
Watchdog Timer

Reference Material

Material in this document was drawn from these three sources

1. Watchdog Timer Basic Example, Written by Nicolas Larsen, 10 June 2011

2. ATmega data sheets

ATmega48PA/88PA/168PA/328P Section 10.8 Watchdog Timer (page 50 / 448)

ATmega16U4/ATmega32U4 Section 8.2 Watchdog Timer (page 48 / 448)

3. Standard C library for AVR-GCC avr-libc wdt.h library

You can find this wdt.h file in the Arduino\hardware\tools\avr\avr\include\avr folder

http://forum.arduino.cc/index.php?topic=63651.0
http://www.nongnu.org/avr-libc/user-manual/wdt_8h.html

The Basics

 The watchdog timer watches over the operation of the system. This may include preventing

runaway code or in our C example, a lost communications link.

 The watchdog timer operates independent of the CPU, peripheral subsystems, and even the clock of the

MCU.

 To keep the watchdog happy you must feed it a wdr (watchdog reset) assembly instruction

before a predefined timeout period expires.

 The timeout period is defined by a ~128KHz watchdog timer clock and a 4-bit prescaler.

Watchdog Timer Reset

In normal operation mode, it is required that the system uses the WDR - Watchdog Timer Reset - instruction to

restart the counter before the time-out value is reached. If the system doesn't restart the counter, an interrupt or

system reset will be issued. ATmega328P Datasheet Section 10.8.2 Overview.

When the Watchdog Reset (wdr) instruction is encountered (pun intended), it generates a short reset pulse of

one CK cycle duration. On the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT.

The Watchdog Timer System

 To configure the watchdog timer you define the timeout period by setting the pre-scale value, and define

what action is to be taken if a timeout occurs.

 Configuration bits are found in the WDTCSR – Watchdog Timer Control Register.

Define the Timeout Period

 The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is running. The

different prescaling values and their corresponding time-out periods are shown here.

One your own…

How many flip-flops are needed to implement the watchdog prescaler?
Hint: How many bits are needed to generate the longest delay with an input clock frequency of 128KHz?

Define Action on Timeout

 The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to System Reset

mode. With the fuse programmed (WDTON = 0) the System Reset mode bit (WDE) and mode bit (WDIE) are

locked to 1 and 0 respectively. Arduino / ATmega 328P fuse settings.

 The Arduino ATmega328P bootloader sets the fuse to unprogrammed WDTON = 1, which means you can

program the action to be taken by setting or clearing the WDE and WDIE bits as shown in the following

table.

 Watchdog Timer is in Interrupt and System Reset Mode – When the interrupt occurs the hardware

automatically clears the WDIE bit, thus putting the watchdog timer into the "System Reset" mode, as

defined in the table (WDTON = 1, WDIE = 0, WDE = 1). At the next timeout, a reset is generated.

http://www.martyncurrey.com/arduino-atmega-328p-fuse-settings/

Assembly Code Example

 The following assembly code example Starts the watchdog timer in System Reset Mode with a timeout

period of ~0.5 seconds

WDT_Prescaler_Change:

cli ; Turn off global interrupt

wdr ; Give yourself some time

lds r16, WDTCSR ; Start timed sequence

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCSR, r16

; -- You have four cycles to set the new values from here --

; Set mode and new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

sts WDTCSR, r16

; -- Finished setting new values, used 2 cycles --

sei ; Turn on global interrupt

ret

Assembly and C code Examples Turning Off the Watchdog Timer.

Assembly Code Example
WDT_off:

 cli ; Turn off global interrupt

 wdr ; Reset Watchdog Timer

 in r16, MCUSR ; Clear WDRF in MCUSR

 andi r16, (0xff & (0<<WDRF))

 out MCUSR, r16

 ; Write logical one to WDCE and WDE

 ; Keep old prescaler setting to prevent unintentional time-out1

 lds r16, WDTCSR

 ori r16, (1<<WDCE) | (1<<WDE)

 sts WDTCSR, r16

 ldi r16, (0<<WDE) ; Turn off WDT

 sts WDTCSR, r16

 sei ; Turn on global interrupt

 ret

C Code Example
void WDT_off(void)

{

 cli(); // disable interrupts

 wdt_reset(); // included in avr/wdt.h library, assembly instruction wdr

 MCUSR &= ~(1<<WDRF); // Clear WDRF in MCUSR

 // Write logical one to WDCE and WDE

 // Keep old prescaler setting to prevent unintentional time-out1

 WDTCSR |= (1<<WDCE) | (1<<WDE);

 WDTCSR = 0x00; // Turn off WDT

}

1 If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out condition, the device will be reset and the Watchdog

Timer will stay enabled. If the code is not set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the Watchdog System Reset Flag(WDRF) and the WDE control bit in the initialisation
routine, even if the Watchdog is not in use.

