
Comprehensive Assessment of Run-Time Hardware-Supported
Malware Detection Using General and Ensemble Learning
Hossein Sayadi1, Sai Manoj P D1, Amir Houmansadr2, Setareh Rafatirad1, Houman Homayoun1

1George Mason University, Fairfax, VA, USA
2University of Massachuses Amherst, Amherst, MA, USA

Email: 1{hsayadi, spudukot, srafatir, hhomayou}@gmu.edu, 2amir@cs.umass.edu

ABSTRACT
Recent studies have demonstrated the effectiveness of Hardware
Performance Counters (HPCs) for detecting paern of malicious
applications. Hardware-supported detectors utilize Machine
Learning (ML) classifiers for malware detection by analyzing a
large number of HPC features, more than the very limited number
of HPC registers available in modern microprocessors. Obtaining
more HPCs requires running the application (malware or benign)
more than once to collect the required data, which in turn makes
the solution less practical for run-time detection of malware. In
response to this challenge, in this work, we first identify the
critical HPC features required for malware detection. Next, we
explore the use of various ML techniques to classify benign and
malware applications using the selected HPCs at run-time.
Further, we investigate the effectiveness of ensemble learning in
improving the performance of ML classifiers. For this purpose, we
apply AdaBoost on all general ML classifiers. We thoroughly
compare the general and ensemble ML classifiers in terms of
accuracy, robustness, performance, and hardware overhead. e
experimental results indicate that ensemble learning enhances the
performance of malware detection for rule-based and tree-based
algorithms up to 13%. However, it diminishes the performance of
neural network and Bayesian network-based detectors by 6% and
4%, respectively.
KEYWORDS
Malware Detection, Machine Learning, Hardware Performance
Counters, Ensemble Learning

1 INTRODUCTION
Malicious software (Malware) is a piece of program that is
specifically designed with the intent of stealing or corrupting the
data and/or ceasing the functionality of the systems without the
consent of user. According to a 2017 McAfee threats report [13],
57.6 million new malware samples have been recorded in the third
quarter of 2017, an all-time highest number with an increase of
10% from the second quarter. The recent proliferation of
computing devices in mobile and IoT domains have also made
effective detection of malware a vital challenge to address.
Traditional malware detection methods such as signature-based
detection and semantics-based anomaly detections are considered
as software-based solutions that often incur significant

computational overhead [11]. In response, the hardware-
supported solutions [3,4,5,6,14] show promising results, reducing
the latency of detection process by order of magnitude with small
hardware cost.
Machine learning-based solutions play an important role in
automated malware detection. Such malware detection method
can be implemented in microprocessor hardware with
significantly low overhead as compared to the software-based
methods due to fast detection inside hardware [4]. These
classifiers are trained using low-level features such as processor
Hardware Performance Counters (HPCs) data which are captured
at run-time to appropriately represent application behavior. HPCs
are a set of special-purpose registers built in modern
microprocessors to capture the count of hardware-related events
which have been extensively used to predict the power,
performance, and energy efficiency of computing systems
[9,15,16]. Recent studies have demonstrated that malware
behavior can be differentiated from benign applications by
classifying anomalies in low-level feature spaces such as micro-
architectural events collected by HPC registers available in
today’s processors [2,3,4,5,6,11,12,14]. Malware detection using
HPCs has emerged as a promising alternative for traditional
malware detection methods against increasing security threats.
Previous work performed a limited study on hardware malware
detection assuming the availability of a large number (e.g. 16 or
32) and diverse HPCs, whereas modern processors, especially in
embedded mobile and IoT domains, have a limited number of
HPCs ranging between 2 to 8. Therefore, on real systems,
collecting a variety of HPC data to achieve high accuracy using
the general ML model presented in prior work [3,4] requires
running the program several times, since the hardware can only
count a small subset of events simultaneously which makes it
impractical for run-time detection of malware. In addition, prior
studies mostly focus on specific classifiers ignoring the analysis of
various type of ML solutions [3,11,12,13,14].
In this work, through a systematic approach, we first analyze a
large number of HPCs and identify the most critical low-level
features related to malware detection. Next, we thoroughly assess
and characterize various type of machine learning methods to
classify benign and malware applications at run-time. In addition,
we investigate the effectiveness of ensemble learning in
improving the performance of ML classifiers. We examine
different general and ensemble learning techniques in terms of
accuracy, robustness, performance, and hardware implementation
costs. In contrast to prior studies, the proposed machine learning-
based framework effectively performs malware detection during
run-time using a limited number of HPCs. Based on the achieved
performance, area, and latency metrics, we provide valuable
insights that aid in choosing accurate and hardware-suitable ML
classifiers for malware detection. This comprehensive analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
CF '18, May 8–10, 2018, Ischia, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5761-6/18/05…$15.00
https://doi.org/10.1145/3203217.3203264

