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ABSTRACT OF MASTER PAPER

APPLICATIONS OF CLASSIFICATION WITH TANGENT DISTANCE

TO FACE RECOGNITION UNDER VARYING ILLUMINATION AND

POSE CONDITIONS

We present a feature-invariant classification model that recognizes images

under various analytic and nonanalytic transformations, in particular, in the

category of face recognition where human faces to be recognized are seen

under varying lighting conditions and viewpoints. Our method exploits the

idea of tangent approximation to differentiable manifolds and makes use

of the tangent distance to build a classifier that is invariant to changes in

2D images caused by the lighting conditions, pose, location of the camera,

etc. It is important to note that there are two important ideas used in

this paper that simplified the face recognition tasks significantly. First, this

tangent space model does not require a-prior knowledge about the albedo

functions and surface normals of the objects to be classified. That is, we

work completely with 2D images of human faces and focus on the task of

recognition only. Secondly, we do not require an analytic expression for

the lighting and pose variations to create the image manifolds. We train

our classifier on as many images as there are available and still achieve a

reasonable recognition rate. Moreover, we employ local SV D to obtain

the best tangent vectors for the tangent space and observe the effects of
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recognition rate when building the classifier with different number of basis

vectors obtained from SV D.

Jen-Mei Chang
Department of Mathematics
Colorado State University
Fort Collins, Colorado 80523
Summer 2004
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1 Introduction

One of the reasons why face recognition has received so much attention

recently is because of the growing need for public surveillance in places like

airports and governmental agencies. The ability to identify criminals in

real-time has the potential to prevent disastrous events. Nowadays, aided

by the power of modern computing machines, law enforcement agencies,

casinos and airports, etc, can take a snapshot of a potential criminal and

search through the vast gallery of images and match the new profile with any

existing one in a matter of seconds under the assumption that the person

has previously been seen before, i.e., is a member of the gallery. However,

it is not always possible that a snapshot can be taken under ideal lighting

conditions nor preferred poses. Thus, any recognition system that correctly

classifies the identity of a novel subject while allowing changes in viewing

conditions will be highly valuable. Another advantage of an identification

system based on analysis of frontal images of the face is that it does not

require participant’s cooperation and knowledge contrary to fingerprint and

iris analysis. See [12] for details in the face recognition literature.

Research on automatic machine recognition of faces started in the

1970’s. The face recognition problem has been characterized as recogniz-

ing 3D objects, such as human faces, from 2D images. Most of the older

methods are feature-oriented. That is, recognition schemes are based upon

measurement of the distance of certain attributes of the human faces (e.g.

distance from eyes to mouth) and therefore very insensitive to illumination

and pose variations. It has been shown empirically in [1, 3, 6] that changes

in images due to variations in lighting and pose can be greater than changes

in subject’s identity. Recent recognition models in dealing with lighting and
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Figure 1: The first image on the left is a sample image for a particular face
class. The middle face is from the the same face class as the first face with a
different illumination condition. The third face is what Euclidean distance
recognizes the middle face as. (Images obtained from Yale Face Database
B)

pose variations can generally be categorized into two major classes, gener-

ative [2, 10, 8] and invariance based [11, 10, 7]. In this paper, we present

an invariance based model that is insensitive to nuances in images induced

by a group of nonanalytic transformations.

All classification schemes use one form of metric or another. Classifi-

cation using the standard Euclidean distance has been shown to be highly

unreliable especially in the recognition of human face images seen under

varying viewing conditions (illumination and pose). Figure 1 gives an ex-

ample of an undesirable classification based on Euclidean distance. The left

and middle images belong to the same face class but a naive approach using

the nearest neighbor algorithm (correlation) with standard Euclidean dis-

tance recognizes the second image as the third, which belongs to a different

face class. We wish to incorporate a novel metric in our recognition model

that will overlook the nuances created from varying viewing conditions. Fig-

ure 2 illustrates this idea. If we let E be the left image, Q the middle image,

and P the right image seen in figure 1, it is clear that ||E−Q||22 > ||P−Q||22,
which is the undesirable result of the recognition discussed above. An ideal
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Figure 2: An illustrative example showing a probe pattern, Q, can be farther
away from the prototype (E) of the same face class while closer to the
prototype (P ) of a different face class if using the Euclidean distance but
vice versa if using the tangent distance. S(E) is the set of training images
for a particular face class characterized by E and S(P ) is the set of training
images for a different face class characterized by P .
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metric d should satisfy the relationship d(E, Q) < d(P, Q), since both E

