
Customized Machine Learning-Based Hardware-
Assisted Malware Detection in Embedded Devices

Hossein Sayadi, Hosein Mohammadi Makrani, Onkar Randive, Sai Manoj P D, Setareh Rafatirad, Houman Homayoun
George Mason University, Fairfax, VA 22030

{hsayadi, hmohamm8, orandive, spudukot, srafatir, hhomayou}@gmu.edu

Abstract— The emerging embedded systems, which account
for a wide range of applications are often highly resource-
constrained challenging the conventional software-based methods
traditionally deployed for detecting and containing malware in
general purpose computing systems. In addition to the complexity
and cost (computing and storage), the software-based malware
detection methods mostly rely on the static signature analysis of
the running programs, requiring continuous software update in
the field to remain accurate in capturing emerging malware,
which is not affordable for embedded systems with limited
computing and communication bandwidth. Hardware-assisted
Malware Detection (HMD) though found to be more efficient,
limited computing power and resources in embedded systems as
well as the small number of available Hardware Performance
Counter (HPC) registers that can be simultaneously captured,
make accurate runtime malware detection in embedded devices a
challenging problem. In response, this work proposes a
lightweight customized HMD approach which takes advantage of
HPC features to effectively detect and further classify various
malware classes at runtime. To realize a runtime solution that
relies on limited available HPCs and to enhance the accuracy of
malware detection, we use customized HMD for individual class of
malware that utilizes various Machine Learning (ML) classifiers
to detect malware using the four most important HPC features.

Keywords—malware detection, embedded systems, hardware
performance counter, machine learning.

I. INTRODUCTION
Recent advances in digital electronics and wireless

communications have enabled a widespread proliferation of
embedded systems ranging from micro-sensors, cell phones and
PDAs to smart homes and military applications. Security is an
important issue in embedded systems due to the adoption of
embedded systems in many mission and safety-critical systems
[13,14,21]. Malware is a piece of code designed by attackers to
perform various malicious activities in computer systems [5,15].
Many of the existing software attacks on conventional
computing platforms such as servers and desktops can be
launched on the embedded systems due to their similarities in
using general purpose processors computing systems and their
connectivity to internet. In addition, the advancement of
computing devices in the form of mobile devices and Internet-
of-Things (IoT) further exacerbates the malware attacks calling
for developing effective malware detection solutions.

The constant interaction between physical and cyber worlds
has made security one of the important concerns in the design of
embedded systems [10,13,19]. Ensuring security in embedded
systems translates into several design challenges, imposed by
the unique features of these systems. The existing malware
detection approaches such as signature-based detection and
semantics-based solution (off-the-shelf Norton and McAfee
antivirus tools) are ineffective for resource-constrained

embedded systems due to the limited available computing
resources [4,5,11]. Hardware-assisted Malware Detection
(HMD) methods have emerged recently as an effective solution
to improve the security of computing systems by using Machine
Learning (ML) models to detect pattern of malicious
applications. The ML classifiers are trained using low-level
features such as processor Hardware Performance Counters
(HPCs) data captured at runtime to appropriately represent the
application behavior. HPCs are a set of special-purpose registers
in the processing units to capture the trace of hardware events
for a running application [11,22]. While HPCs have been widely
employed to predict the performance and energy efficiency of
computing systems [7,16,17,18,20], here we leverage HPCs to
improve the security. Hardware-assisted malware detection has
two advantages: 1) robustness, as manipulating the hardware
events is more complex compared to code obfuscation; and 2)
the latency of detecting malware is smaller by order of
magnitude with low hardware costs [4,5].

