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Abstract

We present a feature-invariant classification model that
recognizes images under various analytic and nonanalytic
transformations in the category of face recognition where
human faces to be recognized are seen under varying light-
ing conditions and viewpoints. Our method exploits the idea
of tangent approximation to differentiable manifolds, which
motivates the use of subspace distance to build a classi-
fier that is invariant to changes in 2D images caused by the
lighting conditions, pose, location of the camera, etc.

There are two important ideas used in this paper that
simplified the face recognition tasks significantly. First, this
subspace model does not require a-prior knowledge about
the albedo functions and surface normals of the objects to
be classified. That is, we work completely with 2D images
of human faces. Secondly, we do not require an analytic
expression for the lighting and pose variations to create the
image manifolds. We train our classifier on as many im-
ages as there are available and still achieve a reasonable
recognition rate. For this, we employ the local KL algorithm
to obtain the best local basis vectors for the subspace and
observe the effects of recognition rate when experimenting
with different number of basis vectors.

1. Introduction

One of the reasons why face recognition has received so
much attention recently is because of the growing need for
public surveillance in places like airports and governmental
agencies. The ability to identify criminals in real-time has
the potential to prevent disastrous events. Nowadays, aided
by the power of modern computing machines, law enforce-
ment agencies, casinos and airports, etc, can take a snapshot
of a potential criminal and search through the vast gallery
of images and match the new profile with any existing one
in a matter of seconds under the assumption that the person

has previously been seen before, i.e., is a member of the
gallery. However, it is not always possible that a snapshot
can be taken under ideal lighting conditions nor preferred
poses. Thus, any recognition system that correctly classi-
fies the identity of a novel subject while allowing changes in
viewing conditions will be highly valuable. Another advan-
tage of an identification system based on analysis of frontal
images of the face is that it does not require participant’s
cooperation and knowledge contrary to fingerprint and iris
analysis. See [1] for details in the face recognition litera-
ture.

Research on automatic machine recognition of faces
started in the 1970’s. The face recognition problem has
been characterized as recognizing 3D objects, such as hu-
man faces, from 2D images. Most of the older methods
are feature-oriented. That is, recognition schemes are based
upon measurement of the distance of certain attributes of
the human faces (e.g. distance from eyes to mouth) and
therefore very insensitive to illumination and pose varia-
tions. It has been shown empirically in [2, 3, 4] that changes
in images due to variations in lighting and pose can be
greater than changes in subject’s identity. Recent recog-
nition models in dealing with lighting and pose variations
can generally be categorized into two major classes, gener-
ative [5, 6, 7] and invariance- based [8, 6, 9] models. In this
paper, we present an invariance-based model that is insensi-
tive to nuances in images induced by a group of nonanalytic
transformations.

When the manifold is made up of images obtained via
transformations (e.g., rotations, translations, scaling), the
manifold has the differential topology of a Lie group. Thus
it is possible to calculate an optimal linear approximation
(subspace) that captures the relevant linear effects of defor-
mation. This subspace, called the tangent space, typically
offers a low-dimensional characterization on the images and
contains nearly the same information as the original mani-
fold for small transformations. Measuring the distance be-
tween images can then easily be done by forming their re-



Figure 1. Left: a sample image for a particular face class in YDB.
Middle: a sample image from the same face class but a different
illumination condition. Right: image as what Euclidean distance
recognizes the middle face as.
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Figure 2. [8] S(E) is the set of training images for a particular face
class characterized by E and S(P) is the set of training images for
a different face class characterized by P. This is an illustrative
example showing a probe pattern, Q, can be farther away from the
prototype (E) of the same face class while closer to the prototype
(P) of a different face class when the Euclidean distance is used.
Vice versa when the tangent distance is used.

spective deformation manifold and tangent space followed
by finding the gap distance between the two tangent spaces.
This distance is called the two-sided tangent distance in [8].
This distance measure performs better than the standard Eu-
clidean distance when images lie on a manifold.