and Q belong to the same face class. From Figure 2 it is apparent that the

tangent distance has advantages over the Euclidean distance when data re-

sides on manifolds. While most of the algorithms assume a-prior knowledge

about the training set, motivated by [4] we use SV D to extract the geom-

etry and statistics of the training set. Therefore, our recognition model is

not limited to recognition of images under varying illumination and pose

conditions only. It has been shown in [5] that recognition of handwrit-

ten digits using local SV D to determine tangent spaces provides a number

of advantages. In other words, the tangent space model is able to allow

a wide range of analytic and nonanalytic transformations, including rota-

tion, scaling, horizontal translation, vertical translation, illumination, pose

conditions, etc.

Problem definition

To clarify the face recognition problem, we distinguish the pose and

illumination problems so that in the illumination problem all the images

are seen under a fixed frontal pose whereas in the pose problem all the

images are seen under a fixed illumination condition. The training and

testing sets are obtained from Yale Face Database B, see [8] for a complete

description of the database.

Definition 1.1. (Illumination problem) Given a gallery of P ×N 2D digi-

tal images of P face classes under N illumination conditions, {xj
i}, 1 ≤ i ≤

N, 1 ≤ j ≤ P and a collection of probe images {Qk}, k ∈ Z+. The illumi-

nation problem is to compute the distance of Qk to representatives of each

face class and assign Qk the identity of the face class that has the shortest
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distance to Qk. We denote the collection of P ×N images the illumination

database (XI).

Definition 1.2. (Pose problem) Given a gallery of P×M 2D digital images

of P face classes under M pose conditions, {xj
i}, 1 ≤ i ≤ M, 1 ≤ j ≤ P and

a collection of probe images {Qk}, k ∈ Z+. The pose problem is to compute

the distance of Qk to representatives of each face class and assign Qk the

identity of the face class that has the shortest distance to Qk. We denote

the collection of P ×M images the pose database (XP ).

Note that in the illumination experiments performed in Section 5, P =

10 and N = 64, i.e., there are 10 different subjects with 64 illumination

conditions for each subject. And in the pose experiments performed in

Section 5, P = 10 and M = 9, i.e., there are 10 different subjects with 9

pose conditions for each subject.

The remainder of this paper is divided in the following way. In Sec-

tion 2 we discuss some related researches that have been done on recognition

models that handle varying illumination and pose conditions in the recent

years. In Section 3 we briefly describe the mechanism of how tangent space

and the associated tangent distance work in relation to our face recognition

problem. In this section we also describe in detail how to build a classifi-

cation model. In Section 4 we give a complete description of the databases

we use to train and test the classifier. In Section 5 we present the testing

results. In Section 6 we summarize our classification scheme and discuss

its advantages and shortcomings. At the end of this paper, we include four

MATLAB codes necessary to run all of the experiments done in this paper.
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2 Related work

Many effective algorithms and theories have been developed in effort

to solve the face recognition problem when subjects are seen under vary-

ing viewing conditions. Fraser and et al presented techniques for build-

ing a Bayes classifier that combine statistical information of the training

data with tangent approximations to known analytic transformations [7].

Belhumeur et al developed the theory of illumination cone that gives a

representation of the set of images seen under varying illumination condi-

tions [8]. Basri and Jacobs interpret any 2D image in terms of reflectance

functions of the surface normals and albedo, which are made up of spher-

ical harmonics [2]. Shashua and Riklin-Raviv propose a way to extract

illumination-invariant signature images that serve as basis images for the

recognition process [10].

Fraser and et al propose in [7] a Bayes classifier that exploits a-prior

knowledge of the known analytic transformations. The classifier treats the

pose variations as one of the analytic transformation parameters whereas

the illumination variations are treated as noise and handled by a stochastic

model that fits the training data. In their application to the face recogni-

tion problem, the set of known transformations include rotation, scalings,

vertical and horizontal translations. As a consequence, this classifier does

not significantly improve the performance of face recognition when images

are seen under varying illumination and pose conditions. It is worth men-

tioning that both [7] and this paper use tangent approximations for the

image manifolds; however, we focus on the geometry of the training data

while [7] emphasizes on the statistics of the training data.
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One of the major results from [3] is that the set of images of an object

of any shape with a more general reflectance function (contrary to Lamber-

tian), seen under all possible illumination conditions forms a convex cone.

