
SCARF: Detecting Side-Channel Attacks at
Real-time using Low-level Hardware Features

Han Wang1, Hossein Sayadi2, Setareh Rafatirad3, Avesta Sasan3, and Houman Homayoun1
1University of California, Davis, CA, USA

2California State University, Long Beach, CA, USA
3 George Mason University, Fairfax, VA, USA

1{hjlwang,hhomayoun}@ucdavis.edu, 2{hossein.sayadi}@csulb.edu,3{srafatir,asasan}@gmu.edu

Abstract—Side-Channel Attacks (SCAs) are powerful attacks
compromising the security of modern computer systems by
exploiting hardware vulnerabilities. Prior studies on detection
of SCAs based on low-level microarchitectural features captured
from processors’ hardware performance counter (HPC) regis-
ters have considered collecting hardware events of both victim
applications (cryptographic application, e.g. RSA, AES and etc.)
and attack applications. However, in such techniques the attack
HPCs data can be easily manipulated and/or corrupted resulting
in misleading the SCA detection mechanism. Furthermore, the
prior works have explored the suitability of a limited number of
Machine Learning (ML) algorithms in detecting SCAs without
examining the instance level false alarm rate that as we show
in this work is a more important evaluation metric for SCA
detection techniques. In response, in this paper, we propose
SCARF, a machine learning-based real-time side-channel attack
detection methodology using low-level hardware features. To this
aim, we first only monitor the victim applications’ behavior using
the HPC features and analyze the captured low-level traces of
the victim applications under no attack and attack conditions to
avoid manipulation of attackers’ HPCs. Next, a wide range of
ML classifiers with customized HPC features are implemented to
determine the most effective ML technique for detecting SCAs at
real-time, while improving accuracy and reducing instance-level
false alarm rate of ML-based SCA detectors. Lastly, the False
Alarm Minimization (FAM) technique is proposed to further
reduce the instance level false positive rate of the ML-based
SCA detectors. The experimental results indicate that the SCARF
methodology can obtain up to 100% attack detection accuracy
with 0% instance level false alarm rate for detecting SCAs.

I. INTRODUCTION

Side-channel attacks (SCAs) primarily target inferring sen-
sitive and confidential information from a computer system
through measurement and analysis of physical parameters [1],
[16], [17]. Cache-based SCAs are one of the most common
side-channel attacks that can be launched by the attacker
remotely and require no physical access [10], [19]. As a result,
there exists an emerging need to address the security risks and
challenges posed by such harmful attacks, calling for effective
SCAs detection methodology which can accurately identify
SCAs threats with minor overhead.

Prior works on side-channel attack detection such as [5],
[7], [20] propose the use of microarchitectural pattern analysis
captured through Hardware Performance Counters (HPCs) to
detect the SCAs with latency by order of ranging magnitude
from milliseconds to seconds. For instance, the work in [5]
proposes to detect the SCAs with the usage of both victim and
attack applications’ HPCs traces. Then based on the obtained

HPCs, the correlation between the HPC events of victims’
and attacks’ traces will be evaluated. Similarly, in [20] the
authors present CloudRadar which aims at detecting cross-
VM side-channel attacks by making use of HPC patterns.
Undoubtedly, the prior detection works have made some
progress in detecting the SCAs. However, they fall short in
addressing the challenges defined above as well as several
drawbacks, as demonstrated below.
1 Lack of Robustness: Our comprehensive analysis shows

that the majority of previous works on side-channel attacks
detection jointly correlate the HPCs traces of victim and attack
applications [5], [20]. However, recent studies [6], [22] have
demonstrated that current HPC features monitoring methods
suffer from the overcounting issue that creates the opportunity
for attackers to manipulate HPCs data by slightly changing
SCA applications. Hence, current detection techniques relying
on the HPCs data of attack applications are facing with
significant security threats.
2 Limited Machine Learning Classifiers: A wide range of

classification and anomaly detection techniques are developed
by applying Machine Learning (ML) techniques. However,
existing works in particular on SCA detection have primarily
focused on one or a few ML techniques for the purpose of
attack detection and classification [5], [20]. Such an analysis
leaves a void in terms of performance of attack detection, as
various ML classifiers yield different performance in detecting
various types of attacks [15].
3 High False Alarm Rate: Prior studies on real-time HPC-

based SCAs detection have neglected to examine the instance
level (a complete temporal sequence of victim applications’
HPCs) false positives of HPC data and have only evaluated
the SCAs detectors based on the interval level (a sub-sequence
of victim applications HPCs) false positive rate [5], [20].
However, SCA detection based on the capturing intervals
of HPCs data is biased to ”under attack” conditions. The
Victim under No Attack (VNA) requires all the captured HPCs
intervals to be classified correctly by the machine learning-
based SCA detector to achieve a correct prediction while
Victim under Attack (VA) requires only one interval classified
correctly to achieve a correct prediction.