212

helps the designers to understand and navigate the trade-offs
between several design parameters offered by each ML classifier.
2 PROPOSED HARDWARE-SUPPORTED

MALWARE DETECTION FRAMEWORK
In this section, we present the details of our proposed approach
for distinguishing the malware from benign applications.
2.1 Machine Learning Techniques
Methods of machine learning, which build predictive models that
generalize training data, have proven to be useful for detecting
malware. In this work, we use machine learning-based solutions
for hardware-supported malware detection which rely on the run-
time traces collected from HPC registers. We deploy various ML
classifiers for malware detection that are shown in Figure 1. The
rationale for selecting these six machine learning models are:
First, they are from different branches of ML methods; regression,
Bayesian network, neural network, decision tree, rule-based, and
ensemble learning covering a diverse range of learning algorithms
which are inclusive to model both linear and non-linear problems.
Second, the prediction model produced by these learning
algorithms can be a binary classification model which is
compatible with the malware detection problem.
Ensemble learning is a machine learning method which is used to
improve the accuracy and performance of general learning
classifiers by generating a set of base learners and then combining
outputs of these base learners for a final decision. Here we deploy
a well-known ensemble learning method, AdaBoost (Adaptive
Boosting) to construct the final classifier and analyze its impact
on the accuracy and performance improvement of malware
detection. In AdaBoost, each base classifier is trained on a
weighted form of the training set in which the weights depend on
the performance of the previous base classifier. All base classifiers
are trained and combined to generate the final classifier. Each
training sample in the dataset is weighted and the weights are
updated based on the overall performance of the model and
whether an instance was classified correctly or not. Subsequent
models are trained and added until a minimum accuracy is
achieved, or no further improvement is possible.
2.2 Experimental Setup and Data Collection
All applications are executed on an Intel Haswell Core i5-4590
machine running Ubuntu 14.04 with Linux 4.4 Kernel and various
HPCs are collected using Perf tool. We have executed more than
100 benign and malware applications for HPC data collection.
Benign applications include MiBench benchmark suite [7], Linux
system programs, browsers, text editors, and word processor. For
malware applications, Linux malware is collected from
virustotal.com [1]. Malware applications consist of various classes
including viruses, worms, rootkits, and trojans. After collecting
micro-architectural events using Perf, we use WEKA tool [8] for
evaluating accuracy and performance of different ML classifiers.

HPC information is collected by running all applications in Linux
Containers (LXC) which is an isolated environment. LXC is an
operating system level virtualization method that shares the same
kernel with the host operating system. We extracted 44 CPU
events available under Perf tool. Since Intel Haswell has only 8
counter registers available [10], we can only measure 8 events at
a time. As a result, multiple runs are required to fully capture all
events. Running malware inside the container can contaminate
the environment which may affect subsequent data collection. To
make sure that there is no contamination in collected data due to
the previous run, we destroy the container after each run.
2.3 Overview of the Proposed Approach
Figure 2 depicts the overview of the proposed run-time hardware-
supported malware detection framework and the training and
testing process to build ML classifiers for predicting the malicious
behavior of applications. It involves profiling the incoming
application with Perf tool under Linux and extracting low-level
feature values for each training program, reducing the extracted
features to the most vital hardware performance counters using
effective correlation analysis and feature reduction methods, and
developing a machine learning model from the training data. Note
that the input variables in our classifiers are HPC events of the
running applications at every 10ms interval, and the output is the
class of an application (malware or benign). In order to validate
each of our ML classifiers, we follow standard 70%-30% dataset
split for training and testing. To follow a complete non-biased
splitting, we separate 70% benign- 70% malware applications for
training (known applications) and 30% benign- 30% malware
applications for testing (unknown applications).
2.3.1 Feature Reduction. Representing programs with low-level
micro-architectural features may produce very high dimensional
dataset. Running ML algorithms with large HPCs data would be
complex and slow. Besides, incorporating irrelevant features
would lower the accuracy of the classifier. Therefore, irrelevant
features are identified and discarded using a feature reduction
algorithm and a subset that includes the most important features
is selected and supplied to each ML classifier. The learning
algorithm attempts to find a correlation between the feature
values and the application behavior to detect the malware or
benign type. We use Correlation Attribute Evaluation as a feature
reduction technique on our training set under WEKA to monitor
the most vital micro-architectural features and capture
application characteristics. We determine the eight most related
performance counters which is the maximum number of HPCs