Thus the illumination cone representation can be applied to a more general

object classification problem. Also, it gives a way to render novel images

and re-render images in the database. What makes this representation so

useful is that it deals with two problems at once. Each face can be rep-

resented by a union of illumination cones where each cone is constructed

for each distinct pose condition. This representation of faces gives a way

to recognize images that are produced from a variety of viewing condi-

tions (pose and illumination). Two of the shortcomings of this approach

are the computational cost and the requirement of 7 images per person for

training. Moreover, the recognition rate for images produced under more

extreme viewing conditions is not as good compared to methods that deal

with varying illumination conditions only.

The Lambertian reflectance method proposed in [2] performs recogni-

tion by finding the 3D model that best matches a 2D query image. It gives

an analytic explanation to why illumination cone discussed in [8] can be

approximated by a low dimensional (9D) linear subspace in the language

of spherical harmonics. In general, a digitized 2D image is the net product

of the reflectance function of the surface normal and the albedo function

of the object and the lighting function (intensity and directions). Both

lighting and reflectance can be described as functions on the surface of the

sphere (human face is close to a half-sphere) and any piecewise continuous

function on the surface of the sphere can be written as a linear combination

of the spherical harmonics. Thus any 2D image can be described analyti-

cally in terms of spherical harmonics. This provides a generative model to
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re-render images in the database. This model only accounts for attached

shadow, which occurs when the inward-pointing surface normal has a nega-

tive dot product with the light source (or when object faces away from the

light source), therefore recognition is not as good when testing on images

that contain cast shadows. The recognition scheme requires computing a

face model for each image in the database. That is, it needs to compute

harmonic images and reflectance functions for each image in the database

and the QR decomposition of the basis matrix consisting of harmonic im-

ages as column vectors. Then the matrix Q is used to form a projection

matrix QQT followed by computing the residual of the projected image and

the image. This is done for each image in the database and the query im-

age is assigned the identity of the image that gives the smallest residual.

Although the QR composition costs about half as much as SV D for thin

rectangular matrices, the magnitude of the computation can get extensive

for larger database.

The Quotient Image method [10] proposed by Shashua and Riklin-

Raviv assumes Lambertian and ideal class of objects that have the same

shape but differ in surface albedo function. One attractive feature of this

recognition scheme is that the training set can be as small as 2 subjects with

3 images each (this is referred to as the bootstrap set), albeit the recognition

result is better with a bigger bootstrap set. The Quotient Image of a face

f is defined as the quotient (in the division sense) of a sampled image,

fs, of f and the product of the average of the bootstrap set and a set of

appropriate scalars. The algorithm computes a quotient image for each

distinct face class in the gallery and any probe face to be classified, then

assign the identify of the probe face by correlation. This approach is both
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generative and feature-invariant. It is generative since the definition of the

Quotient Image gives rise to the image space of the face class by varying

the values of the scalars mentioned above and it is illumination invariant

by definition. Similar to the other two methods described above, a major

drawback of this method is that it fails in case of shadows.

The latter two methods do not offer a solution to variations in pose

while the first method does offer a solution but fails to provide an analytic

expression for the pose transformation in the face recognition problem. A

common shortcoming of all the approaches discussed above is the poor

ability to deal with extreme illumination condition. We will see in section 5

that the tangent space model can recognize most of the images with extreme

shadowing provided that the training set is big enough.
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3 Tangent Space

3.1 Why tangent space and tangent distance and how it works

As discussed in Section 1, we wish to correctly identify two images of

the same face class when one image is a transformed version of the other.

If we assume that all the possible images of a person available in the train-

ing set forms a differentiable manifold in Rn where n is the length of the

image vector and with Figure 2 in mind, we are essentially looking for a

way to characterize the local behavior of the manifold at a prototypical

point so that it will best match the incoming pattern. Further assume that

the potential transformation function involved in creating the manifold is

differentiable with respect to the transformation parameter α of length k

where k is determined by the subspace approximation. For example, if we

use a 7D subspace approximation of the manifold, then α will be a length

7 vector. This image manifold, Sα(E), is completely characterized by the

prototype E and α since any point that lies on the manifold can be ob-

tained by transforming E by a value of α. Note that we do not need to

have any knowledge about the transformation parameter that the manifold

inherits. Further assume S0(E) = E. We can approximate this image man-

ifold, Sα(E), by its Taylor expansion at E (α = 0) in the following way,

according to [11]:

