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Abstract—Cache hierarchy was designed to allow CPU cores
to process instructions faster by bridging the significant latency
gap between the main memory and processor. In addition,
various cache replacement algorithms are proposed to predict
future data and instructions to boost the performance of the
computer systems. However, recently proposed cache-based Side-
Channel Attacks (SCAs) have shown to effectively exploiting
such a hierarchical cache design. The cache-based SCAs are
exploiting the hardware vulnerabilities to steal secret information
from users by observing cache access patterns of cryptographic
applications and thus are emerging as a serious threat to the
security of the computer systems. Prior works on mitigating the
cache-based SCAs have mainly focused on cache partitioning
techniques and/or randomization of mapping between main
memory. However, such solutions though effective, require modi-
fication in the processor hardware which increases the complexity
of architecture design and are not applicable to current as
well as legacy architectures. In response, this paper proposes
a lightweight system and architecture level randomization tech-
nique to effectively mitigate the impact of side-channel attacks on
last-level caches with no hardware redesign overhead for current
as well as legacy architectures. To this aim, by carefully adapting
the processor frequency and prefetchers operation and adding
proper level of noise to the attackers’ cache observations we
attempt to protect the critical information from being leaked. The
experimental results indicate that the concurrent randomization
of frequency and prefetchers can significantly prevent cache-
based side-channel attacks with no need for a new cache
design. In addition, the proposed randomization and adaptation
methodology outperforms the stat-of-the-art solutions in terms of
the performance and execution time by reducing the performance
overhead from 32.66% to nearly 20%.

Index Terms—SCA mitigation, frequency scaling, prefetcher
adaptation, randomization, Prime+Probe

I. INTRODUCTION

In the last few decades, the complexity of computing
systems has extensively increased to support different func-
tionalities and meet the performance demands of emerging
applications. Despite the provided performance benefits, the
security of such systems has been exploited by numerous
attacks [17], [16]. Side-Channel Attacks (SCAs) are a class
of attacks that primarily exploit the computer systems vulner-

abilities to infer sensitive information and confidential data by
observing side-channel information [2], [22].

Timing-based cache SCAs [21], [10], [8] can be launched
by the attacker remotely (e.g. attacks can even occur in cloud
environments). Such attacks exploit the accessing time gap
between the on-chip caches and main memory, and collect
cache hit/miss traces based on various accessing times. Hence,
the attacks can infer sensitive information according to cache
traces and the knowledge captured from the cryptographic
algorithm. There exists a number of cache-based SCAs pro-
posed in prior studies [21], [10], [5], [14] causing a substantial
threat to the security of modern computer systems. Due to the
invisibility, feasibility, and capability to expose and extract the
secret keys in the cache-based SCAs, there is an urgent need
to address the security risks posed by such attacks in present
computer systems as well as legacy systems [5], [21].

Prior works on cache-based side-channel attacks mitigation
can be categorized into two main designing principles in-
cluding cache partitioning [9], and randomization-based tech-
niques [20]. Cache partitioning methods have been proposed
to isolate cache usage between different programs to prevent
the attackers from observing the victims data access patterns
and stealing the confidential information stored in the cache
memory [15], [20], [9]. In general, the cache partitioning
techniques divide the cache memory into different zones for
different application processes statically or dynamically. As
a result, attack applications do not have access to observing
cache access of users’ applications. Another approach that
was proposed to mitigate the impact of SCAs is based on
randomization techniques [19], [11] in which they attempt
to randomize the memory-to-cache mappings. These methods
were mostly proposed in the architecture community as a
solution to protect future architectures, and they are not
applicable to current as well as legacy architectures since they
require hardware redesign efforts.

