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ABSTRACT 
Recent studies have demonstrated the effectiveness of Hardware 
Performance Counters (HPCs) for detecting paern of malicious 
applications. Hardware-supported detectors utilize Machine 
Learning (ML) classifiers for malware detection by analyzing a 
large number of HPC features, more than the very limited number 
of HPC registers available in modern microprocessors. Obtaining 
more HPCs requires running the application (malware or benign) 
more than once to collect the required data, which in turn makes 
the solution less practical for run-time detection of malware. In 
response to this challenge, in this work, we first identify the 
critical HPC features required for malware detection. Next, we 
explore the use of various ML techniques to classify benign and 
malware applications using the selected HPCs at run-time. 
Further, we investigate the effectiveness of ensemble learning in 
improving the performance of ML classifiers. For this purpose, we 
apply AdaBoost on all general ML classifiers. We thoroughly 
compare the general and ensemble ML classifiers in terms of 
accuracy, robustness, performance, and hardware overhead. e 
experimental results indicate that ensemble learning enhances the 
performance of malware detection for rule-based and tree-based 
algorithms up to 13%. However, it diminishes the performance of 
neural network and Bayesian network-based detectors by 6% and 
4%, respectively.  
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1 INTRODUCTION 
Malicious software (Malware) is a piece of program that is 
specifically designed with the intent of stealing or corrupting the 
data and/or ceasing the functionality of the systems without the 
consent of user. According to a 2017 McAfee threats report [13], 
57.6 million new malware samples have been recorded in the third 
quarter of 2017, an all-time highest number with an increase of 
10% from the second quarter. The recent proliferation of 
computing devices in mobile and IoT domains have also made 
effective detection of malware a vital challenge to address. 
Traditional malware detection methods such as signature-based 
detection and semantics-based anomaly detections are considered 
as software-based solutions that often incur significant 

computational overhead [11]. In response, the hardware-
supported solutions [3,4,5,6,14] show promising results, reducing 
the latency of detection process by order of magnitude with small 
hardware cost.  
Machine learning-based solutions play an important role in 
automated malware detection. Such malware detection method 
can be implemented in microprocessor hardware with 
significantly low overhead as compared to the software-based 
methods due to fast detection inside hardware [4]. These 
classifiers are trained using low-level features such as processor 
Hardware Performance Counters (HPCs) data which are captured 
at run-time to appropriately represent application behavior. HPCs 
are a set of special-purpose registers built in modern 
microprocessors to capture the count of hardware-related events 
which have been extensively used to predict the power, 
performance, and energy efficiency of computing systems 
[9,15,16]. Recent studies have demonstrated that malware 
behavior can be differentiated from benign applications by 
classifying anomalies in low-level feature spaces such as micro-
architectural events collected by HPC registers available in 
today’s processors [2,3,4,5,6,11,12,14]. Malware detection using 
HPCs has emerged as a promising alternative for traditional 
malware detection methods against increasing security threats.  
Previous work performed a limited study on hardware malware 
detection assuming the availability of a large number (e.g. 16 or 
32) and diverse HPCs, whereas modern processors, especially in 
embedded mobile and IoT domains, have a limited number of 
HPCs ranging between 2 to 8. Therefore, on real systems, 
collecting a variety of HPC data to achieve high accuracy using 
the general ML model presented in prior work [3,4] requires 
running the program several times, since the hardware can only 
count a small subset of events simultaneously which makes it 
impractical for run-time detection of malware. In addition, prior 
studies mostly focus on specific classifiers ignoring the analysis of 
various type of ML solutions [3,11,12,13,14].  
In this work, through a systematic approach, we first analyze a 
large number of HPCs and identify the most critical low-level 
features related to malware detection. Next, we thoroughly assess 
and characterize various type of machine learning methods to 
classify benign and malware applications at run-time. In addition, 
we investigate the effectiveness of ensemble learning in 
improving the performance of ML classifiers. We examine 
different general and ensemble learning techniques in terms of 
accuracy, robustness, performance, and hardware implementation 
costs. In contrast to prior studies, the proposed machine learning-
based framework effectively performs malware detection during 
run-time using a limited number of HPCs. Based on the achieved 
performance, area, and latency metrics, we provide valuable 
insights that aid in choosing accurate and hardware-suitable ML 
classifiers for malware detection. This comprehensive analysis 
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helps the designers to understand and navigate the trade-offs 
between several design parameters offered by each ML classifier.  
2 PROPOSED HARDWARE-SUPPORTED 