Sα(E) = S0(E) +
∂ Sα(E)

∂ α

∣∣∣∣
α=0

α + O(α2) ≈ E +
∂ Sα(E)

∂ α

∣∣∣∣
α=0

α (1)

The tangent space of the manifold at E is spanned by the columns of the

Jacobian matrix ∂ Sα(E)
∂ α

, which we will denote by VE (tangent vectors). The

tangent vectors can be written as:

VE =
∂ Sα(E)

∂ α

∣∣∣∣
α=0

= lim
ε→0

Sε(E)− S0(E)

ε
= lim

ε→0

Sε(E)− E

ε
(2)
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To clarify the dimensions of the tangent vectors VE for the image manifold

characterized by the prototype E and its associated scalars α, we consider

the following example,

Example 3.1. Let X be a set of 2D digital images where each image x ∈ X

is of pixel size 2 × 3. Then after concatenation by column, each x is of

length 6. Assume Sα(x0) is the image manifold obtained by transforming x0

by various amounts of α where x0 is a random element of X. If the tangent

space approximation of Sα(x0) at x0 is 5 dimensional, then the tangent

vectors V will be of dimension 6× 5 and its associated scalars α will be of

dimension 5× 1 since for any point z on the tangent space,

z = x0 + V α, for someα

Therefore,




z1

z2

z3

z4

z5

z6




=




V
(1)
1 V

(2)
1 . . . V

(5)
1

V
(1)
2 V

(2)
2 . . . V

(5)
2

...
...

. . .
...

V
(1)
6 V

(2)
6 . . . V

(5)
6







α1

α2

α3

α4

α5




Equation 2 gives a way to numerically compute the tangent vectors

by taking the difference of a transformed image of E and E scaled by the

change of the transformation.

It will be an emphasis of this paper how we construct the tangent

vectors and determine the dimension of the subspace approximation. Once

we have the tool to approximate a manifold linearly, we need a metric to

measure the distance of a probe pattern to the tangent space of a manifold.

This distance is called the one-sided tangent distance since it measures the

distance from a point to a tangent space. See [11] for the discussion on the
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two-sided tangent distance. To find the shortest distance of a probe pattern

Q to the tangent space TE of a manifold Sα(E) at E, we first notice that

any point x in TE can be written as

x = E + VEα, for some α (3)

and since the one-sided tangent distance between E and Q is given by

D(E, Q) = min
x∈TE

||x−Q||22 (4)

we have

D(E, Q) = min
α
||E + VEα−Q||22 (5)

Computing a solution of Equation 5 amounts to a least squares problem.

The necessary condition of the optimalization problem is that the partial

derivative of D(E, Q) with respect to α is equal to zero. The solution

obtained this way will be a global minimum and unique.

Proposition 3.1. Let E and Q be two points in Rn and D(E,Q) is the

one-sided tangent distance between E and Q given in Equation 5. If VE

is the tangent vectors of the image manifold at E, then the solution, α, to

Equation 5 is such that

V T
E (E + VEα−Q) = 0 (6)
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Proof.

0 =
∂ D(E, Q)

∂ α

=
∂

∂ α
(E + VEα−Q)T (E + VEα−Q)

=
∂

∂ α
(ET + αT V T

E −QT )(E + VEα−Q)

= V T
E (E + VEα−Q) + (E + VEα−Q)T VE

= < E + VEα−Q, VE > + < VE, E + VEα−Q >

= 2 < E + VEα−Q, VE >

= 2V T
E (E + VEα−Q) = 0

sinceE, Q, and α are real vectors and VE is a real matrix. This implies

V T
E (E + VEα−Q) = 0

Now, the solution to Equation 6 is the α such that

V T
E Q− V T

E E = V T
E VEα (7)

This is precisely what we need to calculate the one-sided tangent distance

of E and Q.

Note that the notion of the tangent distance can be extended to de-

scribe the distance between two subspaces. In the remainder of this paper,

we will primarily work with the distance between subspaces and occasion-

ally abuse the notion of the tangent distance in substitution of the subspace

distances.