Classification using the standard Euclidean distance has
been shown to be highly unreliable especially in the recog-
nition of human face images seen under varying viewing
conditions. Figure 1 gives an example of an undesirable
classification based on Euclidean distance. The left and
middle images belong to the same face class but a naive
approach using the nearest neighbor algorithm with stan-
dard Euclidean distance recognizes the second image as the
third, which belongs to a different face class. We wish to in-
corporate a novel metric in our recognition model that will
overlook the nuances created from varying viewing condi-
tions. Figure 2 illustrates this idea. If we vectorize the left
image by E, the middle image by Q, and the right image
by P in Figure 1, it is clear that ||E −Q||22 > ||P−Q||22,
which is the undesirable result of the recognition discussed
above. An ideal metric d should satisfy the relationship

d(E,Q) < d(P,Q), since both E and Q belong to the same
face class. From Figure 2 it is apparent that the tangent
distance has advantages over the Euclidean distance when
data resides on manifolds. While most of the algorithms
require the knowledge of parameterized image transforma-
tions [10, 11], we use SVD to extract the geometry of the
training set that is motivated by [12]. Therefore, our recog-
nition model is not limited to recognition of images under
varying illumination and pose conditions only. In other
words, the subspace space model is able to allow a wide
range of analytic and nonanalytic transformations, includ-
ing rotation, scaling, horizontal translation, vertical transla-
tion, illumination, pose conditions, etc.

The training and testing sets are obtained from Yale Face
Database B (YDB) [7]. In all empirical experiments that
follow, we distinguish the pose and illumination problems
so that in the illumination problem all the images are seen
under a fixed frontal pose whereas in the pose problem all
the images are seen under a fixed illumination condition. In
the illumination experiments performed in Section 5, there
are 10 different subjects with 64 illumination conditions for
each subject and 9 distinct poses for each subject in the pose
experiments.

The remainder of this paper is divided in the follow-
ing way. In Section 2 we discuss some related researches
that handle varying illumination and pose conditions in face
recognition problems. In Section 3 we briefly describe how
our subspace distance model is motivated by the ideas of
tangent space and the associated tangent distance. Database
description is given in Section 4 while empirical results are
presented in Section 5. Finally, we conclude our findings in
Section 6.

2. Related work
Many effective algorithms and theories have been devel-

oped in effort to solve the face recognition problem when
subjects are seen under varying viewing conditions [9, 7, 5,
6].

Fraser and et al. propose in [9] a Bayes classifier that
exploits a-prior knowledge of the known analytic transfor-
mations. The classifier treats the pose variations as one
of the analytic transformation parameters whereas the il-
lumination variations are treated as noise and handled by
a stochastic model that fits the training data. In their ap-
plication to the face recognition problem, the set of known
transformations include rotation, scalings, vertical and hor-
izontal translations. As a consequence, this classifier does
not significantly improve the performance of face recogni-
tion when images are seen under varying illumination and
pose conditions. It is worth mentioning that both [9] and
this paper use tangent approximations for the image mani-
folds.

One of the major results from [3] is that the set of images



of an object of any shape with a general reflectance func-
tion, seen under all possible illumination conditions forms
a convex cone. It gives a way to render novel images and
re-render images in the database. What makes this rep-
resentation so useful is that it deals with two problems at
once. Each face can be represented by a union of illumina-
tion cones where each cone is constructed for each distinct
pose condition. This representation of faces gives a way to
recognize images that are produced from a variety of view-
ing conditions (pose and illumination). A drawback of this
approach is the computational cost. Moreover, the recogni-
tion rate for images produced under more extreme viewing
conditions is not as good compared to methods that deal
with varying illumination conditions only.