Figure 3. Accuracy results for various ML classifiers with 8 HPCs

A
cc

ur
ac

y
(%

)

Figure 1. Machine learning classifiers used for malware detection

ML Binary
Classifiers

1. General Learning

2. Ensemble Learning 2.1. AdaBoost
8HPCs-Boosted

1.1. 8HPCs-General

ML Classifier Learning Type
Logistic Regression

BayesNet Bayesian Network
MultiLayerPerceptron (MLP) Neural Network

J48 Decision Tree
JRip Rule-Based

AdaBoost Ensemble Learning

Figure 2. Overview of proposed malware detection framework

Attribute

Evaluation

Table 1. Critical HPCs in order of importance
1- branch instructions 2- branch_loads
3- iTLB_load_misses 4- dTLB_load_misses
5- dTLB_store_misses 6- LLC_prefetch_misses
7- L1_dcache_stores 8- cache_misses

213

collected simultaneously in today’s microprocessors. These HPCs
are listed in Table 1 and numbered in order of their importance in
malware detection. They are included in our ML detectors as input
parameters. These features include HPCs representing pipeline
front-end, pipeline back-end, cache subsystem, and main memory
behaviors and are influential in the performance of standard
applications.
3 EVALUATION RESULTS
In this section, we present the evaluation results of the ML-based
malware detectors.
3.1 Accuracy Analysis of Detectors
To evaluate the malware detection accuracy of ML classifiers, we
consider the percentage of correctly classified samples. Figure 3
shows the malware detection accuracy of various ML classifiers
(general vs. AdaBoost) using eight HPCs. AdaBoost improves the
performance of malware detection for weak classifiers such as
JRip and J48. However, it shows negative impact on strong
classifiers such as MLP and BayesNet. Specifically, as seen in
Figure 3, for JRip (rule-based classifier) and J48 (tree-based
classifier) by applying AdaBoost ensemble learning, the malware
detection accuracy is improved by 4% and 5%, respectively, as
compared to their base classifiers. On average an accuracy of
87.7% is achieved with general base learners which is improved to
91.2% with AdaBoost for lightweight classifiers such as J48 and
JRip when only 8 HPCs are employed.
Contrarily, up to 6% accuracy degradation is observed when
AdaBoost is applied on complex classifiers such as MLP (neural
network) and BayesNet (Bayesian network) compared to their
base models. In addition, as can be seen, BayesNet classifier
without boosting achieves the highest detection accuracy of 93.5%
which is higher than AdaBoost implementations of weak
classifiers (JRip and J48). The detection accuracy for general MLP-
based detector is 92% which is close to Boosted-JRip and 2% higher
than the Boosted-J48 algorithm.
These observations confirm the effectiveness of using ensemble
learning to boost the accuracy of rule-based and decision tree
classifiers in comparison with using them for heavyweight
classifiers such as MLP and BayesNet. For instance, as shown, JRip
itself achieves close to 88% accuracy with 8 HPCs. However, we
observe that constructing AdaBoost model with the base learner
of JRip results in achieving almost 92% accuracy. Moreover,
boosting leads in reducing the accuracy in MLP and BayesNet
general classifiers indicating that AdaBoost technique is best
suited for weak rule-based and tree-based classifiers and using it
for a neural network and Bayesian models diminishes the
accuracy of malware detection.
3.2 Robustness of Detectors
To evaluate the robustness of ML classifiers in detecting malware,
Receiver Operating Characteristics (ROC) graphs are used.
Robustness is referred to how well the classifier distinguishes
between binary malware and benign classes. The ROC curve is