13



3.2 Apply tangent distance to the face recognition problem

We adopt a slightly different approach than [11] and [5] in obtaining

the subspace approximation. Since we do not have an analytic expression

for the illumination and pose transformations, we can not generate the im-

age manifolds for training by applying the transformation function to a

prototypical pattern. Instead, we assume that the set of images from the

training set forms a differentiable surface. We now describe our classifica-

tion process.

Without loss of generality, we will describe the general classification

scheme for illumination only. For each distinct face class y in the gallery,

there corresponds to a subset Uy of XI that we use for training and we

assume Uy forms a differentiable surface. For each face class y, a tangent

space is created at a random prototypical pattern I(y). Note that the choice

of I(y) does not effect the results of the experiments done in Section 5. We

then compute the basis vectors for the tangent space for each y. Instead of

using Equation 2, which requires a-prior knowledge about the transforma-

tion parameter, we adopt the method of local SV D to obtain the best basis

vectors as suggested in [4]. If the size of Uy is ny for each y, then we create a

difference matrix My such that its columns are made up of wi
y−I(y), where

wi
y ∈ Uy, wi

y 6= I(y) and 1 ≤ i ≤ ny. The k−dimensional basis vectors for

the local subspaces are the k left singular vectors corresponding to the first

k singular values from the singular value decomposition of My.

In general, if more training images are available, one would create a

difference matrix My(ε) for each ε-neighborhood of I(y). Then observe the

first singular values of each My(ε), the second singular values of each My(ε),

etc. The left singular vectors corresponding to the singular values that scale

14



linearly are then the tangent vectors. When the training images are sparse,

it might not be possible to accurately identify the tangent vectors in such a

way. However, the left singular vectors in the SV D of the difference matri-

ces do form a set of best local basis vectors for the subspace approximation

of the image manifold.

Now, for any probe pattern x that we wish to classify, we compute the

one-sided tangent distance of x to each y by solving Equation 7 for each

respective αy of length k. If there exists a y0 such that D(x, y0) < D(x, y)

for all y 6= y0, then assign x the identity of y0.

It is shown in [4] that the dimension of the tangent approximation is

given by the number of singular values of the difference matrices described

above that scale linearly up to a ε-neighborhood of the prototypical pattern.

Thus the tangent vectors are the left singular vectors that correspond to the

singular values that scale linearly. A slight difference in our approach is that

we do not limit ourselves in the dimension (t) of the tangent approximation

determined by this scaling argument. Instead, we approximate the image

manifold by a k-dimensional subspace where k is not necessarily equal to t.

As a consequence, the distance between the probe patter x and each face

class y is no longer a tangent distance when k > t.
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Figure 3: Example images of the 10 individuals in the Yale Face Database
B seen under frontal pose. Note that the images shown here are cropped
to exclude as much ambient background and hair as possible.

4 Descriptions of the Databases

We test our face recognition method on 2 subsets of the Yale Face

Database B, which is specifically designed for testing recognition schemes

incorporating illumination and pose variations. The original Yale Face

Database contains 5760 single light source images of 10 individuals each

seen under 576 viewing conditions (9 poses × 64 illumination conditions).

See Figure 3 for example images of the 10 individuals in the Yale Face

Database B. The pixel size of each image is 640(w) × 480(h). In order to

ensure a better recognition rate, we cropped each image to exclude as much

ambient background and hair as possible. The resulting pixel size of the

images in the pose and illumination databases is 151 × 151 and 241 × 181,

respectively. See [8] for the original images in the Yale Face Database B.

The first subset that we use for training and testing contains a total of

90 images of 10 individuals each seen under a fixed point light source with 9

poses. We will denote this subset the pose database (XP ). See Figure 4 for

16



Figure 4: Example images of a single individual in the Yale Face Database
B seen under all 9 pose variations. (cropped)

example images of all possible pose variations. The second subset that we

use for training and testing contains a total of 640 images of 10 individuals

each seen under frontal pose with 64 lighting conditions. We will denote

this subset the illumination database (XI). See Figure 5 for example images

of all possible illumination conditions.