Prior studies on HMD have shown the effectiveness of ML
classifiers in classifying anomalies in low-level feature spaces
captured by HPCs to differentiate the malware from normal
programs [1,2,4,5,6,11,12,22], but in high performance
computing domain under the assumption of availability of large
number of HPCs. However, malware detection problem in
embedded systems domain poses primarily two challenges.
First, the systems are mainly limited in terms of computing
power and resources as such the use of heavyweight ML
classifiers like Neural Network and Bayesian models is not
efficient. Second, the malware detection accuracy is
proportional to the number of HPC events used by the ML
classifier, while, due to physical limitations in microprocessors
the number of HPCs that can be read simultaneously in
miniature embedded systems is limited to 2 to 6 [4,5,11]. For
instance, widely used processors such as ARM Cortex-A5 and
Cortex-A8 can afford to have only 2 and 4 HPCs available,
respectively, that can be read concurrently. As such, runtime
detection of malware in resource-constrained embedded systems
needs capturing the most prominent microarchitectural events
limited to the number of HPCs available and achieve a high
malware detection accuracy, which has been ignored in existing
work. Running an application multiple times aid in capturing
more microarchitectural events to achieve higher accuracy but
is not a practical solution for runtime malware detection, since
the hardware can only count a small subset of events
concurrently. Furthermore, the prior work on HMD are either
limited to one or very few classes of malware and does not
evaluate different ML classifiers and its suitability to resource-
constrained embedded devices.

In this work, we propose a customized runtime malware
detection framework using limited number (only 4) of HPC

1685

2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering

2324-9013/18/31.00 ©2018 IEEE
DOI 10.1109/TrustCom/BigDataSE.2018.00251

features, addressing the challenge faces resource-constrained
embedded systems. Fig. 1 illustrates the applicability of the
proposed HMD in various embedded devices. The proposed
HMD comprises of predicting the malware class using a
lightweight multiclass classifier succeeded by a customized per
class malware detector. The customized per class malware
detector is a detector trained with the HPC event data of the
corresponding malware class which is the target of detection. In
addition, a comprehensive analysis of malware detection using
various ML classifiers and their suitability to resource-
constrained embedded systems based on their hardware
footprint and latencies are presented. To evaluate the
effectiveness of proposed HMD, we thoroughly examine the
malware detectors in terms of detection accuracy, and hardware
implementation overheads to determine the most suited ML
classifiers per malware class for effective malware detection
with limited number of HPCs.
II. PROPOSED HARDWARE-ASSISTED MALWARE DETCTION

In this section, we present a customized HMD for
distinguishing the malware programs from benign applications
and determining the class of malware at runtime.
A. Experimental Setup and Data Collection

Fig. 2-(a) illustrates the overview of data collection process
in proposed customized HMD. Since each malware class has a
different behavior, it allows a customized detector that is trained
specifically for that malware class to more effectively perform
the classification. We implemented customized detectors for
three classes of malware including Rootkit, Trojan, and
Backdoor. The applications (both malware and benign) are
executed on an Intel Atom C2758 processor running Ubuntu
14.04 with Linux 4.4 Kernel and various HPCs data are
collected with the aid of Perf tool. We executed more than 3000
benign and malware applications. Benign applications include
MiBench benchmark suite [8], Linux system programs,
browsers, text editors, and word processor. For malware
applications, Linux malware is collected from virustotal.com
[3]. After collecting microarchitectural events using Perf, we
use the WEKA tool [9] to evaluate the accuracy and
performance of different ML classifiers. HPC information is

collected by running all groups of regular and malware programs
within Linux Containers (LXC) which is an isolated
environment. Training ML classifiers involves profiling the
incoming application with Perf tool under Linux and extracting
low-level feature values for each training program, reducing the
extracted features to the most vital HPCs, and developing a
learning model from the training data. It is important to note that
the input variables in our classifiers are the HPCs extracted
every 10ms interval from running applications, and the output
variable is the class of an application. In order to validate each
of the utilized ML classifiers, a standard 70%-30% dataset split
for training and testing is followed.
B. Feature Reduction

In order to perform runtime malware detection using HPC
information, it is essential to represent the applications in the
form of low-level microarchitectural features. Such a
representation can lead to a high-dimensional data processing
which involves large computational overheads and complexity.
Thus, it is non-trivial to determine the correct features in
building an accurate predictor. In this work, we apply Principle
Component Analysis (PCA) technique on the extracted HPCs to
select the best HPCs for detecting malwares with one single run.
PCA analysis allows us to monitor and determine the most vital
and distinct microarchitectural parameters to extract application
characteristics [7]. Next, we apply clustering and attribute
evaluation technique to identify the most relevant features.