To address the aforementioned challenges, in this work we
propose SCARF, a unified and accurate machine learning-
based real-time side-channel attack detection methodology
using low-level hardware features. To this end, we first demon-



strate the validation of detecting side-channel attacks based on
the victim applications HPCs data to avoid manipulation of
the attacker’s HPC by executing the victim applications on an
isolated processing core. Under such isolated circumstances,
we find that benign applications have significantly less im-
pact on victim applications’ HPCs compared to side-channel
attack applications. Next, we present the problem of instance
level false positive rate and demonstrate the importance of
extracting customized features from HPC traces intervals in
order to achieve a higher detection accuracy and lower instance
level false positive rate for ML-based SCA detectors. Then, the
proposed real-time SCA detection methodology employs the
customized features based ML classifiers by using only victims
applications’ microarchitectural information to enhance the
SCAs detection accuracy and minimize the instance false
positives rate while avoiding the corrupted, manipulated or
missing attackers’ HPCs information. The main contributions
of this work can be summarized as below:

• To eliminate the influence of missing attack profiling
data or manipulation in the attack applications codes,
this work proposes SCARF to detect SCA attacks at real-
time using the minimal number of HPC features (only 4
features). The proposed approach detect SCAs based on
differentiating HPCs data of only the victim applications
under two conditions: 1) Victim under Attack (VA), and
2) Victim under No Attack (VNA).

• Various ML classification algorithms are explored to find
the most accurate classifier for detecting side-channel
attacks at real-time.

• The proposed ML-based detectors are trained using a
customized set of HPC features to further improve the
detection accuracy while lowering the false alarm rate.

• The False Alarm Minimization (FAM) method is pro-
posed to reduce the instance level false positive rate with
limited latency.

II. MOTIVATION AND BACKGROUND

A. Motivational Case Studies
In this section, we highlight key motivations behind propos-

ing SCARF framework for detecting side-channel attacks using
low-level hardware features.

1) Detection based on Victim Applications’ HPCs Data:
- Unreliable Attackers’ HPCs: Prior studies on SCAs de-
tection have mostly focused on profiling both victim and
attack applications to collect hardware performance counters
data for detecting whether an attack occurs or not [5], [7],
[20]. Nevertheless, a recent work [22] presents the problem
of detecting attackers by classifying attackers and benign
applications based on HPC information with the aid of ML
techniques. The work in [6] further points out the non-
deterministic and over-counting problems of instructions as-
sociated with HPCs information, in which the attackers can
intentionally modify instructions slightly and manipulate the
counters, hence thwarting such detectors.
- SCAs Design Principle: Current SCAs intentionally cause
influence on victim applications’ cache or branch predictor

Fig. 1. L1 HIT of RSA and RSA under Flush Reload attack

by flushing/priming cache, mistraining branch predictors and
then observe accessing time of the cache sets, which changes
caching victims’ data and microarchitectural behaviors of
victim applications [21]. This also provides the opportunity
of detecting SCAs by observing the alteration in microarchi-
tectural behaviors. Furthermore, our experimental results as
shown in Figure 1 indicate that there exists a clear difference
between the behavior of VNA and VA. In this motivational
case study, the HPC traces of L1 HIT for the tested victim
application (RSA) under no attack (RSA) and under L3 Flush
Reload attack (RSA with FR) are illustrated. It can be observed
that the L1 HIT of VA shows a significantly different trend
compared to that of VNA. This observation clearly highlights
the effectiveness of using HPCs data of only victim applica-
tions (excluding the impact of attack applications’ HPCs) for
detecting the behavior of SCAs.