It is worth mentioning that in each of the subsets we hold one parameter

constant while vary the other. Namely, in the pose database, we fix the

lighting condition while vary the pose conditions and vice versa. Moreover,

unlike [8], we do not categorize our illumination database based on the angle

the light source direction makes with the camera axis.
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Figure 5: Example images of a single individual in the Yale Face Database
B seen under all 64 illumination conditions. (cropped)

18



5 Experiments

To further reduce and compress the dimension of the databases XP22801×90

and XI43621×640 after preprocessing and concatenation, we factor XP and XI

into their reduced SV D, i.e.,

XP22801×90 = UP22801×90SP90×90V
T
P90×90

XI43621×640 = UI43621×640SI640×640V
T
I640×640

where UP , UI , VP and VI are orthonormal. Since UT U = I and UUT is the

orthogonal projection matrix onto the range of X, it is sufficient to perform

the task of recognition with SV T . For the remainder of the paper, we work

with the orthogonal projection of the pose and illumination databases.

Now, each of the pose and illumination databases is of size 90×90 and

640×640, respectively. The training and the testing sets for the illumination

database is constructed as the following. The first 64 columns of the matrix

XI give all 64 illumination conditions of the first person in the Yale Face

Database B. The last 64 columns of XI give all 64 illumination conditions

of the tenth person in the database, etc. The images are not ordered in any

specific way. Given XI , we eliminate one image per person at a time and

use the remaining 63 labeled images to build the subspace representation

of each person. We then identify the class membership of the eliminated

image with this classifier. Repeat this process for all 64 images of each

person, therefore creating a testing set of 640 images.

Similarly, we eliminate one image per person at a time and use the

remaining 8 labeled images to build the subspace representation of each

person in the pose database. We then identify the class membership of the

eliminated image with this classifier. Repeat this process for all 9 images

19



0 20 40 60 80 100
0

5

10

15
x 10

4 Pose database

singular values
0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5 Illumination database

first 90 singular values

Figure 6: Left: singular values of the pose database. Right: singular values
of the illumination database.

of each person, therefore creating a testing set of 90 images. In addition,

in the extended pose database created later this section, we use 16 images

per person to train.

5.1 Pose

Three kinds of experiments were conducted on the pose database. The

first test, shown in Figure 7, was to confirm a major result in [5] that the

recognition rate increases as the number of basis vectors used in the local

subspace approximation increases. One can see that the recognition rate

is greater than or equal to 90% when using 4 or more basis vectors. This

20



is consistent with the variance of the pose database, shown in Figure 6.

The first three singular vectors contribute the most information about the

geometry of XP and the decline of the singular values seems to settle down

after the 4th one.

The second test, shown in Figure 8 and produced with 7 basis vectors

in the local subspace approximation, shows the 7 images out of a testing set

of 90 images that our model fails to recognize. The magic number (number

of basis vectors) 7 is chosen for the experiment since it achieves the lowest

misclassification rate. The best recognition rate of 92.22% (83 out of 90) is

obtained when using 7 basis vectors.

The third test, shown in Figure 9, illustrates how well the classifier

learns versus the size of the training set. The recognition is performed on

the entire pose database. The order of the probe images being classified

follows from the order of the vectors in the data matrix, starting from the

90th one. So some of the images are duplicated in training and testing.

One can see that even with only 6 training images, the classification rate is

still over 90% (with 4 basis vectors).

To improve the recognition rate even further, one can expand the pose

database by including the mirror image of each face, thus creating a symme-

try - extended database of 180 images and introducing novel pose conditions

to the original database. The method of expanding sparse database by in-

troducing mirror images is proposed in [9]. To create a mirror image of a

particular face, we first notice that each face is represented by a 2D digital

image. A matrix representation of such an image contains the gray value of

the face and its dimension is given by the pixel size of the image. We then

identify the line of symmetry in the vertical direction of the image matrix
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in the local subspace approximation when the classifier is trained on the
original pose database and the symmetry-extended pose database.

22



Figure 8: Faces in the original pose database that are misclassified by the
classifier when it is trained on the original pose database and the extended
pose database with 7 basis vectors in the local subspace approximation.
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Figure 9: Misclassification rate in % versus the size of the training set when
recognition is performed on the entire pose database XP . Note that when
the classifier is trained on all the available poses, it was able to recognize
all 90 images in the database.
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Figure 10: Left: an example image of an individual. Right: left image
reflected about the vertical midline.

and flip the column vectors around the line of symmetry. The resulting

matrix gives rise to the mirror image of this particular face. See Figure 10

for an illustrative example.