In response, this work proposes a comprehensive system
and architecture level randomization methodology to effi-
ciently mitigate the impact of side-channel attacks on last-



level caches eliminating the need to modify the cache memory
architecture. To this aim, by carefully adapting the processor
frequency and prefetchers operation, we attempt to change
the attackers’ observation from victim application’s cache
access pattern and protect the critical information from being
leaked. Our proposed randomization methodology shows that
scaling frequency can change the attackers observations by
changing the accessing time while the L3 cache hit threshold
used to distinguish cache hit and miss is fixed. Prefetchers
adaptation is also shown to be effective by adding random
noises to victim cache traces. The proposed randomization-
based approach indicate the possibility of hiding victim cache
trace and protecting victims’ information from being leaked.
In order to show the effectiveness of our proposed side-
channel attacks mitigation methodology, L3 Prime+Probe [10]
is employed as a case study, since this attack does not require
shared processor core or memory posing a greater security
threat compared to other existing cache-based SCAs.

II. BACKGROUND AND RELEVANT WORKS
In this section, we describe the background and related

studies on SCAs mitigation techniques.
A. Prefetcher

To further reduce the large access latency of main memory,
prefetcher units are developed in modern microprocessors that
are responsible for fetching the data (as well as instructions)
that will be more likely accessed in near future and bringing
them from off-chip main memory to the cache [3], [4], [18],
[13]. As shown in Table I, there exist four prefetchers units in
various Intel processor architectures such Nehalem, Westmere,
Sandy Bridge, Ivy Bridge, Haswell, and Broadwell. On each
core, there is a Model Specific Register (MSR) with the
address of Ox1A4 that can be used to control the 4 prefetchers
[1]. Bits 0-3 of the MSR are used to control functionality of
the prefetchers. When the corresponding bit is set to 1, the
prefetcher is disabled; otherwise, it is enabled. The value of
the register can be changed either through the BIOS setting or
directly writing a value to the register. In this work, we perform
the latter method and change the functionality of prefetchers
randomly during the execution of victim applications.

B. Prime+Probe Attack

The Prime+Probe attack contains two steps: 1) “prime’:
evicting cache sets that consist of victim’s data with potential
conflicting memory blocks; 2) “probe”: accessing data of the
memory blocks and measuring the access time. Compared to
L1 Prime+Probe, L3 last level cache Prime+Probe attack is
more challenging due to the fact that L3 cache has a much
larger size (6MB in this work) with higher latency compared
to L1 cache, which makes the probing phase a more diffi-
cult and time-consuming process. Furthermore, current Intel
processors divide the last level cache into different partitions
each connected to different cores, hardening the recovery of
mapping address by the attacker. Hence, L3 Prime+Probe
attack firstly attempts to find potential conflicting cache sets
to narrow down the scope of Probing step and achieve high
attack resolution, which is a critical step for successful attacks.

For the "Probing” step, it randomizes eviction sets to eliminate
the influence of prefetchers and re-access memory lines. Since
in this work we are focusing on Prime+Probe attack as case
study, below we briefly describe the important steps for finding
potential conflicting cache sets used in [10] which proposed
and implemented L3 Prime+Probe.

o Step 1. Build a Large Page. Large page size can elimi-
nate the need of address translation. Here, the potential
conflicting memory lines are setup.

o Step 2. Expand. Iteratively add lines to the subset ini-
tialized as an empty subset as long as there is no self-
eviction. Self-eviction is detected by priming a potential
new member, accessing the current subset and timing
another access to the potential new member.

« Step 3. Contract. Iteratively remove lines from the subset
checking for self-eviction.

o Step 4. Collect. Scan original set, looking for members
that conflict with the contracted subset.

o Step 5. Repeat until the original set is (almost) empty.

C. Relevant Works on SCA Mitigation

In this section, we present the latest studies on side-channel
attacks mitigation and securing the computer systems against
information leakage. Several recent works have proposed to
modify cache hierarchy or cache memory architecture to
mitigate SCAs. Cache partitioning techniques [15], [9] are
proposed to mitigate cache-based side-channel attacks by
statically or dynamically partitioning cache memory for each
application process, thereby SCAs are not able to observe
”side-channel information” of victim applications. Another
approach employs access randomization [20], [19], [11] which
primarily randomizes cache interference, remaps cache in-
dices, or replaces demand fetch with random cache fill to
eliminate security vulnerabilities in the hardware architecture.
However, such works require new design of cache and cache
memory translation architectures which poses extra design
costs and can not be applied to legacy systems.

