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Abstract— The emerging embedded systems, which account 
for a wide range of applications are often highly resource-
constrained challenging the conventional software-based methods 
traditionally deployed for detecting and containing malware in 
general purpose computing systems. In addition to the complexity 
and cost (computing and storage), the software-based malware 
detection methods mostly rely on the static signature analysis of 
the running programs, requiring continuous software update in 
the field to remain accurate in capturing emerging malware, 
which is not affordable for embedded systems with limited 
computing and communication bandwidth. Hardware-assisted 
Malware Detection (HMD) though found to be more efficient, 
limited computing power and resources in embedded systems as 
well as the small number of available Hardware Performance 
Counter (HPC) registers that can be simultaneously captured, 
make accurate runtime malware detection in embedded devices a 
challenging problem. In response, this work proposes a 
lightweight customized HMD approach which takes advantage of 
HPC features to effectively detect and further classify various 
malware classes at runtime. To realize a runtime solution that 
relies on limited available HPCs and to enhance the accuracy of 
malware detection, we use customized HMD for individual class of 
malware that utilizes various Machine Learning (ML) classifiers 
to detect malware using the four most important HPC features.  

Keywords—malware detection, embedded systems, hardware 
performance counter, machine learning.   

I. INTRODUCTION  
Recent advances in digital electronics and wireless 

communications have enabled a widespread proliferation of 
embedded systems ranging from micro-sensors, cell phones and 
PDAs to smart homes and military applications. Security is an 
important issue in embedded systems due to the adoption of 
embedded systems in many mission and safety-critical systems 
[13,14,21]. Malware is a piece of code designed by attackers to 
perform various malicious activities in computer systems [5,15]. 
Many of the existing software attacks on conventional 
computing platforms such as servers and desktops can be 
launched on the embedded systems due to their similarities in 
using general purpose processors computing systems and their 
connectivity to internet. In addition, the advancement of 
computing devices in the form of mobile devices and Internet-
of-Things (IoT) further exacerbates the malware attacks calling 
for developing effective malware detection solutions. 

The constant interaction between physical and cyber worlds 
has made security one of the important concerns in the design of 
embedded systems [10,13,19]. Ensuring security in embedded 
systems translates into several design challenges, imposed by 
the unique features of these systems. The existing malware 
detection approaches such as signature-based detection and 
semantics-based solution (off-the-shelf Norton and McAfee 
antivirus tools) are ineffective for resource-constrained 

embedded systems due to the limited available computing 
resources [4,5,11]. Hardware-assisted Malware Detection 
(HMD) methods have emerged recently as an effective solution 
to improve the security of computing systems by using Machine 
Learning (ML) models to detect pattern of malicious 
applications. The ML classifiers are trained using low-level 
features such as processor Hardware Performance Counters 
(HPCs) data captured at runtime to appropriately represent the 
application behavior. HPCs are a set of special-purpose registers 
in the processing units to capture the trace of hardware events 
for a running application [11,22]. While HPCs have been widely 
employed to predict the performance and energy efficiency of 
computing systems [7,16,17,18,20], here we leverage HPCs to 
improve the security. Hardware-assisted malware detection has 
two advantages: 1) robustness, as manipulating the hardware 
events is more complex compared to code obfuscation; and 2) 
the latency of detecting malware is smaller by order of 
magnitude with low hardware costs [4,5].  

Prior studies on HMD have shown the effectiveness of ML 
classifiers in classifying anomalies in low-level feature spaces 
captured by HPCs to differentiate the malware from normal 
programs [1,2,4,5,6,11,12,22], but in high performance 
computing domain under the assumption of availability of large 
number of HPCs. However, malware detection problem in 
embedded systems domain poses primarily two challenges. 
First, the systems are mainly limited in terms of computing 
power and resources as such the use of heavyweight ML 
classifiers like Neural Network and Bayesian models is not 
efficient. Second, the malware detection accuracy is 
proportional to the number of HPC events used by the ML 
classifier, while, due to physical limitations in microprocessors 
the number of HPCs that can be read simultaneously in 
miniature embedded systems is limited to 2 to 6 [4,5,11]. For 
instance, widely used processors such as ARM Cortex-A5 and 
Cortex-A8 can afford to have only 2 and 4 HPCs available, 
respectively, that can be read concurrently. As such, runtime 
detection of malware in resource-constrained embedded systems 
needs capturing the most prominent microarchitectural events 
limited to the number of HPCs available and achieve a high 
malware detection accuracy, which has been ignored in existing 
work. Running an application multiple times aid in capturing 
more microarchitectural events to achieve higher accuracy but 
is not a practical solution for runtime malware detection, since 
the hardware can only count a small subset of events 
concurrently. Furthermore, the prior work on HMD are either 
limited to one or very few classes of malware and does not 
evaluate different ML classifiers and its suitability to resource-
constrained embedded devices. 