MALWARE DETECTION FRAMEWORK 
In this section, we present the details of our proposed approach 
for distinguishing the malware from benign applications.  
2.1 Machine Learning Techniques 
Methods of machine learning, which build predictive models that 
generalize training data, have proven to be useful for detecting 
malware. In this work, we use machine learning-based solutions 
for hardware-supported malware detection which rely on the run-
time traces collected from HPC registers. We deploy various ML 
classifiers for malware detection that are shown in Figure 1. The 
rationale for selecting these six machine learning models are: 
First, they are from different branches of ML methods; regression, 
Bayesian network, neural network, decision tree, rule-based, and 
ensemble learning covering a diverse range of learning algorithms 
which are inclusive to model both linear and non-linear problems. 
Second, the prediction model produced by these learning 
algorithms can be a binary classification model which is 
compatible with the malware detection problem.  
Ensemble learning is a machine learning method which is used to 
improve the accuracy and performance of general learning 
classifiers by generating a set of base learners and then combining 
outputs of these base learners for a final decision. Here we deploy 
a well-known ensemble learning method, AdaBoost (Adaptive 
Boosting) to construct the final classifier and analyze its impact 
on the accuracy and performance improvement of malware 
detection. In AdaBoost, each base classifier is trained on a 
weighted form of the training set in which the weights depend on 
the performance of the previous base classifier. All base classifiers 
are trained and combined to generate the final classifier. Each 
training sample in the dataset is weighted and the weights are 
updated based on the overall performance of the model and 
whether an instance was classified correctly or not. Subsequent 
models are trained and added until a minimum accuracy is 
achieved, or no further improvement is possible.    
2.2 Experimental Setup and Data Collection 
All applications are executed on an Intel Haswell Core i5-4590 
machine running Ubuntu 14.04 with Linux 4.4 Kernel and various 
HPCs are collected using Perf tool. We have executed more than 
100 benign and malware applications for HPC data collection. 
Benign applications include MiBench benchmark suite [7], Linux 
system programs, browsers, text editors, and word processor. For 
malware applications, Linux malware is collected from 
virustotal.com [1]. Malware applications consist of various classes 
including viruses, worms, rootkits, and trojans. After collecting 
micro-architectural events using Perf, we use WEKA tool [8] for 
evaluating accuracy and performance of different ML classifiers.  

HPC information is collected by running all applications in Linux 
Containers (LXC) which is an isolated environment. LXC is an 
operating system level virtualization method that shares the same 
kernel with the host operating system. We extracted 44 CPU 
events available under Perf tool. Since Intel Haswell has only 8 
counter registers available [10], we can only measure 8 events at 
a time. As a result, multiple runs are required to fully capture all 
events. Running malware inside the container can contaminate 
the environment which may affect subsequent data collection. To 
make sure that there is no contamination in collected data due to 
the previous run, we destroy the container after each run.    
2.3 Overview of the Proposed Approach  
Figure 2 depicts the overview of the proposed run-time hardware-
supported malware detection framework and the training and 
testing process to build ML classifiers for predicting the malicious 
behavior of applications. It involves profiling the incoming 
application with Perf tool under Linux and extracting low-level 
feature values for each training program, reducing the extracted 
features to the most vital hardware performance counters using 
effective correlation analysis and feature reduction methods, and 
developing a machine learning model from the training data. Note 
that the input variables in our classifiers are HPC events of the 
running applications at every 10ms interval, and the output is the 
class of an application (malware or benign). In order to validate 
each of our ML classifiers, we follow standard 70%-30% dataset 
split for training and testing. To follow a complete non-biased 
splitting, we separate 70% benign- 70% malware applications for 
training (known applications) and 30% benign- 30% malware 
applications for testing (unknown applications).   
2.3.1  Feature Reduction. Representing programs with low-level 
micro-architectural features may produce very high dimensional 
dataset. Running ML algorithms with large HPCs data would be 
complex and slow. Besides, incorporating irrelevant features 
would lower the accuracy of the classifier. Therefore, irrelevant 
features are identified and discarded using a feature reduction 
algorithm and a subset that includes the most important features 
is selected and supplied to each ML classifier. The learning 
algorithm attempts to find a correlation between the feature 
values and the application behavior to detect the malware or 
benign type. We use Correlation Attribute Evaluation as a feature 
reduction technique on our training set under WEKA to monitor 
the most vital micro-architectural features and capture 
application characteristics. We determine the eight most related 
performance counters which is the maximum number of HPCs 
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Figure 1. Machine learning classifiers used for malware detection 