We apply PCA to find the best HPCs suited for training the
ML-based malware detectors. We started with 16 HPCs for each
malware class, we reduced the features to 8 and 4 most
significant HPCs to capture the behavior of specific class of
malware. The feature reduction results indicate that the
identified prominent 4 HPCs are the same across various classes
of malware. These HPCs include branch instructions, cache
references, branch misses, and node-stores which provide a
unique opportunity to identify the class of malware ahead of
time for unknown malware. These 4 HPC features are then
supplied to each ML-based malware detector as input
parameters for each malware class. These features reflect
pipeline front-end, pipeline back-end, cache subsystem, and
main memory behaviors and are influential in the performance
of standard applications.
C. Malware Detection Approach

The overview of the customized malware detection process
is depicted in Fig. 2-(b). As shown, first an effective multiclass
classification model is developed to estimate the class of the
running application. Next, depending on the predicted
application type, customized ML classifiers are chosen for the
predicted malware class with limited number of HPCs.

Fig. 2. Proposed hardware-assisted malware detection framework

Applications
(Malware/Benign)

Feature
Extraction

Capturing
HPC features
via Perf Tool

Feature
Reduction

Principle Components
Analysis (PCA)

Attribute Evaluation

Hardware Performance
Counters Data

Malware

Benign

Backdoor

Trojan

Rootkit

(a) Data Collection Process for Malware Detection

ML Binary
Classifiers

Support Vector Machine SMO

Bayesian Network BayesNet

Neural Network MLP

Decision Tree J48, REPTree

Rule-Based JRip, OneR

4HPCs-Based Malware Detectors

Benign

Malware

Ranking Classifiers
(Accuracy/Area)

Multiclass
SVM

Predictive
Models

(b) Customized Malware Detection Process

...

Embedded
Systems

Proposed
HMD

ML classifier N –>
benign or malwareHPCs ML Classifier 1 –>

benign or malware
Processor

Hardware Layer

Application Layer
User Application Programs

(Bengin vs. Malware)

Fig. 1. Application of proposed HMD in embedded systems

1686

Application Class Prediction: Customized malware detector is
a ML classifier which is trained specifically with the samples
that belong to one particular malware class. As each of the
customized detectors is trained to classify a different class of
malware, they are each answering a different classification
question. Initially, the system is unaware of existence of
malware in the application, as such the use of customized
detectors cannot be effective. As such, for each class of malware
experimented, one customized malware detector is employed.
To address this concern, we first propose to predict the behavior
of the application (benign or a particular malware class) using a
multiclass Support Vector Machine (SVM). The SVM classifier
is a supervised learning that analyzes data used for classification
and regression analysis. The multiclass SVM primarily converts
the basic binary classification to a multiclass problem, i.e. with
more than two possible discrete outcomes.

In this work, the output of multiclass SVM is corresponding
to the set of feasible classes of applications including 4
individual classes, one for “benign” program and 3 malware
classes namely “Rootkit”, “Trojan”, and “Backdoor”. The SVM
model is trained using extensive set of HPCs data captured by
running various benign and malware programs. The inputs to the
SVM consists of the 4 features described previously. Given the
inputs during runtime, the proposed multiclass SVM can then
calculate a probability of each candidate application class being
executed. The output with the highest probability is then chosen
as the current application type during runtime. The evaluation
results of the proposed SVM model show that lowering the
number of HPCs to the top 4 features retains an accuracy of 70%
and an average Area Under the Curve (AUC) of 0.81 indicating
the effectiveness of SVM model to predict the right type of
running application by using only 4 HPC features.
Customized Machine Learning Classifiers: As observed
before, using SVM classifier does not provide a high malware
detection accuracy when using limited number of HPCs. To
address this challenge, we add the second stage of detection
using various type of machine learning techniques. We propose
using customized malware detector which is a ML classifier
individually trained using the characteristics of specific class of
malware. These ML classifiers are shown in Fig. 2. The rationale
for selecting these machine learning models are: First, they are
from different branches of ML methods covering a diverse range
of learning algorithms which are inclusive to model both linear
and non-linear problems. Second, the prediction model
produced by them can be a binary classification which is
compatible with our malware detection.