3DoT C Code Watchdog Object

 The 3DoT Watchdog object has only one public methods

void watchdogSetup(uint8_t);

 The 3DoT Watchdog object has three private methods

void watchdogOff();

void throwError(uint16_t);

 The 3DoT Watchdog object has three read-only private properties

uint8_t _prescaler;

uint8_t _mode;

uint8_t _counter;

 Let’s take a closer look at the watchdogSetup method

3DoT C Code Operation

 In the watchdogSetup C program
on the next page the ATmega328P
WDTCSR register may be configured
to operate the watchdog timer in the “Interrupt and System Reset” or “Interrupt” mode with a
programmable delay from 1 to 8 seconds.

 To configure the WDT a 0x10 WATCHDOG_SETUP command packet is sent with one of the following
arguments

0x00 Watchdog Off
0x4E 1 sec interrupt and system reset mode
0x4F 2 sec
0x68 4 sec
0x69 8 sec
0x46 1 sec interrupt mode
0x47 2 sec
0x60 4 sec
0x61 8 sec

 If one of these arguments is not sent the program sends a 0x0E “Exception” packet with a 0x06 “Watchdog
timeout out of range” code. To put this in perspective, here are all the Exception codes and what they
mean.

0x0E Exception Codes
High low order byte
01 Start byte 0xA5 expected
02 Packet length out of range 1 - 20
03 LRC checksum error
04 Undefined command decoder FSM state
05 Array out of range i >= 23
06 Watchdog timeout out of range

3DoT C Code Operation Example

 If programmed for 8 second “Interrupt and Reset” Mode and a wdr command is not generated within the

timeout period, an Interrupt will occur at T+8 seconds and the Reset at T+16.

 When the interrupt occurs T+8 seconds…

o the hardware automatically clears the WDIE bit, thus putting the watchdog timer into the "System
Reset" mode, as defined in the table (WDTON = 1, WDIE = 0, WDE = 1).

o a 0x0B “Emergency” packet with 0x0100 code is sent

0x0B Emergency Codes
High Low order byte
01 00 Watchdog timeout

o After this interrupt, at any time (up to T+16) you can reset the timer, turn it off, change modes, etc.

3DoT Watchdog C Code Example

/*

 * Watchdog Timer Interrupt

 */

ISR(WDT_vect) //

{

 // Safe 3DoT

 motorDriver.motors_safe();

 wdtPacket.sendPacket(EMERGENCY_ID,WATCHDOG_TIMEOUT); // send EMERGENCY_ID with WATCHDOG_TIMEOUT

}

/*

 * Watchdog Setup

 */

void Watchdog::watchdogSetup(uint8_t mode_prescaler)

{

 _prescaler = ((mode_prescaler & 1<<WDP3)>>2) | (mode_prescaler & 0x07); // extract prescaler WDP3..WDP0

 _mode = (((1<<WDIE) & mode_prescaler)>>5) | (((1<<WDE) & mode_prescaler)>>3); // extract mode WDIE:WDE

 if (mode_prescaler == 0x00){

 watchdogOff(); // turn off watchdog timer

 }

 else if ((WDTO_1S <= _prescaler) && (_prescaler <= WDTO_8S)) // only allowable prescale values

 {

 cli(); // __disable_interrupt();

 wdt_reset(); // __watchdog_reset(); included in avr/wdt.h library, assembly instruction wdr

 // enter Watchdog Configuration mode

 // keep old prescaler setting to prevent unintentional time-out

 WDTCSR |= (1<<WDCE) | (1<<WDE);

 // Interrupt and System Reset mode (see Table 10-1) plus Prescaler (see Table 10-2)

 // timed instuction (4 cycles max)

 WDTCSR = mode_prescaler;

 sei(); // __enable_interrupt();

 }

 else

 {

 throwError(word(0x06,mode_prescaler)); // send 0x0E with code 0x06 plus undefined argument

 }

}

3DoT Watchdog Demonstration

 Plug in an Arduino UNO

 Launch and Configure CoolTerm

 Launch arxrobot_firmware_3DoT

 Normal Operation

A5 02 10 69 DE Set watchdog interrupt for 8 sec

A5 01 11 B5 Ping (repeat at a frequency of less than 0.125 seconds)

CA 01 11 DA Pong

A5 02 10 00 B7 Turn Watchdog Off

 Timeout Example

A5 02 10 4E 59 Set watchdog interrupt for 1 sec

CA 03 0B 01 00 Emergency Code 0B, Watchdog timeout 0100

CA 03 06 00 63 AC Read and transmit sensor values after restart

CA 03 02 00 00 CB

 Timeout Prescaler out-of-range

A5 02 10 62 D5 ATmega reserved

CA 03 0E 06 62 A3

 ↓ | ↓

exception | argument

error ↓

watchdog timeout out of range