produced by plotting the fraction of true positives rate versus the
fraction of false positives for a binary classifier. We use the Area
Under the Curve (AUC) measure for ROC in the evaluation
process to examine the robustness of each ML classifier. The AUC
value of the best possible classifier is equal to meaning that a
discrimination threshold can be found under which the classifier
achieves 0% false positives and 100% true positives.
Figure 4 depicts the ROC for four different ML-based malware
detectors. Due to the space limitation, we only show the ROC
graphs for selected ML classifiers. In this figure, the ROC graphs
for general J48 and MLP, as well as the corresponding AdaBoost
models are shown, considering 8 HPCs. Similar to the accuracy of
malware detection, the robustness of weak classifiers (such as J48)
are improved by 14% with boosting making the J48-Boosted more
effective in terms of classification robustness, whereas the
robustness of strong classifiers such as MLP is reduced by 6%. In
addition, as observed in Figure 4, the Boosted-J48 delivers the
AUC of equal to the general MLP (both 0.98). This also indicates
that weak classifiers combined with ensemble learning can match
the robustness of the general strong classifiers eliminating the
need to use complex classifiers for better accuracy and robustness.
3.3 Performance Analysis of Detectors
To simultaneously evaluate both accuracy and robustness of
different ML classifiers for malware detection, we employ the
product of accuracy and area under the ROC graph (ACC*AUC)
as a performance metric. Figure 5 depicts the performance of
various general and boosted ML classifiers. First of all, regardless
of boosting effect, the results indicate that MLP outperforms the
performance of boosted weak classifiers delivering the highest
performance of 90% for malware detection. Next in the general
classifiers, the BayesNet achieves a performance of close to 87%.
Similar to previous observations, out of the five different ML
classifiers, lightweight classifiers (J48 and JRip) are benefiting
from boosting approach delivering higher performance (13% and
9%, respectively, as compared to their general model) when used
as a base learner in AdaBoost ensemble technique. J48 and JRip
are decision trees and rule-based algorithms, respectively with
reasonably fast training and classification process making them
suitable fits for boosting techniques. This shows a potential for

Figure 3. Accuracy results for various ML classifiers with 8 HPCs

A
cc

ur
ac

y
(%

)

Figure 4. ROC graphs of four general and ensemble classifiers

Figure 5. Performance of ML classifiers with 8 HPCs

70

75

80

85

90

95

Logistic BayesNet MultiLayerPerc J48 JRip

General Classifier Boosted Classifier

2%

4%
6%

13%

9%

A
C

C
*A

U
C

 (
%

)

214

applying ensemble learning techniques to boost the accuracy and
performance of detectors. It is a crucial benefit when using such
classifiers for base leaners of boosting learning where we need to
run a model multiple times before outputting the final decision.
On the other hand, it is evident from the figure that applying
AdaBoost on heavyweight classifiers (MLP, BayesNet, and
Logistic) have negative impact on their performances. As seen,
using AdaBoost technique reduces the performance of MLP the
most by 6%. Next impacted classifier is BayesNet by 4%
performance reduction and Logistic regression-based classifier is
least influenced by AdaBoost among the strong classifiers. On an
average, the weak classifiers achieve an improvement of 11% in
performance. In contrast, averagely 4% reduction is observed in
performance of heavyweight classifiers with AdaBoost. The
results clearly demonstrate the direct dependency of AdaBoost
ensemble technique’s performance on the type of its base ML
classifier.
3.4 Hardware Overhead Analysis
When it comes to choosing ML classifiers for hardware
implementation, the accuracy of an algorithm is not the sole
contributor for decision-making. Design area and response time
(latency) of ML classifiers are also key factors in selecting the cost-
efficient solution. For hardware implementation, we deploy
Vivado HLS compiler to synthesize ML classifiers for Xilinx
Virtex-7 FPGA. Table 2 provides the hardware implementation
costs for general classifiers and ensemble method (AdaBoost)
applied on each general classifier using 8 HPCs. Latency unit is in
terms of number of clock cycles (@10 ns) required to classify
input. Area unit is the total number of utilized LUTs, FFs, and DSP
units inside Virtex-7 FPGA. As depicted, the MLP and Logistic
Regression result in significant area and latency overhead,
compared to other models, while JRip and J48 produce lowest area
overhead and latency among all implemented classifiers. Besides,
as expected AdaBoost learning introduces significant area
overhead across different ML classifiers. However, the area
required for the Boosted lightweight classifiers (JRip and J48) is
still smaller than the area required for the general heavyweight
classifiers, and a same trend is observed in terms of latency.
To accordingly account for accuracy, robustness and area
overhead, in Figure 6 we compare performance over a unit of
hardware area, (ACC*AUC)/Area, for various ML classifiers. We
propose using performance over area to identify classifiers that
require small area and yet can detect the maliciousness of
program with high accuracy and robustness. A classifier with a
higher ratio is considered better than the ones with lower ratio.
Among all classifiers, the rule-based and tree-based classifiers are
found to be more efficient compared to the highly accurate but
complex BayesNet, MLP, and Logistic classifiers. Although by
applying AdaBoost the performance/area is slightly reduced in
JRip and J48 algorithms, it is still higher than other costly
classifiers. The MLP has the least performance per unit area due
to its large area overhead, whereas the JRip has the highest
performance/area among the general ML classifiers. Despite the
area overhead caused by boosting for weak classifiers, the
performance per unit area is higher than other experimented