III. EVALUATION RESULTS
In this section, the proposed HMD is evaluated in terms of

malware detection accuracy, hardware overheads as well as the
accuracy per unit of area to analyze hardware suitability.
A. Malware Detection Accuracy

The accuracy is defined as the percentage of correctly
classified samples by the malware detector. Fig. 3 depicts the
accuracy results of proposed runtime HMD for different ML
classifiers with three different classes of malware experimented.
In addition, the accuracy when employing the first level of
detection (multiclass SVM) is also illustrated where the class of
application is predicted (referred as MSVM). As seen, using
only one-level classifier i.e., only multiclass SVM as a first level
provides an accuracy of 70% when using 4 HPCs which is low

for security-critical embedded devices. The results show that the
proposed approach enhances the malware detection accuracy in
majority of the cases.

In case of Rootkit, the accuracy is improved by more than
20% when using MLP and SMO classifiers. Similar
observations are made for Trojan and Backdoor. MLP performs
best for Rootkit and Backdoor detection, whereas OneR and
BayesNet outperforms MLP in terms of accuracy in Trojan. In
addition, a reduction in the rule-based and decision tree-based
techniques such as JRip, J48, and REPTree is observed for
Trojan. The OneR and BayesNet customized classifiers are both
delivering the highest accuracy of 99%. Fig. 3-(d) also shows
the average accuracy results for various ML classifiers. On an
average, the accuracy of malware detection is increased by up to
23.2% (in SMO classifier) across all the three tested classes of
malware. As seen, the HMD employing customized SMO and
BayesNet classifiers achieves highest malware detection
accuracy of 93.2% and 92.9%, respectively.
B. Hardware Overhead Analysis

As the embedded systems are resource-constrained, the
hardware footprint and the involved latency play a crucial role
in adopting ML classifier for runtime malware detection. While
complex algorithms such as Neural Networks can deliver high
accuracy, they also add significant area overhead and are slower
in terms of hardware implementation making them unsuitable
for resource-limited embedded devices. Hence, we evaluate the
hardware overheads posed by different ML classifiers. For
hardware implementation, we implemented and synthesized ML
classifiers using Vivado HLS for Xilinx Virtex-7 FPGA. In
order to evaluate the hardware implementation cost, in Table I,
we report the results for different ML classifiers that use 4 HPCs
for runtime malware detection. Latency unit is represented in
terms of the number of clock cycles (cycles @10 ns) required to
classify input vector and the area is the total number of utilized
LUTs, FFs, and DSP units inside FPGA.

As expected, the area and the latency for heavyweight ML
classifiers such as MLP and BayesNet are much larger compared

Fig. 3. Accuracy of various malware detectors: comparison of multiclass
SVM (MSVM) and proposed customized HMD for (a) Rootkit, (b)
Backdoor, (c) Trojan, (d) average results

70

88.1
94

81.5 84.8 85.4 82.8
91.4

40
50
60
70
80
90

100

AC
CU

RA
CY

 (%
)

(a) Rootkit

70

91.6 92.4 92 92 92 92 89.5

40
50
60
70
80
90

100

AC
CU

RA
CY

 (%
)

(b) Backdoor

70

99 89.8
99

66.3 65.7 66.3

98.8

40
50
60
70
80
90

100

AC
CU

RA
CY

 (
%

)