a)

b)

c)
Fig. 2. False Alarm Problem: a) Concept; b) VNA condition; c) VA condition

2) False Alarm Problem: As depicted in Figure 2-(a), each
run of a victim application is called an instance. For the
purpose of real-time SCAs detection, a certain window size is
used to decide the number of samples of each interval. Each
instance could contain multiple intervals. In addition, Figure
2-(b) shows a VNA instance divided into multiple intervals.
In such cases, even if only one interval is predicted as VA by
the ML-based detection technique, the whole instance will be
classified incorrectly as VA. At the same time, Figure 2-(c)
illustrates that the VA instance has two intervals classified as
VNA and one interval classified as VA, the whole instance is
still correctly classified as VA. Hence, even for prior works
[5], [20] achieving high detection accuracy with low false
positives, it is still hard to say that they can achieve a low
instance level false alarm rate. To distinguish false positives



TABLE I. FALSE POSITIVE AND FALSE NEGATIVE EVALUATION (TRUE: VNA; FALSE: VA)
Predicted True(interval) Predicted False(interval) Predicted True(instance) Predicted False(instance)

Actual True True Positive False Positive True Positive False Alarm
Actual False False Negative True Negative Missed Alarm True Alarm

of interval level and instance level, we deploys false alarm and
missed alarm to represent false positive and false negative of
instance level in the following sections as shown in Table I.

Fig. 3. Traditional and customized features based classifiers comparison
(datasets collected based on Section III-A)

3) Customized Features based ML Classifiers: Prior works
capture the sum of HPCs value for a certain time period
as features and employ traditional ML classification meth-
ods, achieving high prediction accuracy. They can cause a
high false alarm rate as mentioned in Section II-A2. Hence,
customized features based ML classifiers which extract more
features, like min, max, stdev, and sum of an interval are
required to further boost the prediction accuracy and reduce
the false alarm rate. Prediction accuracy and false alarm rate
of traditional and customized features based classifiers are
plotted in Figure 3. It can be seen that customized features
based ML classifiers outperform traditional ones by around
4% prediction accuracy. Furthermore, the false positive rate
drops from 87.2% to 4.7% for MLP when applying customized
features based classifiers. It can be concluded that extracting
more features from HPCs time-series sequences can help ease
the ”under attack” bias mentioned in Section II-A2.

B. Relevant Works
The work in [5] proposes an HPC monitoring model in order

to detect the SCAs of both victims and attacks applications.
Further, based on the obtained HPCs, the correlation between
the HPC events of victim and attacks’ traces. Similarly, in
[20] the authors presents CloudRadar which aims at detecting
cross-VM side-channel attacks by deploying HPC patterns.
The research in [12] proposes a detection system containing
one analytic server and one or more monitored computing
devices to detect SCAs including Spectre and Meltdown. The
analytic server receives HPCs data from monitored devices and
identifies suspicious core activity. Once detected, application
level monitor will be deployed on the computing devices
and take corrective actions. The work in [11] proposes an
online detection of Spectre attack by monitoring microarchi-
tectural features using time series classification. However, it
only targets Spectre attack and is not able to provide more
comprehensive protection from SCAs. In addition, all these
works can be bypassed when SCAs manipulate HPCs values

according to HPC monitoring challenges discussed in recent
work [6].

TABLE II. THE EXPERIMENTED VICTIM AND ATTACK APPLICATIONS
Victim Attack Source

RSA L3 Flush Reload Masitk [18]
L1 Prime Probe Masitk

AES Flush Reload Xlate [4]
L3 Flush Flush Xlate

victim function Spectre Spectre [3]

TABLE III. THE COLLECTED HPC FEATURES AND THEIR RANKING

Ranking HPC Name Ranking HPC Name
1 L1 HIT 9 L1 MISSES
2 UOPS RETIRED 10 BRANCHES MISPREDICTED
3 BR NONTAKEN CONDICTIONAL 11 L2 HIT
4 ALL BRANCHES RETIRED 12 TAKEN INDIRECT NEAR CALL
5 INST RETIRED ANY 13 L3 HIT
6 L2 MISSES 14 ITLB MISSES
7 BR TAKEN CONDITIONAL 15 DTLB STORE MISSES
8 L3 MISSES 16 DTLB LOAD MISSES