A recent work [12] on SCA mitigation has proposed to
scale frequency to hide the victim’s cache trace. In particular,
it presents a general and elastic protection scheme against
SCAs in the cloud environment. It requires purchasing a higher
clock rate for protected VM and it lowers the frequency of
suspected malicious VM when security-critical operations hap-
pen. While this method is effective in addressing the issue of
Flush+Reload mitigation, it introduces significant performance
overhead of more than 33.7% to the system. In addition, the
authors limit their study only on the frequency randomization
to pollute cache trace and also their method requires the
knowledge of the processing core where victim applications
and malicious applications reside, which is difficult to obtain
in local environment.

III. PROPOSED METHODOLOGY

In this section, we present the details of the proposed
randomization methodology for mitigating the cache-based
side-channel attacks by adapting the frequency and prefetchers
in modern computer systems as well as legacy systems.



TABLE I: 4 Prefetchers in Intel Computer Architecture

Prefetcher Description

DCU Hardware prefetcher

which fetches the next cache line into L1 data cache

DCU IP prefetcher

Uses sequential load history to determine whether to prefetch the next
expected data into L1 cache from memory or L2

L2 hardware prefetcher

Fetches additional lines of code or data into the L2 cache

L2 adjacent cache line prefetcher

Fetches the cache line that comprises a cache line pair (128 bytes)

TABLE II: Architectural configurations

Processor Intel 15-3470 CPU, single socket-4 cores
Frequency 1.6-3.2GHz

L1i Cache 32KB

L1d Cache 32KB

L2 Cache 256

L3 Cache 6144KB

Memory Capacity 8GB DDR3

A. Experimental Setup
In this work, all experiments are conducted on an Intel I5-

3470 processor with Ubuntu 16.0.4 LST operating system with
Linux kernel 4.13. In Intel 15-3470 on-chip cache memory
subsystem, while L1 and L2 caches are exclusively separated,
and L3 cache memory is inclusive and shared among all cores
meaning that flushing out the data in the last level cache
could also remove the data in L1. The inclusiveness of L3
cache provides a potential vulnerability for LLC attacks to be
exploited. The details of cache hierarchy are given in Table II.

TABLE III: Experiment Scenarios

Scenario Frequency Prefetchers
A 3200MHz All Enabled
Bl 1600~3200MHz All prefetchers Enabled
B2 2200~3200MHz All prefetchers Enabled
B3 2600~3200MHz All prefetchers Enabled
Cl1 3200MHz DCU prefetcher Enabled
C2 3200MHz DCU IP prefetcher Enabled
C3 3200MHz L2 hardware prefetcher Enabled
C4 3200MHz L2 adjacent cache line prefetcher Enabled
D 2600~3200MHz DCU IP prefetcher Enabled
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Fig. 1: Group size of potential eviction sets (ranging from
0~9) comparisons among A, B, C and D experiment scenarios
B. Randomization Scenarios

Here, we introduce the studied scenarios for exploring
the impact of randomizing prefetchers as an architecture-
level and processor frequency as a system-level parameter on
securing the computer system against SCAs. By accounting for
various randomization combinations, we attempt to conduct
L3 Prime+Probe as a case study to collect observable cache
patterns in which the attacker tries to obtain and extract
sensitive information. In this work, the cache patterns will
be employed to analyze the effectiveness of the proposed
methodology. In addition, all experimented settings are listed
in Table III.

Scenario A: In order to obtain cache pattern information with
less noise, Prime+Probe fixes frequency and avoids fluctuation
in accessing cycles resulted from different frequencies. Hence,
in scenario A we fix frequency to 3200MHz and enable all
prefetchers. Scenario A is used as a comparison baseline with
other randomization cases.