The same experiments are performed on this new database and results

can be found in Figure 7 and Figure 8. Note that the images that are

misclassified when the classifier is trained on the extended pose database are

exactly the same as those misclassified when the classifier is trained on the

original pose database. Recognition rate does not improve as we increase

the size of the training set. Table 1 shows a sample of recognition rates

when the classifier is trained on the original and extended pose databases.

Note that the best recognition rate of 92.22% (83 out of 90) for the pose

database is obtained when using 7 basis vectors and the classifier is trained

on the extended pose database.

5.2 Illumination

First, we would like to discuss a natural way to extend the illumination

database if needed. According to [3, 8], the set of images under all possible
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dimension of the local subspace approx. 2 3 6 7
recog. rate in % when trained on XP 81.11 86.67 91.11 92.22
recog. rate in % when trained on ext. Xp 81.11 87.78 91.11 92.22

Table 1: A sample of the recognition rates with various number of basis vec-
tors used in the local subspace approximation when the classifier is trained
on XP and the extended XP . Recognition performed on the pose database.

illumination conditions with a particular pose forms an convex polyhedral

cone, C. If we let s1 and s2 be two images of a person seen under two

distinct lighting conditions, then C being convex implies

αs1 + (1− α)s2 = s ∈ C, where α ∈ [0, 1]

The lighting condition created in such a way are realized as true lighting

condition, thus images are realistic. See Figure 11 for example images with

various values of α. One can now expand the training set to any desirable

size in such a way. Note that it is sufficient to create novel images with the

orthogonal projection of XI , since if V T
i and V T

j are the ith and jth column

of V T where i and j are two distinct lighting conditions of the same face

class, then the image s created by a convex combination of V T
i and V T

j is

given by

s = US(αV T
i + (1− α)V T

j ). (8)

Now, multiply UT through Equation 8, we obtain

UT s = S(αV T
i + (1− α)V T

j )

= αSV T
i + (1− α)SV T

j ,

which is the same convex combination of V T
i and V T

j in the projected space.

Thus, it is sufficient to work with the projected space when creating novel

images.
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Figure 11: An illustrative example showing the images created by convex
combinations of two distinct illumination conditions of a particular face
object. From left to right: α = 0 (first illumination condition), α = 0.1429,
α = 0.3810, α = 0.6190 and α = 1 (second illumination condition).

dimension of the local subspace approx. 2 6 9 12
recognition rate in % 90.63 98.75 99.22 99.38

Table 2: A sample of the recognition rates with various number of basis
vectors used in the local subspace approximation. Recognition performed
on the illumination database.

A set of similar tests are done on the illumination database. See Fig-

ures 12, 13 and 14 for an illustration. First note that the four images shown

in Figure 13 are almost impossible for human eye to recognize. Secondly,

the best recognition rate of 99.38% (636 out of 640) is obtained when using

12 basis vectors. From Figure 6, we observe that the recognition rate will

improve drastically if we take more than 4 basis vectors. See Table 2 for

a sample of recognition rates. Note that the overall recognition rate is the

best on XI , then the symmetry-extended XP and the original XP . This is

due to the decrease of the size of the training set.
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Figure 12: Misclassification rate versus the number of basis vectors used in
the local subspace approximation for the illumination database.

Figure 13: Faces in the illumination database that are misclassified by the
classifier with 12D local subspace approximation.
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Figure 14: Misclassification rate in % versus the size of the training set
when recognition is performed on the entire illumination database XI .
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6 Summary and Future work

We presented a feature-invariant classification model that offers a so-

lution to recognition of images seen under varying illumination and pose

conditions. For each face object y in the gallery, there corresponds to a

tangent space (subspace) representation. An implemented version of the

standard Euclidean distance is used to find the distance of a probe image

x and y for each y in the gallery by calculating the distance from x to the

tangent space (subspaces) of y. The basis vectors for the local subspace ap-

proximation are obtained via SV D. It follows that the identity of the probe

image x is the identity of the face class that offers the shortest distance to

x.

This model can be extended to deal with a combination of both illumi-

nation and pose variations. Although the recognition rate is enhanced by

having abundant training images, we still achieve a reasonably high recog-

nition rate when the size of the training set is as small as 6 and 32 for the

pose and illumination database, respectively. Some of the advantages of

the tangent space representation are that it is simple and cost-effective; the

one-sided tangent distance is fairly easy to implement from the standard

Euclidean distance and it is insensitive to relatively large nuances in im-

ages. A major shortcoming of this method is the requirement of a relatively

bigger training set. However, it is quite easy to collect a reasonable size of

the training set in reality. Our method improves drastically as we enlarge

the size of the training set while remaining cost-effective.
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A Appendix

This appendix includes four MATLAB codes necessary in the experi-
ments done in this paper.