III. PROPOSED METHODOLOGY

In this section, we first present details of the experimental
setup and configurations. And then the proposed SCARF
methodology shown in Figure 4 will be introduced. As shown,
SCARF is comprised of different steps such as data collection,
feature reduction, training phase, testing phase, and false alarm
minimization method. First, for feature extraction the ”under
no attack” and ”under attack” HPC data will be collected
within a) isolated scenario, and b) non-isolated scenario. The
”isolated” environment refers to the case that a computer
only processes victim applications; whereas the ”non-isolated”
environment denotes that a computer system processes victim
applications on one core while benign applications are being
executed on the rest of the cores. Then customized features are
extracted and the data will be used to train various classifiers.
Next, the trained models will be employed in the testing
phase and false alarm minimization technique further assists
in reducing false alarm rate.
A. Experimental Setup and Data Collection

In this work, all experiments are conducted on an Intel
I5-3470 desktop with 4 cores, 8GB DRAM, and three-level
cache system. Victim applications and side-channel attacks
are selected from Mastik [18] and Xlate [4]. Furthermore,
MiBench [9] benchmark suite is used to represent benign
applications. In this work, we propose using a customized tool
to collect hardware performance counters based on Model-
Specific Registers (MSRs). The proposed customized monitor-
ing tool collects HPCs per processor at microsecond scale with
privileged access to avoid HPCs contamination from other
processes addressing the overcounting challenges presented in
a recent study [6]. Based on the behavior and functionality of
studied SCAs, 16 HPC features are considered in this work
for further analysis as listed in Table III. These hardware per-
formance counters data are collected using the four available
HPC registers in the experimented I5 processor at every 50
microseconds. Each pair of a VNA and VA executes for 50



Fig. 4. Overview of SCARF, the proposed real-time SCAs detection methodology based on victim application HPCs

times. Next, both VA and VNA HPC data are merged together
to create the final dataset. Furthermore, Weka data mining tool
is deployed for implementing the machine learning classifiers.
To validate each of the utilized ML classifiers, a standard
70%-30% non-biased dataset split for training and testing
is followed in which 70% of the randomized data (known
applications) is used for training the classifiers and the rest of
30% (unknown applications) is used for testing evaluation.

B. Customized Features based Classifiers
The proposed customized features based classification is

comprised of three main steps: 1) feature extraction and
representation; 2) HPCs selection due to a limited number
of registers for effective real-time detection of the attacks; 3)
training the ML classification algorithms.

1) Features Vector Extraction and Representation: For pro-
posed classification, the raw data will be transformed from a
time sub-sequence to a vector of features. In the first step of the
transformation process, the raw data will be received from the
monitoring module. The time-series sub-sequences’ properties
will be extracted which include statistics of distribution values
(including max, min, StatAv and sum). In order to effectively
determine the most prominent features for the purpose of real-
time SCA detection, we deployed Greedy Forward Selection
algorithm [2], [8] and we found that max, min, StatAv and sum
contribute more to assisting in distinguishing the difference be-
tween ”under no attack” and ”under attack” conditions. Hence,
the input for each transformation is T = (t1, t2, ..., tm)
where tm is a vector of HPCs values. Also, the outputs of
transformation are a vector of actual HPC values i.e., L1HIT
sum, L1 HIT max, etc.

2) HPCs Feature Reduction: Detecting side-channel attacks
using ML models requires representing programs at low-level
features which leads to a high-dimensional data processing
involved large computational overheads and complexity. Fur-
thermore, incorporating irrelevant features would lead to lower
accuracy and performance for the classifiers. Hence, it is
crucial to perform an effective feature reduction of collected
data to alleviate unnecessary computational overheads and
determine the most prominent low-level features [13], [14]. In
order to detect the SCAs at real-time with minimal overhead
in SCARF, we intend to identify a minimal set of critical
HPCs that are feasible to collect even on low-end processors
with small number of HPCs in a single run. Therefore, a
subset of HPC features is selected representing the most
important features for classification. The selected features are
then supplied to each ML-based SCA detector. The detector

attempts to find a correlation between the feature values and
the application behavior to predict the SCA.