The Lambertian reflectance method proposed in [5]
performs recognition by finding the 3D model that best
matches a 2D query image. It gives an analytic explanation
to why illumination cone discussed in [7] can be approx-
imated by a low dimensional (9D) linear subspace in the
language of spherical harmonics. In general, a digitized 2D
image is the net product of the reflectance function of the
surface normal and the albedo function of the object and the
lighting function (intensity and directions). Both lighting
and reflectance can be described as functions on the surface
of the sphere (human face is close to a half-sphere) and any
piecewise continuous function on the surface of the sphere
can be written as a linear combination of the spherical har-
monics. Thus any 2D image can be described analytically
in terms of spherical harmonics. This provides a genera-
tive model to re-render images in the database. This model
only accounts for attached shadow, which occurs when the
inward-pointing surface normal has a negative dot product
with the light source (or when object faces away from the
light source), therefore recognition is not as good when test-
ing on images that contain cast shadows. The recognition
scheme requires computing a face model for each image in
the database. That is, it needs to compute harmonic images
and reflectance functions for each image in the database and
the QR decomposition of the basis matrix consisting of har-
monic images as column vectors. Then the matrix Q is used
to form a projection matrix QQT followed by computing
the residual of the projected image and the image. This is
done for each image in the database and the query image
is assigned the identity of the image that gives the smallest
residual. Although the QR composition costs about half as
much as SVD for thin rectangular matrices, the magnitude
of the computation can get extensive for larger database.

The Quotient Image method [6] proposed by Shashua
and Riklin-Raviv assumes Lambertian and ideal class of ob-
jects that have the same shape but differ in surface albedo
function. One attractive feature of this recognition scheme
is that the training set can be as small as 2 subjects with
3 images each (this is referred to as the bootstrap set), al-

beit the recognition result is better with a bigger bootstrap
set. The Quotient Image of a face f is defined as the quo-
tient (in the division sense) of a sampled image, fs, of f and
the product of the average of the bootstrap set and a set of
appropriate scalars. The algorithm computes a quotient im-
age for each distinct face class in the gallery and any probe
face to be classified, then assign the identify of the probe
face by correlation. This approach is both generative and
feature-invariant. It is generative since the definition of the
Quotient Image gives rise to the image space of the face
class by varying the values of the scalars mentioned above
and it is illumination invariant by definition. Similar to the
other two methods described above, a major drawback of
this method is that it fails in case of shadows.

The latter two methods do not offer a solution to varia-
tions in pose while the first method does offer a solution but
fails to provide an analytic expression for the pose transfor-
mation in the face recognition problem. A common short-
coming of all the approaches discussed above is the poor
ability to deal with extreme illumination condition. We will
see in section 5 that the subspace space model can recog-
nize most of the images with extreme shadowing provided
that the training set is big enough.

3. Tangent Space
As discussed in Section 1, we wish to correctly iden-

tify two images of the same face class when one image is
a transformed version of the other. If we assume that all
the possible images of a person available in the training set
forms a differentiable manifold in Rn where n is the length
of the image vector and with Figure 2 in mind, we are es-
sentially looking for a way to characterize the local behav-
ior of the manifold at a prototypical point so that it will
best match the incoming pattern. Further assume that the
potential transformation function involved in creating the
manifold is differentiable with respect to the transformation
parameter α of length k where k is determined by the di-
mension of the tangent space. This image manifold, Sα(E),
is completely characterized by the prototype E and α since
any point that lies on the manifold can be obtained by trans-
forming E by a value of α . Note that we do not need to have
any knowledge about the transformation parameter that the
manifold inherits. Further assume S0(E) = E. We can ap-
proximate this image manifold, Sα(E), by its Taylor expan-
sion at E (α = 0) in the following way, according to [8]:

Sα(E) = S0(E)+
∂ Sα(E)

∂ α

∣∣∣∣
α=0

α +O(α2)

≈ E +
∂ Sα(E)

∂ α

∣∣∣∣
α=0

α

The tangent space of the manifold at E is spanned by the
columns of the Jacobian matrix ∂ Sα (E)

∂ α
, which we will de-



note by VE (tangent vectors). The tangent vectors can be
written as:

VE =
∂ Sα(E)

∂ α

∣∣∣∣
α=0

= lim
ε→0

Sε(E)−S0(E)
ε

. (1)

Equation 1 gives a way to numerically compute the tan-
gent vectors by taking the difference of a transformed im-
age of E and E scaled by the change of the transformation.
However, we adapt an alternative technique in determin-
ing the local tangent dimension and constructing the cor-
responding tangent vectors in this paper.