(c) Trojan

70

92.9 92.1 90.9
81 81 80.4

93.2

40
50
60
70
80
90

100

AC
CU

RA
CY

 (
%

)

(d) Average

Classifier Latency (@10ns) Hardware Area
BayesNet 6 7645

J48 3 584
JRip 2 156
MLP 102 25667
OneR 1 292

REPTree 3 377
SMO 22 2466

TABLE I: HARDWARE IMPLEMENTATION RESULTS

1687

to other classifiers. The rule-based and tree-based classifiers
have significant smaller hardware footprint compared to more
complex classifiers (up to ~80x smaller area, and 5-30x faster
execution time). Table I also presents the delay imposed by
individual ML classifiers. Malware detection process with the
proposed two-level HMD is performed in less than ms, whereas
the malware has an execution time of few ms [4,5]. As such, the
proposed HMD can perform efficient runtime malware
detection with high accuracy and low overhead.
C. Efficiency of ML Classifiers in Proposed HMD

Lastly, to accordingly account for malware detection
accuracy and area overhead impact, in Fig. 4 (a-c) we compare
accuracy over a unit of hardware area (Accuracy/Area) for
various ML classifiers across different class of malware. We use
detection accuracy over area to identify malware detectors that
require small area and yet can detect the maliciousness of
program with high accuracy and performance. A classifier with
a higher ratio is considered better than with lower ratio. Among
all classifiers, the rule-based and tree-based classifiers are found
to be more efficient compared to the highly accurate but
complex BayesNet and MLP. We evaluate the combined impact
of ML classifier accuracy and area overhead to see the accuracy
per unit of required area. Interestingly, the pattern is quite same
across different malware classes. Among all ML classifiers, the
JRip is seen to have a very high Accuracy/Area, whereas the
MLP has the least due to its large hardware overhead.
Furthermore, it is seen that rule-based and tree-based classifiers
(JRip, OneR, and J48) outperform other classifiers in terms of
accuracy per unit area, indicating the best suitability for
resource-constrained embedded systems.

As shown in Fig. 4-(d), a clear trade-off is seen between area
and accuracy achievable for runtime hardware-assisted malware
detection. The ML classifiers such as MLP has high accuracy,
but also higher complexity and hardware footprint. The
techniques such as BayesNet, SMO, and OneR show relatively
smaller area footprint with high malware detection accuracy. For
highly resource-constrained embedded systems, techniques such
as J48 and JRip provide smallest hardware overhead, while
achieving an accuracy of close to 81% on average. Clearly, the
results show trade-offs between detection accuracy, latency, and
area overhead. Therefore, it is important to compare ML
classifiers for effective malware detection in embedded systems
by taking all these parameters into consideration.

IV. CONCLUSION
In this work, we proposed an effective machine learning-

based hardware-assisted malware detection framework for
embedded devices which makes use of a limited number (only
4) of low-level features of microprocessor i.e., HPC events to
facilitate the runtime malware detection. Compared to
traditional single-stage HMD methods, the proposed customized

HMD enhances the accuracy up to 29%. Furthermore, the
experimental results indicated that while heavyweight classifiers
such as MLP, BayesNet, and SMO have higher average malware
detection accuracy, the lightweight ML classifiers such as JRip
and OneR show very high accuracy per unit of area across all
tested classes of malware with MLP being the least. Based on
the achieved accuracy, area, and latency, we provided valuable
insights that aid in choosing accurate and hardware-suitable ML
classifiers for malware detection in embedded system. This
comprehensive analysis helps the designers to understand and
navigate the trade-offs between several design parameters
offered by each learning algorithm.

REFERENCES
[1] Bahador et al., “Hpcmalhunter: Behavioral malware detection using hardware

performance counters and singular value decomposition”, In IEEE ICCKE, 2014.
[2] J. Demme et al., “On the feasibility of online malware detection with performance

counters”, In ACM SIGARCH Computer Architecture News, Vol. 41, 2013.
[3] Virustotal intelligence service. http://www.virustotal.com/intelligence/. Accessed:

December 2017.
[4] H. Sayadi et al., “Ensemble learning for effective run-time hardware-based malware

detection: A comprehensive analysis and classification”, In Design Automation
Conference (DAC’18), CA, June 2018.