ML Binary 
Classifiers 

1. General Learning

2. Ensemble Learning 2.1. AdaBoost
8HPCs-Boosted

1.1. 8HPCs-General 

ML Classifier Learning Type
Logistic Regression

BayesNet Bayesian Network
MultiLayerPerceptron (MLP) Neural Network

J48 Decision Tree
JRip Rule-Based

AdaBoost Ensemble Learning

Figure 2. Overview of proposed malware detection framework   
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collected simultaneously in today’s microprocessors. These HPCs 
are listed in Table 1 and numbered in order of their importance in 
malware detection. They are included in our ML detectors as input 
parameters. These features include HPCs representing pipeline 
front-end, pipeline back-end, cache subsystem, and main memory 
behaviors and are influential in the performance of standard 
applications.     
3 EVALUATION RESULTS 
In this section, we present the evaluation results of the ML-based 
malware detectors.  
3.1 Accuracy Analysis of Detectors 
To evaluate the malware detection accuracy of ML classifiers, we 
consider the percentage of correctly classified samples. Figure 3 
shows the malware detection accuracy of various ML classifiers 
(general vs. AdaBoost) using eight HPCs. AdaBoost improves the 
performance of malware detection for weak classifiers such as 
JRip and J48. However, it shows negative impact on strong 
classifiers such as MLP and BayesNet. Specifically, as seen in 
Figure 3, for JRip (rule-based classifier) and J48 (tree-based 
classifier) by applying AdaBoost ensemble learning, the malware 
detection accuracy is improved by 4% and 5%, respectively, as 
compared to their base classifiers. On average an accuracy of 
87.7% is achieved with general base learners which is improved to 
91.2% with AdaBoost for lightweight classifiers such as J48 and 
JRip when only 8 HPCs are employed.  
Contrarily, up to 6% accuracy degradation is observed when 
AdaBoost is applied on complex classifiers such as MLP (neural 
network) and BayesNet (Bayesian network) compared to their 
base models. In addition, as can be seen, BayesNet classifier 
without boosting achieves the highest detection accuracy of 93.5% 
which is higher than AdaBoost implementations of weak 
classifiers (JRip and J48). The detection accuracy for general MLP-
based detector is 92% which is close to Boosted-JRip and 2% higher 
than the Boosted-J48 algorithm.  
These observations confirm the effectiveness of using ensemble 
learning to boost the accuracy of rule-based and decision tree 
classifiers in comparison with using them for heavyweight 
classifiers such as MLP and BayesNet. For instance, as shown, JRip 
itself achieves close to 88% accuracy with 8 HPCs. However, we 
observe that constructing AdaBoost model with the base learner 
of JRip results in achieving almost 92% accuracy. Moreover, 
boosting leads in reducing the accuracy in MLP and BayesNet 
general classifiers indicating that AdaBoost technique is best 
suited for weak rule-based and tree-based classifiers and using it 
for a neural network and Bayesian models diminishes the 
accuracy of malware detection.   
3.2 Robustness of Detectors   
To evaluate the robustness of ML classifiers in detecting malware, 
Receiver Operating Characteristics (ROC) graphs are used. 
Robustness is referred to how well the classifier distinguishes 
between binary malware and benign classes. The ROC curve is 

produced by plotting the fraction of true positives rate versus the 
fraction of false positives for a binary classifier. We use the Area 
Under the Curve (AUC) measure for ROC in the evaluation 
process to examine the robustness of each ML classifier. The AUC 
value of the best possible classifier is equal to meaning that a 
discrimination threshold can be found under which the classifier 
achieves 0% false positives and 100% true positives.  
Figure 4 depicts the ROC for four different ML-based malware 
detectors. Due to the space limitation, we only show the ROC 
graphs for selected ML classifiers. In this figure, the ROC graphs 
for general J48 and MLP, as well as the corresponding AdaBoost 
models are shown, considering 8 HPCs. Similar to the accuracy of 
malware detection, the robustness of weak classifiers (such as J48) 
are improved by 14% with boosting making the J48-Boosted more 
effective in terms of classification robustness, whereas the 
robustness of strong classifiers such as MLP is reduced by 6%. In 
addition, as observed in Figure 4, the Boosted-J48 delivers the 
AUC of equal to the general MLP (both 0.98). This also indicates 
that weak classifiers combined with ensemble learning can match 
the robustness of the general strong classifiers eliminating the 
need to use complex classifiers for better accuracy and robustness.  
3.3 Performance Analysis of Detectors 
To simultaneously evaluate both accuracy and robustness of 
different ML classifiers for malware detection, we employ the 
product of accuracy and area under the ROC graph (ACC*AUC) 
as a performance metric. Figure 5 depicts the performance of 
various general and boosted ML classifiers. First of all, regardless 
of boosting effect, the results indicate that MLP outperforms the 
performance of boosted weak classifiers delivering the highest 
performance of 90% for malware detection. Next in the general 
classifiers, the BayesNet achieves a performance of close to 87%. 
Similar to previous observations, out of the five different ML 
classifiers, lightweight classifiers (J48 and JRip) are benefiting 
from boosting approach delivering higher performance (13% and 
9%, respectively, as compared to their general model) when used 
as a base learner in AdaBoost ensemble technique. J48 and JRip 
are decision trees and rule-based algorithms, respectively with 
reasonably fast training and classification process making them 
suitable fits for boosting techniques. This shows a potential for 
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Figure 4. ROC graphs of four general and ensemble classifiers  
 