In this work, we propose a customized runtime malware 
detection framework using limited number (only 4) of HPC 
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features, addressing the challenge faces resource-constrained 
embedded systems. Fig. 1 illustrates the applicability of the 
proposed HMD in various embedded devices. The proposed 
HMD comprises of predicting the malware class using a 
lightweight multiclass classifier succeeded by a customized per 
class malware detector. The customized per class malware 
detector is a detector trained with the HPC event data of the 
corresponding malware class which is the target of detection. In 
addition, a comprehensive analysis of malware detection using 
various ML classifiers and their suitability to resource-
constrained embedded systems based on their hardware 
footprint and latencies are presented. To evaluate the 
effectiveness of proposed HMD, we thoroughly examine the 
malware detectors in terms of detection accuracy, and hardware 
implementation overheads to determine the most suited ML 
classifiers per malware class for effective malware detection 
with limited number of HPCs.  
II. PROPOSED HARDWARE-ASSISTED MALWARE DETCTION 

In this section, we present a customized HMD for 
distinguishing the malware programs from benign applications 
and determining the class of malware at runtime.  
A. Experimental Setup and Data Collection  

Fig. 2-(a) illustrates the overview of data collection process 
in proposed customized HMD. Since each malware class has a 
different behavior, it allows a customized detector that is trained 
specifically for that malware class to more effectively perform 
the classification. We implemented customized detectors for 
three classes of malware including Rootkit, Trojan, and 
Backdoor. The applications (both malware and benign) are 
executed on an Intel Atom C2758 processor running Ubuntu 
14.04 with Linux 4.4 Kernel and various HPCs data are 
collected with the aid of Perf tool. We executed more than 3000 
benign and malware applications. Benign applications include 
MiBench benchmark suite [8], Linux system programs, 
browsers, text editors, and word processor. For malware 
applications, Linux malware is collected from virustotal.com 
[3]. After collecting microarchitectural events using Perf, we 
use the WEKA tool [9] to evaluate the accuracy and 
performance of different ML classifiers. HPC information is 

collected by running all groups of regular and malware programs 
within Linux Containers (LXC) which is an isolated 
environment. Training ML classifiers involves profiling the 
incoming application with Perf tool under Linux and extracting 
low-level feature values for each training program, reducing the 
extracted features to the most vital HPCs, and developing a 
learning model from the training data. It is important to note that 
the input variables in our classifiers are the HPCs extracted 
every 10ms interval from running applications, and the output 
variable is the class of an application. In order to validate each 
of the utilized ML classifiers, a standard 70%-30% dataset split 
for training and testing is followed.  
B. Feature Reduction  

In order to perform runtime malware detection using HPC 
information, it is essential to represent the applications in the 
form of low-level microarchitectural features. Such a 
representation can lead to a high-dimensional data processing 
which involves large computational overheads and complexity. 
Thus, it is non-trivial to determine the correct features in 
building an accurate predictor. In this work, we apply Principle 
Component Analysis (PCA) technique on the extracted HPCs to 
select the best HPCs for detecting malwares with one single run. 
PCA analysis allows us to monitor and determine the most vital 
and distinct microarchitectural parameters to extract application 
characteristics [7]. Next, we apply clustering and attribute 
evaluation technique to identify the most relevant features. 

We apply PCA to find the best HPCs suited for training the 
ML-based malware detectors. We started with 16 HPCs for each 
malware class, we reduced the features to 8 and 4 most 
significant HPCs to capture the behavior of specific class of 
malware. The feature reduction results indicate that the 
identified prominent 4 HPCs are the same across various classes 
of malware. These HPCs include branch instructions, cache 
references, branch misses, and node-stores which provide a 
unique opportunity to identify the class of malware ahead of 
time for unknown malware. These 4 HPC features are then 
supplied to each ML-based malware detector as input 
parameters for each malware class. These features reflect 
pipeline front-end, pipeline back-end, cache subsystem, and 
main memory behaviors and are influential in the performance 
of standard applications.  
C. Malware Detection Approach 

The overview of the customized malware detection process 
is depicted in Fig. 2-(b). As shown, first an effective multiclass 
classification model is developed to estimate the class of the 
running application. Next, depending on the predicted 
application type, customized ML classifiers are chosen for the 
predicted malware class with limited number of HPCs.  