Scenario B1~B3: Scaling frequency can change accessing
time used by attackers to determine whether cache sets are
accessed by the victim or not. Since scaling frequency changes
applications’ execution time (performance), we choose three
ranges to evaluate the influence of scaling frequency values on
victim’s cache pattern and performance including 1600MHz
~ 3200MHz, 2200MHz ~ 3200MHz, and 2600MHz ~
3200MHz as listed in Table III. It is notable that the larger
the range is, the slower the performance becomes, since
applications will be executed under lower frequency.
Scenario C1-C4: As mentioned, the Intel IS5 cores have 4
prefetchers that can be enabled or disabled by writing the value
to the memory address of Ox1A4 [7]. In these experiments,
each of the four studied scenarios only enables one prefetcher
for a random interval. Under such scenarios, the prefetched
data will pollute attacker observations since some data will
be evicted due to the prefetching process. To this aim, four
scenarios are devised to evaluate the effectiveness of hiding
the victim’s cache pattern for different prefetchers.

Scenario D: In this scenario which is considered as the
combined scenario for adapting frequency and prefetchers, the
least frequency scaling range and the most effective prefetcher
to hide victims’ cache pattern are tuned concurrently. The

prefetcher size is chosen based on the result of C1 ~ C4.
C. Experimental Methodology
As mentioned before, last level cache Prime+Probe attack

is used as a case study to evaluate the effectiveness of our
proposed approach. Due to the behavior of L3 Prime+Probe
attack, here we evaluate the randomization influence based
on two important factors including the size of eviction sets
and probing results. To this aim, two different experimental
methodologies are adopted and detailed below:

1) Eviction Set-based Analysis: For thoroughly analyzing
the eviction sets results, we have considered three different
applications running at the same time including a) victim; b)
attack, where the potential eviction sets are built first and then
probing the potential eviction sets takes place; and c) applying
various randomization scenarios for SCA mitigation (discussed
in Section III-B). As a result, eviction sets building process
will be under randomization influence and the group size of
eviction sets can be successfully collected.

2) Probing-based Analysis: As mentioned earlier, influence
on eviction sets needs to be removed to obtain the impact
of probing results. For this purpose, in our comprehensive
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Fig. 2: AES cache access heatmap under different randomization cases (A, B, C and D)

analysis, various randomization scenarios begin after building
the eviction sets step, and victim and attack applications are
executed concurrently. As a result, once the attacker prepares
the eviction sets, probing and randomization scenarios start
concurrently.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we present the experimental results and
evaluation analysis of the proposed randomization-based SCA
mitigation methodology. As described in the proposed method-
ology, we extract eviction set size and probing phase results
of scenario A, and compare it with randomization cases (B,
C, and D) to effectively analyze the level of noise added in
attackers’ observed information.

A. Eviction Sets-based Randomization

AES and RSA applications under L3 Prime+Probe are
executed under all nine scenarios and different group sizes
of eviction cache sets are collected. In order to effectively
avoid from possible noises in the results, the attack is executed
one hundred times. Figure 1, depicts the eviction sets results
ranging from 0 to 9 across various randomization scenarios.
As shown, X-axis represents different scenarios and Y-axis
represents the number of eviction sets group size.

1) Frequency Randomization Analysis: For scenario Bl
under frequency randomization, the result depicted in Figure
1 shows that there is a 50% possibility that the attacker
builds O eviction set, indicating that the attacker is not able
to find eviction sets and the attack will not be successful.
Furthermore, a large percentage (above 40%) of samples group
size is below or equal to 3, indicating a high possibility of
missing the real conflict cache set. However, reducing scaling
range (B2 and B3) decreases the effectiveness of causing the
failure of building eviction sets. This fact indicates that scaling
frequency with large range can confuse cache hit/miss during
the time that attacker application is building eviction sets.
For all three frequency scaling scenarios, eviction sets are all

lower than scenario A. There exist two main reasons for this
phenomenon. First, scaling frequency withholds the execution
of attackers programs making some of the attackers’ cache
sets to be evicted due to frequency scaling. Secondly, scaling
frequency changes the execution performance of both victims
and attackers instructions, which results in the wrong conflict
eviction set found in Step 2, Expand. As a result, once the
attacker expands the cache sets by re-accessing the cache sets
to find the conflicts, this process can misguide the attacker’s
observation in identifying the potential victim sets to comprise
the security of the system.

