q,m,1);

p = x*dold;

%% step 2: approximate Hessian and update search direction

H = I - (q*p’+ p*q’)./(p’*q) + (1 + (q’*q)/(p’*q))*(p*p’)*(1/(p’*q));

dold = H*g;

Dold = reshape(dold,n,n);
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%% step 3: optimize step size

[x,objfval(counter),exitflag,output] = ...

fminbnd(@(x) funUpdate(Z,k,L,Dold,x),x1,x2)

%% step 4: update L using the new gamma (= x)

sep_gap(counter) = calSepGap(Z,k,L)

Lold = L;

L = Lold - x.*Dold;

w = norm(L-Lold,’fro’)

Gold = G;

cd results/transformed_results/

save OptBFGS_k10_x100 L sep_gap objfval

cd ../../

counter = counter + 1;

end
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