Once we have the tool to approximate a manifold lin-
early, we need a metric to measure the distance of a probe
pattern to the tangent space of a manifold. This distance is
called the one-sided tangent distance since it measures the
distance from a point to a tangent space [8]. To find the
shortest distance of a probe pattern Q to the tangent space
TE of a manifold Sα(E) at E, we first notice that any point
x in TE can be written as

x = E +VEα, for someα (2)

and since the one-sided tangent distance between E and Q
is given by

D(E,Q) = min
x∈TE
||x−Q||22 (3)

we have

D(E,Q) = min
α
||E +VEα−Q||22 (4)

Computing a solution of Equation 4 amounts to a least
squares problem. The necessary condition of the optimiza-
tion problem is that the partial derivative of D(E,Q) with
respect to α is equal to zero. The solution obtained this
way will be a global minimum and unique.

Notice that this notion of the tangent distance can be
extended to describe the distance between two subspaces.
This is done simply replacing VE by the basis vectors for
the best local subspace approximation. It is the heart of this
paper that we investigate how the classification rates change
as we adjust the dimension of the subspace approximations.

As mentioned before, instead of opting an numerical ap-
proach, we adapt the Local KL Algorithm proposed in [12]
for finding the local subspace dimension. Since we do not
have an analytic expression for the illumination and pose
transformations, we can not generate the image manifolds
by applying the transformation function to a prototypical
pattern. Instead, we assume that the set of images from
the training set forms a differentiable surface. We now de-
scribe our classification process for the illumination prob-
lem, where the database is denoted by XI . Similar process
is applied to the pose database, IP, as well.

For each distinct face class y in the gallery, there cor-
responds to a subset Uy of XI that we use for training and
we assume Uy forms a differentiable surface. For each face
class y, a tangent space is created at a random prototypical
pattern I(y). Note that the choice of I(y) does not effect
the results of the experiments done in Section 5. We then
compute the basis vectors for the tangent space for each y.
Instead of using Equation 1, which requires either knowl-
edge about the transformation parameters or having a fine
sampled database, we adapt the method of local KL to ob-
tain the best basis vectors as suggested in [12]. If the size
of Uy is ny for each y, then we create a difference matrix
My such that its columns are made up of wi

y− I(y), where
wi

y ∈Uy, wi
y 6= I(y) and 1≤ i≤ ny. The k−dimensional basis

vectors for the local subspaces are the k left singular vectors
corresponding to the first k singular values from the singular
value decomposition of My.

In general, if more training images are available,
one would create a difference matrix My(ε) for each ε-
neighborhood of I(y). Then observe the first singular values
of each My(ε), the second singular values of each My(ε),
etc. The left singular vectors corresponding to the singu-
lar values that scale linearly are then the tangent vectors.
When the training images are sparse, it might not be possi-
ble to accurately identify the tangent vectors in such a way.
However, the left singular vectors in the SVD of the differ-
ence matrices do form a set of best local basis vectors for
the subspace approximation of the image manifold.

Now, for any probe pattern x that we wish to classify, we
compute the one-sided tangent distance of x to each y. If
there exists a y0 such that D(x,y0) < D(x,y) for all y 6= y0,
then assign x the identity of y0.

It is shown in [12] that the dimension of the tangent ap-
proximation is given by the number of singular values of
the difference matrices described above that scale linearly
up to a ε-neighborhood of the prototypical pattern. Thus
the tangent vectors are the left singular vectors that corre-
spond to the singular values that scale linearly. We found
that the tangent dimension is approximately 9 for the illu-
mination database and 6 for the pose database. We do not
claim that these numbers are representative as a whole since
our data sets are not ideally sampled to best accommodate
this approach. In obtaining the subspace distances, we do
not limit ourselves in the dimension (t) of the tangent ap-
proximation determined by this scaling argument. Instead,
we approximate the image manifold by k-dimensional sub-
spaces where k is not necessarily equal to t.