heavyweight classifiers. Clearly, the results show some trade-offs
between accuracy, performance, and area overhead. Therefore, it
is important to compare ML classifiers for malware detection by
taking all these parameters into consideration.
4 CONCLUSION
In this work, we proposed a run-time hardware-supported
malware detection framework which effectively detects the
malicious software with limited number of HPCs. We
implemented various learning models including general ML
classifiers and AdaBoost ensemble learning and thoroughly
evaluated them in terms of accuracy, robustness, performance,
and hardware overhead. We showed that using eight HPCs can
deliver sufficient accuracy of nearly 94% for effective run-time
malware detection. The results indicate that without hardware
overheads consideration, complex ML classifiers such as MLP and
BayesNet are the winners given their higher performance.
However, after accounting for the implementation costs, they
perform worst in terms of performance/area and latency
compared to significantly simpler but slightly less accurate
classifiers such as JRip and J48. Also, the rule-based and tree-based
techniques by showing up to 13% performance improvement
benefit more from application of ensemble learning. These
lightweight classifiers combined with ensemble learning can
match the robustness of the general strong classifiers eliminating
the need to use costly classifiers for better performance.
REFERENCES
[1] Virustotal intelligence service. hp://www.virustotal.com/intelligence/.

Accessed: December 2017.
[2] Bahador et al., “Hpcmalhunter: Behavioral malware detection using hardware

performance counters and singular value decomposition”, In ICCKE’14, 2014.
[3] Demme et al., “On the feasibility of online malware detection with

performance counters”, In ISCA'13, 2013.
[4] N. Patel et al., “Analyzing hardware-based malware detectors”, In DAC’17,

June 2017.
[5] A. Garcia-Serrano et al., “Anomaly detection for malware identification using

hardware performance counters”, preprint arXiv:1508.07482, 2015.
[6] H. Sayadi et al., “Ensemble learning for effective run-time hardware-based

malware detection: A comprehensive analysis and classification”, In DAC’18,
San Francisco, CA, June 2018.

[7] Guthaus et al., “Mibench: A free, commercially representative embedded
benchmark suite”, In IISWC’01, 2001.

[8] M. Hall et al., “e weka data mining soware: an update”, ACM SIGKDD
explorations newsleer, 2009.

[9] H. Sayadi et al., “Machine learning-based approaches for energy-efficiency
prediction and scheduling in composite cores architectures,” In ICCD’17,
November 2017.

[10] Intel. “Intel 64 and ia-32 architectures soware developer’s manual, volume
3b: System programming guide”, Part 2:18-65, 2016.

[11] Jacob et al., “Behavioral detection of malware: From a
survey towards an established taxonomy”,Journal in Computer Virology, 2008.

[12] Kh. Khasawneh et al., “Ensemble learning for low-level hardware-supported
malware detection”, In RAID’15, pp. 3-25. Springer, 2015.

[13] McAfee Labs. Infographic: Mcafee labs threats report. December 2017.
[14] M. Ozsoy et al., “Malware-aware processors: A framework for efficient online

malware detection”, In HPCA’15, 2015.
[15] H. Sayadi et al., “Power Conversion Efficiency-Aware Mapping of

Multithreaded Applications on Heterogeneous Architectures: A
Comprehensive Parameter Tuning” In ASP-DAC’18, January 2018.

[16] H. Sayadi et al., “Scheduling multithreaded applications onto heterogeneous
composite cores architecture,” In IGSC’17, October 2017.

 General AdaBoost
Classifier Latency Area Latency Area

Logistic 68 13041 102 23762
BayesNet 14 6794 56 10345

MLP 302 36252 591 47861
J48 9 1801 67 2589
JRip 4 1504 56 3192

Table 2. Hardware implementation results

 Figure 6. Performance/Area comparison of various ML classifiers

215

View publication statsView publication stats