[5] N. Patel et al., “Analyzing hardware based malware detectors”, In DAC, June 2017.
[6] A. Tang et al., “Unsupervised anomaly-based malware detection using hardware

features”, In RAID’14, Springer, 2014.
[7] H. Sayadi et al., “Machine learning-based approaches for energy-efficiency

prediction and scheduling in composite cores architectures”, In International
Conference on Computer Design (ICCD’17), November 2017.

[8] Guthaus et al., “Mibench: A free, commercially representative embedded
benchmark suite”, In IISWC, 2001.

[9] M. Hall et al., “The weka data mining software: an update”, ACM SIGKDD
explorations newsletter, 2009.

[10] D. Serpanos et al., “Security challenges in embedded systems,” In TECS, 2009.
[11] H. Sayadi et al., “Comprehensive assessment of run-time hardware-supported

malware detection using general and ensemble learning”, In ACM Computing
Frontiers (CF’18), Ischia, Italy, May 2018.

[12] M. Ozsoy et al., “Malware-aware processors: A framework for efficient online
malware detection”, In HPCA’15, February 2015.

[13] H. Sayadi., et al., “A data recomputation approach for reliability improvement of
scratchpad memory in embedded systems”, In Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT’14), Amsterdam, NL, October 2014.

[14] H.M. Makrani, et al., “Evaluation of sofware-based fault-tolerant techniques on
embedded OS’s components”, In DEPEND’14, pp. 51-57, 2014.

[15] G. Jacob et al., “Behavioral detection of malware: from a
survey towards an established taxonomy”, Journal of Computer Virology, 2008

[16] H. Sayadi et al., “Power conversion efficiency-aware mapping of multithreaded
applications on heterogeneous architectures: A comprehensive parameter tuning” In
Asia and South Pacific Design Automation Conference (ASP-DAC’18), Jan 2018.

[17] H.M. Makrani et al., “MeNa: A Memory navigator for modern hardware in a scale-
out environment”, In IISWC’17, October 2017.

[18] H. Sayadi et al., “Scheduling multithreaded applications onto heterogeneous
composite cores architecture,” In IGSC’17, October 2017.

[19] H.M. Kamali et al., “A fault tolerant parallelism approach for implementing high-
throughput pipelined advanced encryption standard”, In JVSC, Vol. 25, 2016.

[20] M. Malik, et al., “Co-Locating and concurrent fine-tuning MapReduce applications
on microservers for energy efficiency”, In IISWC’17, October 2017.

[21] S. Manoj et al., “A Scalable network-on-chip microprocessor with 2.5D integrated
memory and accelerator”, in IEEE TCAS-I, vol.64, no.6, pp.1432-1443, June 2017.

[22] Wang et al., “Confirm: Detecting firmware modifications in embedded systems
using hardware performance counters”, In ICCAD’15, 2015.

Fig. 4. Accuracy/Area comparison of malware detectors in proposed HMD for (a) Rootkit, (b) Backdoor, (c) Trojan, (d) Accuracy vs. Area trade-offs

0 0.1 0.2 0.3 0.4 0.5 0.6

BayesNet
MLP

OneR
JRip
J48

REPTree
SMO

(a) Rootkit

0 0.1 0.2 0.3 0.4 0.5 0.6

BayesNet
MLP

OneR
JRip
J48

REPTree
SMO

(b) Backdoor

0 0.1 0.2 0.3 0.4 0.5

BayesNet
MLP

OneR
JRip
J48

REPTree
SMO

(c) Trojan

BayesNet

MLP

OneRJRip

J48
REPTree SMO

0
3000
6000
9000

12000
15000
18000
21000
24000
27000

75 80 85 90 95

Ar
ea

Accuracy (%)

(d)

1688