Given the limited number of HPCs available in modern
microprocessors (only 4 HPCs on tested Intel I5-3470) to
be collected at one time simultaneously, it is necessary to
identify the most important HPCs for classifying the VA
and VNA conditions for different types of SCAs [15]. For
HPCs reduction, we employ Correlation Attribute Evaluation
(CorrelationAttributeEval in Weka) with its default set-
tings to calculate the Pearson correlation between attributes
(HPC features) and class (VA and VNA conditions). Corre-
lation attribute evaluation algorithm calculates the Pearson
correlation coefficient between each attribute and class, as
given below:

ρ(i) =
cov(Zi, C)√
var(Zi) var(C)

i = 1, ..., 16 (1)

where ρ is the Pearson correlation coefficient. Zi is the input
dataset of event i (i = 1, . . . , 16). C is the output dataset
containing labels, i.e. “Under Attack” or “Under No Attack”
in our case. The cov(Zi, C) measures the covariance between
input data and output data. The var(Zi) and var(C) measure
variance of both input and output datasets, respectively. Next,
the sum score of each HPC features (min, max, stdev, and
sum in this work) will be calculated and HPCs will be ranked
according to sum score as shown in Table III.

C. ML Classifiers Implementation
For the purpose of a thorough analysis of various types of

ML classifiers, OneR, MLP (multilayer perceptron), DT (deci-
sion table), J48, and BayesNet ML algorithms are deployed as
our final classification models. The rationale for selecting these
machine learning models are: firstly, they are from different
branches of ML: regression, neural network, decision tree, and
rule-based techniques covering a diverse range of learning
algorithms which are inclusive to model both linear and
nonlinear problems; secondly, the prediction model produced
by these learning algorithms can be a binary classification
model which is compatible with the SCA detection problem
in our work. As mentioned before, only four HPCs can be
collected for most processors at once due to a limited number
of registers for storing them. Hence, reducing the number pf
HPCs required for ML models is important to eliminate the
need of multiple runs. For this purpose, various number of
HPCs from 16 to 4 (16, 12, 8 and 4 selected based on the
ranking in Table III) are examined to evaluate the influence
of reduced HPCs on classification accuracy and highlight the
importance and motivation of using a lower number of HPCs
(only 4) for effective real-time SCA detection in SCARF.



a) b)
Fig. 5. Prediction accuracy comparison: a) prediction accuracy of proposed customized features based classifiers and the rest two type classifiers; b) zooming
in prediction accuracy of traditional and customized features based classifiers

D. False Alarm Minimization (FAM)
As mentioned in Section II-A, previous real-time SCAs

detection methods are biased to under attack category that
result in increasing the false alarm rate. Hence, to address
this challenge, we propose False Alarm Minimization (FAM)
technique in which we delay the ”under attack” detection de-
cision until receiving a certain number of continuous intervals,
delay number (DN), before reporting as ”under attack”, while
minimizing detection latency.

To this aim, we assume false positives are evenly distributed
among each instance, which results in highest false alarm rate
with the same false positive rate. Following, the value setting
of DN will be demonstrated. As mentioned above that evenly
distributed false positives are leading to highest potential false
alarm rate, we propose the method of setting DN value to
ensure the highest potential false alarm rate with known false
positive rate and the number of instance intervals which can be
obtained after testing classification models. First, we suppose
DN = m, the number of intervals = n, false positive rate =
s and acceptable false alarm rate is t. There are n −m + 1
possible cases of m consecutive intervals that are incorrectly
identified as ”under attack”. Therefore, the false alarm rate can
be calculated by FAR = (n − m + 1) ∗ (s%)m < t. Since
n, s and t are known, minimum DN value can be deduced
according to the equation.

Fig. 6. False alarm rate comparison

IV. RESULTS EVALUATION
In this section, we evaluate the effectiveness of SCARF

detection approach and compare it in terms of various eval-
uation metrics including detection accuracy and false alarm
rate of proposed customized features based classifiers over
traditional and time-series classifiers. Lastly, we evaluate the
FAM influence on minimizing false alarm rate and reduction
of attack detection rate.