4. Descriptions of the Databases

We test our face recognition method on 2 subsets of
the YDB, which is specifically designed for testing recog-
nition schemes incorporating illumination and pose varia-



Figure 3. Example images of the 10 individuals in the YDB seen
under frontal pose. Note that the images shown here are cropped
to exclude as much ambient background and hair as possible.

tions. The original YDB contains 5760 single light source
images of 10 individuals each seen under 576 viewing con-
ditions (9 poses× 64 illumination conditions). See Figure 3
for example images of the 10 individuals in YDB. The pixel
size of each image is 640× 480. In order to ensure a bet-
ter recognition rate, we cropped each image to exclude as
much ambient background and hair as possible. The result-
ing pixel size of the images in the pose and illumination
databases is 151×151 and 241×181, respectively. See [7]
for the original images in YDB.

The first subset that we use for training and testing con-
tains a total of 90 images of 10 individuals each seen under
a fixed point light source with 9 poses. We will denote this
subset the pose database XP. See Figure 4 for example im-
ages of all possible pose variations. The second subset that
we use for training and testing contains a total of 640 im-
ages of 10 individuals each seen under frontal pose with 64
lighting conditions. We will denote this subset the illumi-
nation database XI . See Figure 5 for example images of all
possible illumination conditions.

It is worth mentioning that in each of the subsets we hold
one parameter constant while vary the other. Namely, in the
pose database, we fix the lighting condition while vary the
pose conditions and vice versa. Moreover, unlike [7], we do
not categorize our illumination database based on the angle
the light source direction makes with the camera axis.

5. Experiments
To further reduce the dimension of the databases

XP22801×90 and XI43621×640 after preprocessing and concatena-
tion, we factor XP and XI into their reduced SVD, i.e.,

XP22801×90 = UP22801×90 SP90×90V T
P90×90

XI43621×640 = UI43621×640 SI640×640V T
I640×640

where UP,UI ,VP and VI are orthonormal. Since UTU = I
and UUT is the orthogonal projection matrix onto the range
of X , it is sufficient to perform the task of recognition with

Figure 4. Example images of a single individual in the YDB seen
under all 9 pose variations.

Figure 5. Example images of a single individual in YDB seen un-
der all 64 illumination conditions.

SV T . For the remainder of the paper, we work with the or-
thogonal projection of the pose and illumination databases.

Now, the pose and illumination databases are of size
90× 90 and 640× 640, respectively. Without loss of gen-
erality, we describe the process of constructing the training
and the testing sets for the illumination database only. The
training and the testing sets for the pose database is con-
structed in exactly the same way.

The first 64 columns of the matrix XI give all 64 illu-
mination conditions of the first person in YDB. The last
64 columns of XI give all 64 illumination conditions of the
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Figure 6. Left: singular values of the pose database. Right: singu-
lar values of the illumination database.

tenth person in the database, etc. The images are not or-
dered in any specific way. Given XI , we eliminate one im-
age per person at a time and use the remaining 63 labeled
images to build the tangent space for each person. We then
identify the class membership of the eliminated image with
this classifier. Repeat this process for all 64 images of each
person, therefore creating a testing set of 640 images.

5.1. Pose

Three kinds of experiments were conducted on the pose
database. The first test, shown in Figure 7, was to confirm
that the recognition rate increases as the number of basis
vectors used in the local subspace approximation increases.
One can see that the recognition rate is greater than or equal
to 90% when using 5 or more basis vectors. This is consis-
tent with the variance of the pose database, shown in Fig-
ure 6. The first four singular vectors contribute the most
information about the geometry of XP and the decline of the
singular values seems to settle down after the 5th one.

The second test, shown in Figure 8 and produced with
7 basis vectors in the local subspace approximation, shows
the 7 images out of a testing set of 90 images that our model
fails to recognize. The magic number (number of basis vec-
tors) 7 is learnt empirically. Indeed, the best recognition
rate of 92.23% (83 out of 90) is obtained when using 7 ba-
sis vectors.

The third test, shown in Figure 9, illustrates how well
the classifier learns versus the size of the training set. The
recognition is performed on the entire pose database. One
can see that even with only 6 training images, the classifi-
cation rate is still over 90% (with 4 basis vectors).