 
Fig. 2. Proposed hardware-assisted malware detection framework  
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Fig. 1. Application of proposed HMD in embedded systems  
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Application Class Prediction: Customized malware detector is 
a ML classifier which is trained specifically with the samples 
that belong to one particular malware class. As each of the 
customized detectors is trained to classify a different class of 
malware, they are each answering a different classification 
question. Initially, the system is unaware of existence of 
malware in the application, as such the use of customized 
detectors cannot be effective. As such, for each class of malware 
experimented, one customized malware detector is employed. 
To address this concern, we first propose to predict the behavior 
of the application (benign or a particular malware class) using a 
multiclass Support Vector Machine (SVM). The SVM classifier 
is a supervised learning that analyzes data used for classification 
and regression analysis. The multiclass SVM primarily converts 
the basic binary classification to a multiclass problem, i.e. with 
more than two possible discrete outcomes.  

In this work, the output of multiclass SVM is corresponding 
to the set of feasible classes of applications including 4 
individual classes, one for “benign” program and 3 malware 
classes namely “Rootkit”, “Trojan”, and “Backdoor”. The SVM 
model is trained using extensive set of HPCs data captured by 
running various benign and malware programs. The inputs to the 
SVM consists of the 4 features described previously. Given the 
inputs during runtime, the proposed multiclass SVM can then 
calculate a probability of each candidate application class being 
executed. The output with the highest probability is then chosen 
as the current application type during runtime. The evaluation 
results of the proposed SVM model show that lowering the 
number of HPCs to the top 4 features retains an accuracy of 70% 
and an average Area Under the Curve (AUC) of 0.81 indicating 
the effectiveness of SVM model to predict the right type of 
running application by using only 4 HPC features.   
Customized Machine Learning Classifiers: As observed 
before, using SVM classifier does not provide a high malware 
detection accuracy when using limited number of HPCs. To 
address this challenge, we add the second stage of detection 
using various type of machine learning techniques. We propose 
using customized malware detector which is a ML classifier 
individually trained using the characteristics of specific class of 
malware. These ML classifiers are shown in Fig. 2. The rationale 
for selecting these machine learning models are: First, they are 
from different branches of ML methods covering a diverse range 
of learning algorithms which are inclusive to model both linear 
and non-linear problems. Second, the prediction model 
produced by them can be a binary classification which is 
compatible with our malware detection.   

III. EVALUATION RESULTS 
In this section, the proposed HMD is evaluated in terms of 

malware detection accuracy, hardware overheads as well as the 
accuracy per unit of area to analyze hardware suitability.   
A. Malware Detection Accuracy  

The accuracy is defined as the percentage of correctly 
classified samples by the malware detector. Fig. 3 depicts the 
accuracy results of proposed runtime HMD for different ML 
classifiers with three different classes of malware experimented. 
In addition, the accuracy when employing the first level of 
detection (multiclass SVM) is also illustrated where the class of 
application is predicted (referred as MSVM). As seen, using 
only one-level classifier i.e., only multiclass SVM as a first level 
provides an accuracy of 70% when using 4 HPCs which is low 

for security-critical embedded devices. The results show that the 
proposed approach enhances the malware detection accuracy in 
majority of the cases.  

In case of Rootkit, the accuracy is improved by more than 
20% when using MLP and SMO classifiers. Similar 
observations are made for Trojan and Backdoor. MLP performs 
best for Rootkit and Backdoor detection, whereas OneR and 
BayesNet outperforms MLP in terms of accuracy in Trojan. In 
addition, a reduction in the rule-based and decision tree-based 
techniques such as JRip, J48, and REPTree is observed for 
Trojan. The OneR and BayesNet customized classifiers are both 
delivering the highest accuracy of 99%. Fig. 3-(d) also shows 
the average accuracy results for various ML classifiers. On an 
average, the accuracy of malware detection is increased by up to 
23.2% (in SMO classifier) across all the three tested classes of 
malware. As seen, the HMD employing customized SMO and 
BayesNet classifiers achieves highest malware detection 
accuracy of 93.2% and 92.9%, respectively.   
B. Hardware Overhead Analysis  

As the embedded systems are resource-constrained, the 
hardware footprint and the involved latency play a crucial role 
in adopting ML classifier for runtime malware detection. While 
complex algorithms such as Neural Networks can deliver high 
accuracy, they also add significant area overhead and are slower 
in terms of hardware implementation making them unsuitable 
for resource-limited embedded devices. Hence, we evaluate the 
hardware overheads posed by different ML classifiers. For 
hardware implementation, we implemented and synthesized ML 
classifiers using Vivado HLS for Xilinx Virtex-7 FPGA. In 
order to evaluate the hardware implementation cost, in Table I, 
we report the results for different ML classifiers that use 4 HPCs 
for runtime malware detection. Latency unit is represented in 
terms of the number of clock cycles (cycles @10 ns) required to 
classify input vector and the area is the total number of utilized 
LUTs, FFs, and DSP units inside FPGA.  