A. ML Classifiers Comparison

In this work, time-series classification techniques are
adopted for further comparison. To this aim, four promi-
nent time-series classifiers including Dynamic Time Warping
(DTW), Bag-Of-Patterns (BOP), Symbolic Aggregate approX-
imation (SAX), and Shaplet are deployed that are represent-
ing various categories of time series classification techniques
including shape-based, structure-based without/with order in-
formation, and sub-phase shape-based categories. In order to
present the effectiveness of using customized features, ML
classifiers are fed with only sum value of HPCs named
as traditional classifiers. The implemented ML classification
algorithms are OneR, multi-layer perceptron (MLP), Deci-
sionTable (DT), J48, and BayesNet that are covering a diverse
range of machine learning techniques.
- Detection Accuracy: Figure 5-(a) presents the SCA detection
accuracy with a varied number of HPCs for the proposed
SCARF (customized features based classifiers) and existing
works (traditional and time-series classifiers using different
techniques) [5], [20]. One can observe that the time-series clas-
sifiers achieve a lower accuracy despite utilizing more number
of HPC features i.e., the SCA detection accuracy is < 70%
on average. Hence, existing time-series classifiers are not the
optimal solution for real-time SCA detection. By comparison,
the proposed and traditional classifiers achieve above 80%
prediction accuracy despite utilizing less number of HPCs,
which makes them formidable candidates to consider for real-
time SCA detection. Figure 5-(b) zooms in the comparison
between proposed and traditional classifiers. It can be seen
that SCARF method by using customized features based ML
classifiers is able to further boost prediction accuracy, ranging
from 2% to 6%.
- False Alarm Rate: As discussed, despite high detection
accuracy, one of the major challenges associated with detection
is the false alarms in which we evaluate the false alarm rate
for different techniques below. Figure 6 depicts the false alarm
rate with proposed and existing techniques when utilizing
a varied number of HPCs for SCA detection. The false
alarm rates produced by traditional classifiers based SCA
detection is significantly high, 57% on an average across all
ML techniques and HPC values. This is due to the fact that
traditional methods are biased to “under attack”. However, the
proposed SCARF technique with using customized features



employs more features that aid the ML classifiers to predict
“under attack” scenario with higher confidence and accuracy.
Taking MLP-based SCA detector as an example, the proposed
customized classifier can decrease false alarm rate from 87%
(obtained when utilizing traditional classifier) to 4.7%, though
the detection accuracies are similar. Furthermore, time-series
classifiers have shown above 80% false alarm rate.

B. Evaluation of FAM Technique
In this section, we evaluate the attack detection accuracy

and false alarm rate of customized features based classifiers
with the usage of proposed FAM. As described in Section
III-D, setting DN value is based on interval level positive
rate, the number of instance intervals, and acceptable false
alarm rate. Thus, the DN is set to 2/4 to ensure that false
alarm rate is below 30%, 5%. Furthermore, they are compared
with DN=1 which corresponds to no ”under attack” delay. It

Fig. 7. Attack detection accuracy vs false alarm rate with various DN values

can be seen that increasing the number of DN from 1 to 4
does not have any impact on the attack detection accuracy of
OneR and DT classifiers (remains 100%). In the meantime,
the false alarm rates of the two classifiers decrease to 3.6%
with DN=4 for OneR and 0% with DN=2 for DT classifier.
As can be observed for the rest of three ML classifiers, the
reduction of false alarm rates can be achieved at the cost of
lowering the attack detection accuracy. For instance, in J48
classifier, false alarm rate decreases from 13.6% to 1.7% and to
0%, respectively, while the attack detection accuracy decreases
from 96.7% to 90% and then to 80.5% with DN increasing
from 1 to 4. It can be concluded that by deploying the proposed
FAM technique the false alarm rate can be effectively reduced,
while it may cause relative detection accuracy loss for some
classification techniques.

V. CONCLUSION

In this work, we propose SCARF, a unified and accurate ma-
chine learning-based methodology for detecting SCAs at real-
time using the processor’s Hardware Performance Counters
(HPCs) information. The proposed methodology first solves
the challenge of the lack of attacks applications’ HPCs data
by analyzing the difference between Victim under Attack
(VA) and Victim Under No Attack (VNA) conditions. Our
comprehensive analysis indicates that HPCs data of VNA
and VA show significantly different behavior providing the
opportunity to detect SCAs with only victim applications’
HPCs data. Next, we use HPCs importance evaluation with
Correlation Attribute Evaluation algorithm to identify the most
prominent HPC features suitable for real-time SCA detection.
Furthermore, SCARF is further customized with different
machine learning classifiers trained specialized set of features

to ehnace the accuracy of SCA detection. Lastly, to reduce
the false alarm rate, the proposed framework is equipped with
False Alarm Minimization (FAM) technique to reduce false
alarm rate. Compared to state-of-the-art solutions, SCARF
shows higher detection accuracy and robustness with lower
false alarm rate, achieving 100% attack detection rate with
0% false alarm rate.