Figure 5. Performance of ML classifiers with 8 HPCs 
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applying ensemble learning techniques to boost the accuracy and 
performance of detectors. It is a crucial benefit when using such 
classifiers for base leaners of boosting learning where we need to 
run a model multiple times before outputting the final decision.  
On the other hand, it is evident from the figure that applying 
AdaBoost on heavyweight classifiers (MLP, BayesNet, and 
Logistic) have negative impact on their performances. As seen, 
using AdaBoost technique reduces the performance of MLP the 
most by 6%. Next impacted classifier is BayesNet by 4% 
performance reduction and Logistic regression-based classifier is 
least influenced by AdaBoost among the strong classifiers. On an 
average, the weak classifiers achieve an improvement of 11% in 
performance. In contrast, averagely 4% reduction is observed in 
performance of heavyweight classifiers with AdaBoost. The 
results clearly demonstrate the direct dependency of AdaBoost 
ensemble technique’s performance on the type of its base ML 
classifier.  
3.4 Hardware Overhead Analysis    
When it comes to choosing ML classifiers for hardware 
implementation, the accuracy of an algorithm is not the sole 
contributor for decision-making. Design area and response time 
(latency) of ML classifiers are also key factors in selecting the cost-
efficient solution. For hardware implementation, we deploy 
Vivado HLS compiler to synthesize ML classifiers for Xilinx 
Virtex-7 FPGA. Table 2 provides the hardware implementation 
costs for general classifiers and ensemble method (AdaBoost) 
applied on each general classifier using 8 HPCs. Latency unit is in 
terms of number of clock cycles (@10 ns) required to classify 
input. Area unit is the total number of utilized LUTs, FFs, and DSP 
units inside Virtex-7 FPGA. As depicted, the MLP and Logistic 
Regression result in significant area and latency overhead, 
compared to other models, while JRip and J48 produce lowest area 
overhead and latency among all implemented classifiers. Besides, 
as expected AdaBoost learning introduces significant area 
overhead across different ML classifiers. However, the area 
required for the Boosted lightweight classifiers (JRip and J48) is 
still smaller than the area required for the general heavyweight 
classifiers, and a same trend is observed in terms of latency.  
To accordingly account for accuracy, robustness and area 
overhead, in Figure 6 we compare performance over a unit of 
hardware area, (ACC*AUC)/Area, for various ML classifiers. We 
propose using performance over area to identify classifiers that 
require small area and yet can detect the maliciousness of 
program with high accuracy and robustness. A classifier with a 
higher ratio is considered better than the ones with lower ratio. 
Among all classifiers, the rule-based and tree-based classifiers are 
found to be more efficient compared to the highly accurate but 
complex BayesNet, MLP, and Logistic classifiers. Although by 
applying AdaBoost the performance/area is slightly reduced in 
JRip and J48 algorithms, it is still higher than other costly 
classifiers. The MLP has the least performance per unit area due 
to its large area overhead, whereas the JRip has the highest 
performance/area among the general ML classifiers. Despite the 
area overhead caused by boosting for weak classifiers, the 
performance per unit area is higher than other experimented 

heavyweight classifiers. Clearly, the results show some trade-offs 
between accuracy, performance, and area overhead. Therefore, it 
is important to compare ML classifiers for malware detection by 
taking all these parameters into consideration.  
4 CONCLUSION 
In this work, we proposed a run-time hardware-supported 
malware detection framework which effectively detects the 
malicious software with limited number of HPCs. We 
implemented various learning models including general ML 
classifiers and AdaBoost ensemble learning and thoroughly 
evaluated them in terms of accuracy, robustness, performance, 
and hardware overhead. We showed that using eight HPCs can 
deliver sufficient accuracy of nearly 94% for effective run-time 
malware detection. The results indicate that without hardware 
overheads consideration, complex ML classifiers such as MLP and 
BayesNet are the winners given their higher performance. 
However, after accounting for the implementation costs, they 
perform worst in terms of performance/area and latency 
compared to significantly simpler but slightly less accurate 
classifiers such as JRip and J48. Also, the rule-based and tree-based 
techniques by showing up to 13% performance improvement 
benefit more from application of ensemble learning. These 
lightweight classifiers combined with ensemble learning can 
match the robustness of the general strong classifiers eliminating 
the need to use costly classifiers for better performance.    
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 General AdaBoost 
Classifier Latency Area Latency Area 

Logistic 68 13041 102 23762 
BayesNet 14 6794 56 10345 

MLP 302 36252 591 47861 
J48 9 1801 67 2589 
JRip 4 1504 56 3192 

 

Table 2. Hardware implementation results 

 Figure 6. Performance/Area comparison of various ML classifiers 
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