Code #1

The projection.mat contains a single element P , which is the orthog-
onal projection of the original illumination database. The following code
returns a misclassification rate for the illumination database. A similar
code is also used for the pose database. The Pose.mat contains an element
R, which is the orthogonal projection of the original pose database.

%clear

load projection

num_person = 10;

num_illu = 64;

num_train = 63;

num_tan = 12;

miss = zeros(num_illu,1);

order = [1 2 3 4 5 6 7 8 9 10];

%pattern is the one that’s eliminated.

for elimination = 1:64

for j = 1:num_person

patterns(:,j,elimination) =

P(:, elimination + num_illu*(j-1));

end

%if the first image of each person is eliminated,

%then choose the 37th image as prototype for each person,

%otherwise the first image is the prototype.

proto = [];

if elimination == 1

for i = 1:num_person

proto(:,i) = P(:,(i-1)*num_illu+37);

end

else

for i = 1:num_person

proto(:,i) = P(:,(i-1)*num_illu+1);

end

end
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dataset = [];

tan = [];

for i = 1:num_person

if elimination == 1

dataset(:,:,i) =

P(:,2+num_illu*(i-1):num_illu*i);

else if elimination == num_illu

dataset (:,:,i) =

P(:,1+num_illu*(i-1):i*num_illu-1);

else

dataset(:,:,i) =

[P(:,(1+num_illu*(i-1):

(elimination-1)+num_illu*(i-1)))

P(:,(elimination+1)+num_illu*(i-1):

num_illu*i)];

end

end

tan(:,:,i) =

tanspace(proto(:,i),dataset(:,:,i),num_train,num_tan);

end

TD = [];

for i = 1:num_person

for j = 1:num_person

TD(i,j,elimination) =

tan_dis(proto(:,j),tan(:,:,j),

patterns(:,i,elimination),0);

end

end

for i = 1:num_person

for j = 1:num_person

if TD(i,j,elimination) == min(TD(i,:,elimination))

index(i,elimination) = j;

end

end

if index(i,elimination) ~= order(i)

miss(elimination) = miss(elimination) + 1;

end

end

end

total_miss = sum(miss);
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Code #2

This code calculates the k dimensional basis vectors given the manifold
and the prototype where the local subspace approximation is created.

function [tan_vec] = tanspace(prototype,dataset,num_train, k)

for i = 1:num_train

if dataset(:,i) ~= prototype

tangvecs(:,i) = (dataset(:,i) - prototype);

end

end

[tan_vec,S,V] = svds(tangvecs,k);
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Code #3

We use only the one-sided tangent distance in this paper. Namely,
we create only the tangent space at the image manifold with prototype E
and compute the Euclidean distance of a probe image P with the tangent
space of the manifold at the prototype E. Note that it is not needed to
use the elastic constant k throughout the experiments since we do not need
to create tangent vectors at P , therefore avoiding the possibility of tangent
vectors of E and P being collinear.

function [output] = tan_dis(E,Le,P,k)

Lee = Le.’*Le;

A21 = -(1+k)*Le.’;

A2 = ((1+k)^2)*Lee;

y = E-P;

b = A21*y;

[L,U,Perm] = lu(A2);

alpha = inv(U)*inv(L)*inv(Perm)*b;

Ep = E + Le*alpha;

output = norm(Ep-P)+k*(norm(Le*alpha,2));
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Code #4

In order to improve the recognition rate in the pose database. We
expand the training set by creating mirror image of each face. Let this
new database be the extended database, which contains 18 images of each
person. We construct the extended pose database by combining the pro-
jection of the original pose database and the projection of the mirror image
database.

clear

load Pose

num_person = 10;

for i=1:size(faces,2)

images(:,:,i) = reshape(faces(:,i),151,151);

for j=1:151

R_images(:,j,i) = images(:,151-j+1,i);

end

mirror_images(:,i) = reshape(R_images(:,:,i),151*151,1);

end

[U_mirror,S_mirror,V_mirror] = svd(mirror_images,0);

P_mirror = S_mirror*V_mirror.’;
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