REFERENCES

[1] BRASSER, F., AND ET AL. Advances and throwbacks in hardware-
assisted security: Special session. In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (2018), IEEE Press, p. 15.

[2] CARUANA, R., AND FREITAG, D. Greedy attribute selection. In
Machine Learning Proceedings 1994. Elsevier, 1994, pp. 28–36.

[3] CHIAPPETTA, M., SAVAS, E., AND YILMAZ, C. Spectre attack:
https://github.com/eugnis/spectre-attack.git.

[4] CHIAPPETTA, M., SAVAS, E., AND YILMAZ, C. Xlate:
https://www.vusec.net/projects/xlate/.

[5] CHIAPPETTA, M., SAVAS, E., AND YILMAZ, C. Real time detection of
cache-based side-channel attacks using hardware performance counters.
Applied Soft Computing 49 (2016), 1162–1174.

[6] DAS, S., WERNER, J., ANTONAKAKIS, M., POLYCHRONAKIS, M.,
AND MONROSE, F. Sok: The challenges, pitfalls, and perils of using
hardware performance counters for security. In 2019 IEEE Symposium
on Security and Privacy (SP) (2019), IEEE, pp. 20–38.

[7] DEPOIX, J., AND ALTMEYER, P. Detecting spectre attacks by iden-
tifying cache side-channel attacks using machine learning. Advanced
Microkernel Operating Systems (2018), 75.

[8] FULCHER, B. D., AND JONES, N. S. Highly comparative feature-based
time-series classification. IEEE Transactions on Knowledge and Data
Engineering 26, 12 (2014), 3026–3037.

[9] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M.,
MUDGE, T., AND BROWN, R. B. Mibench: A free, commercially
representative embedded benchmark suite. In Fourth WWC-4 (2001),
IEEE.

[10] KOCHER, P., AND ET.ALL. Spectre attacks: Exploiting speculative
execution. arXiv preprint arXiv:1801.01203 (2018).

[11] LI, C., AND GAUDIOT, J.-L. Online detection of spectre attacks using
microarchitectural traces from performance counters. In 2018 30th
SBAC-PAD, IEEE.

[12] PRADA, I., IGUAL, F. D., AND OLCOZ, K. Detecting time-fragmented
cache attacks against aes using performance monitoring counters. arXiv
preprint arXiv:1904.11268 (2019).

[13] SAYADI, H., AND ET AL. Machine learning-based approaches for
energy-efficiency prediction and scheduling in composite cores archi-
tectures. In ICCD’17 (Nov 2017), pp. 129–136.

[14] SAYADI, H., AND ET.ALL. 2smart: A two-stage machine learning-based
approach for run-time specialized hardware-assisted malware detection.
In 2019 DATE, IEEE.

[15] SAYADI, H., PATEL, N., PD, S. M., SASAN, A., RAFATIRAD, S., AND
HOMAYOUN, H. Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification.
In 2018 55th DAC, IEEE.

[16] WANG, H., SAYADI, H., MOHSENIN, T., ZHAO, L., SASAN, A.,
RAFATIRAD, S., AND HOMAYOUN, H. Mitigating cache-based side-
channel attacks through randomization: A comprehensive system and
architecture level analysis. In DATE’20 (2020), IEEE.

[17] WANG, Z., AND LEE, R. B. New cache designs for thwarting soft-
ware cache-based side channel attacks. In ACM SIGARCH Computer
Architecture News (2007), vol. 35, ACM, pp. 494–505.

[18] YAROM, Y. Mastik: A micro-architectural side-channel toolkit. Re-
trieved from School of Computer Science Adelaide: http://cs. adelaide.
edu. au/˜ yval/Mastik (2016).

[19] YAROM, Y., AND ET.ALL. Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack. In USENIX Security Symposium (2014).

[20] ZHANG, T., AND ET.ALL. Cloudradar: A real-time side-channel attack
detection system in clouds. In RAID (2016), Springer.

[21] ZHANG, T., AND LEE, R. B. Secure cache modeling for measuring
side-channel leakage. Technical Report, Princeton University (2014).

[22] ZHOU, B., GUPTA, A., JAHANSHAHI, R., EGELE, M., AND JOSHI, A.
Hardware performance counters can detect malware: Myth or fact? In
2018 on AsiaCCS, ACM.