To improve the recognition rate even further, we expand
our pose database by including the mirror image of each
face, thus creating a symmetry - extended database of 180
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Figure 7. Misclassification rate versus the number of basis vectors
used in the local subspace approximation when the classifier is
trained on the original pose database and the symmetry-extended
pose database.

Figure 8. Faces in the original pose database that are misclassified
by the classifier when it is trained on the original pose database
with 7 basis vectors in the local subspace approximation.
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Figure 9. Misclassification rate in % versus the size of the training
set when recognition is performed on the entire pose database XP.
Note that when the classifier is trained on all the available poses,
it was able to recognize all 90 images in the database.

images and introducing novel pose conditions to the origi-
nal database. The method of expanding sparse database by



local subspace dim 2 6 7 8
recog. rate on XP 81.1 90 92.2 91.1
recog. rate on ext. Xp 81.1 95.6 97.8 97.8

Table 1. A sample of the recognition rates with various number
of basis vectors used in the local subspace approximation when
the classifier is trained on XP and the extended XP. Recognition
performed on the pose database.

Figure 10. Faces in the original database that are misclassified by
the classifier when it is trained on the symmetry-extended pose
database with 7D local subspace approximation.

introducing mirror images is proposed in [13]. To create a
mirror image of a particular face, we first notice that each
face is represented by a 2D digital image. A matrix repre-
sentation of such an image contains the gray value of the
face and its dimension is given by the pixel size of the im-
age. We then identify the line of symmetry in the vertical
direction of the image matrix and flip the column vectors
around the line of symmetry. The resulting matrix gives
rise to the mirror image of this particular face.

The same experiments are performed on this new
database and results can be found in Figure 7 and Figure 10.
Table 1 shows a sample of recognition rates when the clas-
sifier is trained on the original and extended pose databases.
Note that the best recognition rate of 97.78% (88 out of 90)
for the pose database is obtained when using 7 basis vectors
and the classifier is trained on the extended pose database.

5.2. Illumination

A set of similar tests are done on the illumination
database. See Figures 11, 12 and 13 for an illustration.
First note that the four images shown in Figure 12 are al-
most impossible for human eye to recognize. Secondly, the
best recognition rate of 99.38% (636 out of 640) is obtained
when using 12 basis vectors. From Figure 6, we observe
that the recognition rate will improve drastically if we take
more than 4 basis vectors. See Table 2 for a sample of
recognition rates. Note that the overall recognition rate is
the best on XI , then the symmetry-extended XP, then the
original XP. This is because of the size of the training set
decreases from 63 to 17 to 8 images per person.

local subspace dim 2 6 9 12
recognition rate 90.6 98.8 99.2 99.4

Table 2. A sample of the recognition rates with various number of
basis vectors used in the local subspace approximation. Recogni-
tion performed on the illumination database.
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Figure 11. Misclassification rate versus the number of basis vec-
tors used in the local subspace approximation for the illumination
database.

Figure 12. Faces in the illumination database that are misclassified
by the classifier with 12D local subspace approximation.

6. Summary
As an attempt to attack the face recognition problem

under varying illumination and pose conditions, the tan-
gent space/distance model was used to motivate a subspace
model. The notion of tangent/subspace distance is easy to
comprehend as it is built upon and implemented from the
widely used Euclidean-norm. The concept of local invari-
ance being the deciding factor in pattern classification may
seem a bit unsteady, but in fact, is overly important. For this
purpose, we adapt the local KL algorithm to extract basis
information for the best subspace approximation for each
training subject in the gallery. A central message of the pa-
per is the fact that recognition rates improve as we vary the
subspace dimensions. Although the recognition rate on the
extremely cast-shadowed images is highly satisfactory, the
proposed method can certainly benefit from a better sam-
pled training set. In the world we live in nowadays, this is
no longer infeasible.
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Figure 13. Misclassification rate in % versus the size of the train-
ing set when recognition is performed on the entire illumination
database XI .
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