2) Prefetchers Adaptation Analysis: Similarly, Figure 1
compares eviction group size of under C1~C4 scenarios. As
can be seen, nearly 10% of samples are 0 meaning that no
potential eviction set is found and the attack can not proceed.
It can also be observed that the group sizes of 100 samples are
evenly distributed across 1~7 eviction sizes. This will result in
two observations that affect the success of attacks in leaking
information. First, the attacker can miss the actual conflict
cache lines. Second, the attacker is not able to collect the
aligned cache traces each time while L3 Prime+Probe requires
300~1000 sample traces [10]. Furthermore, it is notable that
different prefetchers components have a relatively similar
effect on evictions sets building results. Our comprehensive
analysis shows that compared with frequency scaling, adapting
prefetchers is less effective in preventing attackers to identify
potential conflicts for mitigating the attacks. This is because
prefetchers can only change instructions’ execution of victim
and attack applications running on the system when requested
data is being fetched in advance. That being said, prefetchers
adaptation still shows high effectiveness for causing a distur-
bance in attackers observation.

3) Analysis of Concurrent Adaption of Frequency and
Prefetchers: Scenario D contains both frequency scaling and
prefetchers adaptation. As shown in figure 1, the distribution
shows a more similar trend to the one observed in scenario
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C in which around 20% of the SCA attacks are failed due to
the failure of building potential conflict sets as described in
Section II-B.

B. Probing Results

According to the behavior of L3 Prime+Probe attack, we
probe the potential conflicting cache set (eviction cache set)
and use heatmap analysis to examine the victim applications’
cache accessing pattern. RSA and AES are used as victim
applications. To show the probing results which can not be
separated with the threshold, the heatmaps are plotted with
400 cycles suggested in [10] for the hit/miss threshold. As
shown in Figure 2 and Figure 3, black blocks represent cache
misses, meaning that victim accessed the cache set; white
blocks represent cache hit that corresponds to the case in
which the victim did not access the cache set. Hence, the
attackers need to obtain more clear black blocks to find out
the cache access pattern of the victim application for leaking
information.

1) Frequency Randomization Analysis: As shown in the
results, as compared to scenario A, both Figure 2-b), ¢) and
d) and Figure 3-b), c¢) and d) show that the trace of victim
has been significantly polluted with cache misses resulted by
the frequency randomization. Furthermore, it can be observed
that the larger the gap of frequency scaling range is, the
higher noise the victims’ cache trace has. Comparing BI,
B2 and B3 in both figures depicts that scaling frequency
from 1600MHz to 3200MHz can obtain higher noise and
hide victim cache access pattern more efficiently. Such a
phenomenon is because scaling frequency can change cache
accessing time and mislead attackers leading them to identify
cache hit/miss incorrectly. In addition, by increasing the gap,
cache hit under low frequency and cache miss under high
frequency are more likely to overlap, making cache traces
contaminated. In all three frequency randomization scenarios
(B1, B2, and B3) for both AES and RSA applications, no

h) C4: fixed 3200MHz frequency with
L2 adjacent prefetcher adaptation

i) D: randomized frequency within
2600MHz ~ 3200MHz with C2

Fig. 3: RSA cache access heatmap under different randomization cases (A, B, C and D)
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Fig. 4: A ~ D execution time and performance overhead where
A ~ D is normalized by A

victim cache access pattern can be found, indicating that the
attackers are not able to infer victim’s secret information.