As expected, the area and the latency for heavyweight ML 
classifiers such as MLP and BayesNet are much larger compared 

 
Fig. 3. Accuracy of various malware detectors: comparison of multiclass 
SVM (MSVM) and proposed customized HMD for (a) Rootkit, (b) 
Backdoor, (c) Trojan, (d) average results 
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Classifier Latency (@10ns) Hardware Area 
BayesNet 6 7645 

J48 3 584 
JRip 2 156 
MLP 102 25667 
OneR 1 292 

REPTree 3 377 
SMO 22 2466 

TABLE I: HARDWARE IMPLEMENTATION RESULTS 
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to other classifiers. The rule-based and tree-based classifiers 
have significant smaller hardware footprint compared to more 
complex classifiers (up to ~80x smaller area, and 5-30x faster 
execution time). Table I also presents the delay imposed by 
individual ML classifiers. Malware detection process with the 
proposed two-level HMD is performed in less than ms, whereas 
the malware has an execution time of few ms [4,5]. As such, the 
proposed HMD can perform efficient runtime malware 
detection with high accuracy and low overhead.   
C. Efficiency of ML Classifiers in Proposed HMD 

Lastly, to accordingly account for malware detection 
accuracy and area overhead impact, in Fig. 4 (a-c) we compare 
accuracy over a unit of hardware area (Accuracy/Area) for 
various ML classifiers across different class of malware. We use 
detection accuracy over area to identify malware detectors that 
require small area and yet can detect the maliciousness of 
program with high accuracy and performance. A classifier with 
a higher ratio is considered better than with lower ratio. Among 
all classifiers, the rule-based and tree-based classifiers are found 
to be more efficient compared to the highly accurate but 
complex BayesNet and MLP. We evaluate the combined impact 
of ML classifier accuracy and area overhead to see the accuracy 
per unit of required area. Interestingly, the pattern is quite same 
across different malware classes. Among all ML classifiers, the 
JRip is seen to have a very high Accuracy/Area, whereas the 
MLP has the least due to its large hardware overhead. 
Furthermore, it is seen that rule-based and tree-based classifiers 
(JRip, OneR, and J48) outperform other classifiers in terms of 
accuracy per unit area, indicating the best suitability for 
resource-constrained embedded systems.  

As shown in Fig. 4-(d), a clear trade-off is seen between area 
and accuracy achievable for runtime hardware-assisted malware 
detection. The ML classifiers such as MLP has high accuracy, 
but also higher complexity and hardware footprint. The 
techniques such as BayesNet, SMO, and OneR show relatively 
smaller area footprint with high malware detection accuracy. For 
highly resource-constrained embedded systems, techniques such 
as J48 and JRip provide smallest hardware overhead, while 
achieving an accuracy of close to 81% on average. Clearly, the 
results show trade-offs between detection accuracy, latency, and 
area overhead. Therefore, it is important to compare ML 
classifiers for effective malware detection in embedded systems 
by taking all these parameters into consideration.  

IV. CONCLUSION   
In this work, we proposed an effective machine learning-

based hardware-assisted malware detection framework for 
embedded devices which makes use of a limited number (only 
4) of low-level features of microprocessor i.e., HPC events to 
facilitate the runtime malware detection. Compared to 
traditional single-stage HMD methods, the proposed customized 

HMD enhances the accuracy up to 29%. Furthermore, the 
experimental results indicated that while heavyweight classifiers 
such as MLP, BayesNet, and SMO have higher average malware 
detection accuracy, the lightweight ML classifiers such as JRip 
and OneR show very high accuracy per unit of area across all 
tested classes of malware with MLP being the least. Based on 
the achieved accuracy, area, and latency, we provided valuable 
insights that aid in choosing accurate and hardware-suitable ML 
classifiers for malware detection in embedded system. This 
comprehensive analysis helps the designers to understand and 
navigate the trade-offs between several design parameters 
offered by each learning algorithm.  
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Fig. 4. Accuracy/Area comparison of malware detectors in proposed HMD for (a) Rootkit, (b) Backdoor, (c) Trojan, (d) Accuracy vs. Area trade-offs  
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