2) Prefetchers Adaption Analysis: Both Figure 2 and Figure
3 illustrate cache traces under different prefetcher settings.
Generally, our comprehensive analysis across various config-
urations and scenarios indicates that randomly enabling/dis-
abling different prefetchers (C1~C4) results in less contamina-
tion of cache traces compared to frequency scaling. This is due
to the fact that prefetcher units can only evict cache sets while
scaling frequency influences all cache sets accessing time.
Among all prefetchers, it can be found that DCU IP prefetchers
adaptation (C2) is the most effective one compared to the other
scenarios. Hence, in our optimal case study (Scenario D), DCU
IP prefetcher is chosen as the target prefetcher unit to be tuned
concurrently with frequency.

3) Concurrent Adaption of Frequency and Prefetchers: As
can be observed from the results, for both AES and RSA
benchmarks, cache traces resulted from optimal scenario of
D in which both frequency and prefetcher units are selected
at their optimal values, the concurrent adaptation shows more
efficiency than the conditions of scaling frequency or adapting
DCU IP prefetcher solely. The pollution extent of D is similar
to the B1 scenario, indicating scaling frequency with a smaller
range by adding prefetcher adaption.



C. Performance Overhead Analysis

In this Section, we choose MiBench [6] benchmark suites to
evaluate the performance overhead of applications caused by
randomizing frequency and prefetchers in terms of application
execution time. In order to eliminate the influence of random
noise on execution time caused by system scheduling, etc.,
each application from the benchmark under the eight scenarios
is executed 100 times to avoid the interference of random
noises. Figure 4 shows the arithmetic average execution time
and performance overhead where A to D settings are normal-
ized by the execution time of A.

From Figure 4, it can be observed that scaling frequency
with largest range (Scenario B1) causes highest performance
overhead (around 40%) compared to the lowest overhead case
study which is Scenario A. As shown in Figure 4, by reducing
the frequency scaling range (Scenarios B2 and B3), the per-
formance overhead decreases to 23% and 18% highlighting
the effectiveness of adapting frequency in lower range for
efficient SCA detection and mitigation. Another interesting
observation is that the DCU IP prefetcher in Scenario C2 has
shown more influential performance reduction to applications’
performance as compared to three other Scenarios (C1, C3,
and C4). As depicted, under C2, performance overhead is
27% while the remaining three prefetcher adaptation scenarios
achieve nearly 20% overhead. On the other hand, Scenario
D has shown slightly higher overhead than adapting DCU
IP prefetcher (C2) because applications are executed in high
(3200MHz) and low frequency (2600MHz) with substantial
frequency gap in between. Compared to closest state-of-the-
art work [12], our proposed randomization methodology in this
work based on frequency scaling and prefetchers adaptation,
achieves significantly lower performance overhead, reducing
the overhead from 32.66% to around 20% of performance
loss. Furthermore, the proposed randomization-based solution
can be effectively adopted only when victim applications are
executed which are the target of side-channel attacks.

V. CONCLUSION

In this work first, we analyze cache-based side-channel
attacks relying on cache access time to identify the cache
patterns of victim applications. We then thoroughly investigate
system (frequency) and architecture (hardware prefetchers)
impacts on cache access time to evaluate the potential param-
eters to adapt against the SCAs. Based on our comprehensive
analysis of cache access pattern observations, we propose
to randomly scale frequency and adapt hardware prefetchers
to effectively mitigate the threats of SCAs. Furthermore,
L3 Prime+Probe is deployed as a case study to evaluate
the effectiveness of the proposed randomization-based SCA
mitigation methodology. The experimental results indicate that
under randomization of the frequency with the largest range
(Scenario B1), building eviction set shows up to 50% failure
rate which results in no sensitive operation sequence of victim
application to be observed. Furthermore, scaling frequency
with smaller ranges (Scenarios B2 and B3) or adapting
prefetchers shows to be more effective on probing results with

only 20% performance overhead. Our proposed randomization
methodology outperforms the state-of-the-art SCA mitigation
solutions achieving significantly lower performance overhead
by reducing the overhead from 32.66% to closely 20% of

performance loss.
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